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4 Gaussian processes

From a conceptual point of view, the theory of RKHS can be seen as the
infinite-dimensional generalization of the concepts of quadratic forms and
symmetric positive-definite matrices in linear algebra. Similarly, one may
argue that the theory of generalized stochastic processes constitutes the
infinite-dimensional generalization of multivariate probability theory, with
Gaussian processes being the natural extension of Gaussian random vari-
ables.

Under construction: Since we do not expect all readers to be at ease
with probability theory and multivariate statistics, we have provided a brief
summary of the basic concepts and ideas in Appendix C. The other very
useful feature of this appendix is that it actually yields a road map to guide
our generalization.

For our discussion of stochastic processes, we assume that the reader is
reasonably familiar with measure theory and the classical theory of proba-
bility, including the multivariate Gaussian distribution.

In a nutshell, we shall parallel the definition of random variable and
probability measures in Appendix C.1 to introduce generalized stochastic
processes in Section 4.1.

4.1 Generalized stochastic processes (GSP)

In the classical theory of probability, a real-valued random variable X is
defined as a measurable function ! 7! X(!) from the probability space
(⌦, ⌃(⌦), P) to the state space X = R endowed with the Borelian �-field
B(R). Here, ⌦ is the sample space of possible outcomes indexed by ! with
native probability measure P, while B(R) is the collection of all Borel-
measurable subsets of R. The elements of B(R) are called events—they
typically correspond to some interval of R such as E = (�1, x]. The induced
probability measure for X is PX(E) = P{! 2 ⌦ : X(!) 2 E} for all
E 2 B(R). The latter is also given by

PX(E) = Prob(X(!) 2 E) =

Z

E
pX(x)dx, (125)

where pX is the pdf of X and E is any Borel subset of R. The other funda-
mental point is that this probability measure is in one-to-one correspondence

107



M. Unser (EPFL) RKHS, Splines, and Gaussian Processes

10

-2 -1 0 1 2 3

pX(x)

x

Prob(E) =

Z

E
pX(x)dx

-2 -1 0 1 2 3 4 5

1

E

bpX(⇠) = F{pX}(⇠)

⇠

Figure 3: Probability density and characteristic function of a univariate
Gaussian random variable.

with the characteristic function

cPX(⇠) = E{ejX⇠} =

Z

R
ejx⇠PX(dx)

=

Z

R
pX(x)ejx⇠dx = F⇤{pX}(⇠) (126)

which is the (conjugate) Fourier transform of the pdf pX . These quantities
are illustrated in Fig. 3 for the special case of a standardized Gaussian
random variable X

Gauss

with mean µ = E{X
Gauss

} = 0 and variance �2 =

E{(X
Gauss

� µ)2} = 1.
The transition from the univariate setting to an infinite number of di-

mensions is achieved by replacing the state space R by some topological
vector space X . Moreover, there are theoretical advantages in taking X to
be the dual of a nuclear space—the case of our interest being X = S 0(Rd):
Schwartz’s space of tempered distributions. Within that extended frame-
work, there are three possible ways to conceptualize a generalized stochastic
process (GSP):

1. as a map that translates the outcome ! 2 ⌦ of a random experiment
into a generalized function G(!) 2 S 0(Rd);

2. as a random continuous linear functional ' 7! G(') that associates a
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real-valued random variable G(') = hG, 'i to any test function ' 2
S(Rd);

3. as a global mechanism for generating collections of multivariate ran-
dom variables X = (hG, '

1

i, . . . , hG, 'N i) with compatible statistical
distributions.

These three complementary point of views are explained next. Remarkably,
they turn out to be equivalent, thanks to the nuclear structure of the dual
pair of spaces

�S(Rd), S 0(Rd)
�

.

4.1.1 GSPs as random generalized functions

A conventional random variable is a real variable that takes different values
depending on the outcome of a random phenomenon. Likewise, one can think
of a generalized stochastic process as a functional variable G that returns
different generalized functions g = G(!) 2 S 0(Rd) depending on the outcome
! 2 ⌦ of some random experiment.

