RKHS associated with invertible operator

Native space

$$\mathcal{H}_{\mathrm{L}} = \left\{ f : \mathbb{R}^d o \mathbb{R} \text{ s.t. } \|f\|_{\mathcal{H}_{\mathrm{L}}} \stackrel{\Delta}{=} \|\mathrm{L} f\|_{L_2(\mathbb{R}^d)} < \infty
ight\} \subseteq L_2(\mathbb{R}^d)$$

Coercive regularisation operator: $L:\mathcal{H}_L \to L_2(\mathbb{R}^d)$

$$c\|f\|_{L_2(\mathbb{R}^d)} \leq \|\mathrm{L} f\|_{L_2(\mathbb{R}^d)} \quad = \|f\|_{\mathcal{H}_\mathrm{L}}$$
 continuity \Leftrightarrow specifies a valid norm

- \Leftrightarrow Existence of (stable) inverse operator: $L^{-1}:L_2(\mathbb{R}^d) \to \mathcal{H}_L$
- Inner product: $\langle f, g \rangle_{\mathcal{H}_{\mathbf{L}}} = \langle \mathbf{L}f, \mathbf{L}g \rangle = \langle \underbrace{(\mathbf{L}^*\mathbf{L})f}_{f^* \in \mathcal{H}_{\mathbf{L}}'}, g \rangle$

Determination of reproducing kernel

$$h(\boldsymbol{x}, \boldsymbol{y}) = \mathrm{R}\{\delta(\cdot - \boldsymbol{y})\}(\boldsymbol{x}) \quad \text{with} \quad \mathrm{R} = (\mathrm{L}^*\mathrm{L})^{-1}: \mathcal{H}_\mathrm{L}' \to \mathcal{H}_\mathrm{L}$$

- Reproducing kernel property
 - $(i) \quad h(\cdot, oldsymbol{x}_0) \in \mathcal{H}_{\mathrm{L}} ext{ for all } oldsymbol{x}_0 \in \mathbb{R}^d$
 - $(ii) \quad f(\boldsymbol{x}_0) = \langle h(\cdot, \boldsymbol{x}_0), f \rangle_{\mathcal{H}_{\mathrm{L}}} \text{ for all } f \in \mathcal{H}_{\mathrm{L}} \text{ and } \boldsymbol{x}_0 \in \mathbb{R}^d.$

$$\Rightarrow \langle h(\cdot, \boldsymbol{x}_0), h(\cdot, \boldsymbol{y}_0) \rangle_{\mathcal{H}_{\mathrm{L}}} = h(\boldsymbol{x}_0, \boldsymbol{y}_0)$$

Explicit determination for LSI (=convolution) operator

 $\hat{L}(oldsymbol{\omega}) = \mathcal{F} ig\{ \mathrm{L} \delta ig\}(oldsymbol{\omega})$: frequency response of operator

$$h({m x},{m y}) =
ho_{\mathrm{L^*L}}({m x}-{m y}) \quad ext{where} \quad
ho_{\mathrm{L^*L}}({m x}) = {\mathcal F}^{-1} \left\{ rac{1}{|\widehat{L}({m \omega})|^2}
ight\}({m x})$$

,

1

Regularized least-squares fit

Interpolation problem

Input: set of (potentially noisy) data points: $f(x_m) \approx y_m, \quad m = 1, \dots, M$

$$f_{ ext{opt}} = \arg\min_{f \in \mathcal{H}_L} \left(\sum_{m=1}^{M} (y_m - f(\boldsymbol{x}_m))^2 + \lambda \|Lf\|_{L_2}^2 \right)$$

Outcome of representer theorem

Unique solution $f_{\mathrm{opt}} \in \mathrm{span}\{h(\cdot, {\boldsymbol x}_m)\}_{m=1}^M$

$$\Leftrightarrow \quad \exists \mathbf{a} = (a_m) \in \mathbb{R}^M \quad \text{ s.t. } \quad f_{\mathrm{opt}}(m{x}) = \sum_{m=1}^M a_m h(m{x}, m{x}_m)$$

3

Your task(s)

- lacksquare Show that $f_{
 m opt}$ is a ${
 m L^*L}$ -splines with knots at $\{m{x}_m\}$
- lacktriangle Derive an (numerical) algorithm for finding the optimal coefficients ${f a}=(a_1,\ldots,a_M)$
- lacksquare Derive $h(\cdot, oldsymbol{x})$ for your favourite operator L
- Implement the algorithm and present results of your data fitting (plots) illustrating the effect of the regularisation parameter λ
- **Extra**: Derive a B-spline based algorithm for $\{x_m\}_{k\in\mathbb{Z}}$ (cardinal setting)

Controlled generation of data

- Generate a random set of M points $x_m \in [0,T]$ (uniform poisson distribution)
- Generate the samples $z_m = f(x_m)$ of a zero-mean Gaussian process with correlation function $\mathbb{E}\{f(x)f(y)\} = h(x,y)$

Hint:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$$
 with $[\mathbf{C}]_{m,n} = h(x_m, x_n)$

lacksquare Generate noisy data by adding i.i.d. Gaussian noise: $y_m = f(x_m) + \epsilon$.