This extension relies on the fundamental property that Borel �-fields and
probability measures can also be defined on general (infinite-dimensional)
vector spaces (see Appendix F). This allows for the use of the same mapping
technique as in the univariate case to specify generalized stochastic processes
whose realizations are randomly selected elements of the extended state space
X = S 0(Rd). Such processes are then characterized by their probability
measure PG : B

�S 0(Rd)) ! [0, 1] where B
�S 0(Rd) is the Borel �-field of

S 0(Rd). This is stated formally as follows.

Definition 18 (Generalized random process). Let (⌦, ⌃(⌦), P) be our uni-
versal 4 probability space. Then, a generalized random process in S 0(Rd) is a
measurable function

G : ! 7! G(!) 2 S 0(Rd)

from the space of possible outcomes ⌦ to the (state) space of tempered distri-
butions S 0(Rd). It is fully characterized by the induced probability measure
on S 0(Rd); that is,

PG(E) = P{! 2 ⌦ : G(!) 2 E},

for any Borel subset E ✓ S 0(Rd).
4 �

⌦,⌃(⌦)
�

should be sufficiently rich to map into (S 0
(Rd

), B
�S 0

(Rd
)

�
which is implicit

in the requirement that the map ! 7! G(!) should be measurable. In other words, the
pre-image by G of any measurable subset E of S 0

(Rd
) should be included in ⌃(⌦).
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Concretely, this means that each realization g = G(!) of G is a general-
ized function g 2 S 0(Rd), while the random generation mechanism—i.e., the
drawing of an outcome !—is governed by the probability measure PG on
S 0(Rd) with

Prob(G(!) 2 E) = PG(E)

for any Borelian subset E 2 S 0(Rd). This is to say that the measure PG

provides us with the knowledge of the probability associated with any region
(or subset) E within the extended space of tempered distributions. This
is very similar to the univariate scenario described by (125), except that
there is no direct “infinite-dimensional” counterpart of the probability density
function (pdf) that appears on the right-hand side of this equation. However,
we shall see in Section 4.3 that there exists an infinite-dimensional analog
of the characteristic function cPX(⇠) = E{ej⇠X} under the condition that
the underlying topological vector space is nuclear, which is precisely the
case for S 0(Rd). While this infinite-dimensional generalization results in a
characteristic functional cPG : S(Rd) ! C rather than a function, the good
news is that it is endowed with the same properties as its finite-dimensional
counterpart and that it is (almost) as easy to use in practice.

4.1.2 GSPs as random linear functionals

Instead of describing a generalized random process G through its “infinite-
dimensional” probability measure, it is possible to characterize its effect on
some generic test function ' 2 S(Rd). Indeed, since the members of S 0(Rd)
are linear functionals on S(Rd), any realization g = G(!) specifies a contin-
uous linear map S(Rd) ! R

' 7! hG(!), 'i

for any ' 2 S(Rd). Accordingly, if we fix ', we can interpret ! 7! X' =
hG(!), 'i as a conventional real-valued random variable whose pdf pX' :
R ! R+ can be determined, at least in principle, from PG. This suggest
the following operational definition.

Definition 19 (Generalized stochastic process as a random functional). A
generalized stochastic process G in S 0(Rd) is a random linear functional ' 7!
hG, 'i on S(Rd) with the following properties:

• Generation mechanism: for any ' 2 S(Rd), the quantity X' = hG, 'i
is an ordinary scalar random variable whose pdf pX' is parametrized
by '.
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• Linearity: hG, a
1

'
1

+ a
2

'
2

i = a
1

hG, '
1

i + a
2

hG, '
2

i in law for any
'
1

, '
2

2 S(Rd) and a
1

, a
2

2 R.

• Continuity: If the sequence ('n) is converging in S(Rd) then limn!1hG, 'ni =
hG, limn!1 'ni in law.

Definition 19 provides us with a convenient link between the theory of
stochastic processes and the classical univariate setting of probability theory.
One can then draw on this connection to define a number of basic properties
of generalized stochastic processes.

Definition 20 (Statistical independence). Two generalized stochastic pro-
cesses G

1

and G
2

in S 0(Rd) are said to be mutually independent if the random
variables X

1

= hG
1

, 'i and X
2

= hG
2

, 'i are mutually independent for any
' 2 S(Rd).

Definition 21 (Gaussian processes). A generalized stochastic process G in
S 0(Rd) is said to be Gaussian if the random variable X = hG, 'i has a
Gaussian distribution for any ' 2 S(Rd). In particular, it is a standardized
Gaussian white noise (or Gaussian innovation process) if X has zero mean
and variance �2

X = k'k2
L
2

(Rd
)

for any ' 2 S(Rd) and, by extension, for any
' 2 L

2

(Rd).

Definition 22. A generalized stochastic process G : ' 7! hG, 'i is

• Infinite divisible: if the random variable X = hG, 'i is infinitely divis-
ible for any ' 2 S(Rd).

• Second-order: if E{|hG, 'i|2} < 1 for any ' 2 S(Rd).

• Stationary: if, for any given ' 2 S(Rd), the random variables X
x

0

=
hG, '(· + x

0

)i are identically distributed for any x

0

2 Rd.

• Self-similar with Hurst index H: if, for any given ' 2 S(Rd), the
random variables Xa = aHhG, |a|d'(a·)i are identically distributed for
any contraction factor a 2 R+.

Definition 23 (Linear transform of a generalized stochastic process). For
any given continuous linear operator T : S 0(Rd) ! S 0(Rd) whose adjoint T⇤

is continuous S(Rd) ! S(Rd), the linear transformation of the generalized
stochastic process G in S 0(Rd) is defined as

hT{G}, 'i M
= hG, T⇤{'}i

for any ' 2 S(Rd).
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Note that the effect of such a transformation on a realization ! 7!
g = G(!) translates into hT{G}(!), 'i = hT{g}, 'i = hg, T⇤{'}i for any
' 2 S(Rd), which is compatible with the standard definition (by duality) of
the linear transformation of a generalized function g 2 S 0(Rd). The most
important linear transformations for our purpose are:

1. Translation by x

0

2 Rd:

hg(· � x

0

), 'i M
= hg, '(· + x

0

)i

2. Dilation (or scaling) by a 2 R+:

hg(·/a), 'i M
= hg, |a|d'(a·)i

3. Rotation of coordinate system x 7! Rx with R�1 = RT :

hg(R·), 'i M
= hg, '(R�1·)i

4. Partial derivative operator @n of multi-order n = (n
1

, . . . , nd):

h@ng, 'i M
= hg, (�1)|n|@n'i

where |n| = n
1

+ · · · + nd and

@n'(x) =
@|n|'(x

1

, . . . , xd)

@xn
1

1

· · · @xnd
d

Hence another equivalent interpretation of the stationarity property in
Definition 22 is that the generalized stochastic process G is undistinguishable
in law from its translated version G(· � x

0

) for all x

0

2 Rd. Similarly, a
self-similar process with Hurst exponent H is a process that is statistically
undistinguishable from its dilated and renormalized version aHG(·/a) for
any a > 0.

4.1.3 GSPs as consistent generators of random variables

Under construction: Implicit in the definition of GSP is the mutual
consistency of the underlying statistical distributions which follows from the
linearity property. For instance, by considering a series of test functions
'
1

, . . . , 'N , we may define the random vector X = (X
1

, . . . , XN ) with Xn =
hG, 'ni.
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4.1.4 Examples

The functional counterpart of the constant random variable is the (general-
ized) deterministic process:

! 7! G
Const

(!) = p
0

' 7! G
Const

(') = hp
0

, 'i

where p
0

is a fixed element of S 0(Rd). A slightly more involved example is
the linear process

! 7! GN
0

(!) =

N
0

X

n=1

An(!)pn

' 7! GN
0

(') = h
N

0

X

n=1

Anpn, 'i =

N
0

X

n=1

Anhpn, 'i

where the An ⇠ N (0, �2

n) are independent Gaussian random variables with
zero mean and variance �2

n and where the pn are fixed elements of S 0(Rd).
Clearly, this generalized process is finite-dimensional since its realizations
live in span{pn}N0

n=1

✓ S 0(Rd). Moreover, it is Gaussian with GN
0

(') ⇠
N (0,

PN
0

m=1

�2

n|hpn, 'i|2) since it results from a linear combination of N
0

(independent) Gaussian random variables An.
A more ambitious construction is the standardized white Gaussian noise

of Definition 21:

' 7! W
Gauss

(') = hW
Gauss

, 'i ⇠ N (0, k'k2L
2

(Rd
)

),

which yields a series of Gaussian random variables with zero mean and stan-
dard deviation � = k'kL

2

(Rd
)

. This is a true infinite-dimensional object
that is the natural functional extension of the normal random variable. By
contrast with the first two examples, it is much less obvious there to give
a functional description of the individual realizations W

Gauss

(!) 2 S 0(Rd).
In fact, these signals are too rough to have a pointwise interpretation. One
should think of them as some kind of stochastic counterpart of the Dirac
distribution because their average spectral density is flat.

4.2 Mean and covariance forms

We have seen that the observation G(') = hG, 'i of a generalized random
process in S 0(Rd) is an ordinary random variable in R. The expected value
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of G(') is then given by

E{hG, 'i} = E{G(')} =

Z

R
xpG(')(x)dx

where pG(')(x) is the underlying pdf. The key observation, which follows
from the axioms in Definition 19, is that the map ' 7! E{hG, 'i} is a
continuous linear functional on S(Rd) so that there exits a unique element
µG 2 S 0(Rd) such that

' 7! E{hG, 'i} = hµG, 'i.
The generalized function µG is called the mean of the stochastic process G;
it is also written as µG = E{G}. The latter may also be formally defined by
the functional integral

µG = E{G} =

Z

S0
(Rd

)

gPG(dg).

For instance, the mean of the deterministic process ! 7! G(!) = p
0

of
Subsection 4.1.4 is simply p

0

, while the mean of the white Gaussian noise
process W

Gauss

is E{W
Gauss

} = 0.
Instead of a single random variable G('), we may also consider any pair

of observations X =
�

G('
1

), G('
2

)
�

of the generalized process G, which
admits some joint pdf p

X

parameterized by '
1

and '
2

. The second-order
dependencies of the process are then measured by the covariance form

CG('
1

, '
2

) = E{hG � µG, '
1

ihG � µG, '
2

i}
=

Z

R2

(x
1

� µ
1

)(x
2

� µ
2

) p
X

(x
1

, x
2

)dx
1

dx
2

with µ
1

= hµG, '
1

i and µ
2

= hµG, '
2

i. We then rely on the axioms in
Definition 19 once more to derive the functional properties of the covariance
functional CG : S(Rd) ⇥ S(Rd) ! R.

Theorem 22 (Properties of the covariance form). Let G be a generalized
stochastic process in S 0(Rd) with mean E{G} = µG and the second-order
property E{hG, 'i2} < 1 for all ' 2 S(Rd). Then, its covariance form,
which is defined by

CG('
1

, '
2

) = E{hG � µG, '
1

ihG � µG, '
2

i}
=

Z

S0
(Rd

)

hg � µG, '
1

ihg � µG, '
2

iPG(dg) (127)

for any '
1

, '
2

2 S(Rd), has the following properties:
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• Symmetry: CG('
1

, '
2

) = CG('
2

, '
1

).

• Bilinearity: The functional CG : ('
1

, '
2

) 7! CG('
1

, '
2

) is linear in
each of its arguments.

• Continuity: CG continuously maps S(Rd) ⇥ S(Rd) ! R.

• positive definiteness: CG('
1

, '
1

) � 0.

• Link with covariance operator: There exists a unique continuous linear
operator RG : S(Rd) ! S 0(Rd) such that

CG('
1

, '
2

) = hRG{'
1

}, '
2

i = hRG{'
2

}, '
1

i.

• Kernel representation: There exists a unique symmetric kernel rG 2
S 0(Rd ⇥ Rd) such that

CG('
1

, '
2

) = hrG, '
1

⌦ '
2

i =

Z

Rd

Z

Rd
rG(x, y)'

1

(x)'
2

(y)dxdy.

Proof. Let us fix '
1

, '
2

2 S(Rd) and consider the random variables X
1

=
hG, '

1

i, X
2

= hG, '
2

i, as well as their linear combination X
3

= a
1

X
1

+X
2

=
hG, a

1

'
1

+ '
2

i with a
1

2 R. The corresponding means are E{X
1

} = µ
1

,
E{X

2

} = µ
2

, and E{X
3

} = E{a
1

X
1

+ X
2

} = a
1

µ
1

+ µ
2

with µi = hµG, 'ii
(as direct consequence of the linearity assumption in Definition 19). Thanks
to the second-order condition, the covariance matrix of X = (X

1

, X
2

) is
well-defined for any '

1

, '
2

2 S(Rd); it is given by

C
X

=

✓

CG('
1

, '
1

) CG('
1

, '
2

)
CG('

2

, '
1

) CG('
2

, '
2

)

◆

with CG('i, 'j) = E{(Xi � µi)(Xj � µj)} = E{XiXj} � µiµj = CG('j , 'i).
Since C

X

is symmetric and positive-definite by construction, these properties
carry over to the form CG : S(Rd)⇥S(Rd) ! R. To establish the bilinearity
property, we evaluate the covariance between X

3

and X
1

as

CG(a
1

'
1

+ '
2

, '
1

) = E{X
3

X
1

} � µ
3

µ
1

= E{(a
1

X
1

+ X
2

)X
1

} � (a
1

µ
1

+ µ
2

)µ
1

= a
1

�

E{X
1

X
1

} � µ
1

µ
1

�

+
�

E{X
2

X
1

} � µ
2

µ
1

�

= a
1

CG('
1

, '
1

) + CG('
2

, '
1

).
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The continuity assumption in Definition 19 implies that CG(·, '
2

) with '
2

fixed is continuous S(Rd) ! R in its first argument, while the same obvi-
ously holds true if one switches the role of the two arguments. Because of
the linearity property, the separate continuity of CG in each of its arguments
is equivalent to its joint continuity (see proof of Proposition 23 in Appendix
B for a more detailed explanation). Ultimately, this translates into the exis-
tence of a directed Schwartz norm k · km and a constant A > 0 such that

CG('
1

, '
2

)  Ak'
1

kmk'
2

km (128)

for all '
1

, '
2

2 S(Rd)—as implied by the boundedness condition in Schwartz’
kernel theorem (Theorem 37) with m = min(m

0

, n
0

). The same theorem also
ensures the existence of a unique kernel rG 2 S 0(Rd⇥Rd) and a corresponding
linear operator RG such that the remaining equivalences are met.

The linear map RG : S(Rd) ! S 0(Rd) in Proposition 22 is the so-called
covariance operator whose equivalent “integral” representation is

RG{'}(x) = hrG(x, ·), 'i =

Z

Rd
rG(x, y)'(y)dy. (129)

Its kernel rG(x, y), which is formally identified as

rG(x, y) = CG

�

�(· � x), �(· � y)
�

= RG{�(· � y)}(x),

is the covariance function of G. Since hRG{'}, 'i = CG

�

', '
� � 0 for any

' 2 S(Rd), both entities are symmetric, positive-definite by construction
(see Definition 30 in Appendix A).

Three further remarks are in order. First, the knowledge of the map
' 7! Var{hG, 'i} = CG(', ') that returns the variance of the scalar variable
hG, 'i is sufficient to determine CG uniquely. Indeed, we have that

CG('
1

, '
2

) =
1

4

�

Var{hG, '
1

+ '
2

i} � Var{hG, '
1

� '
2

i�, (130)

as a consequence of (bi)linearity. Another remarkable implication of the
latter property is that the continuity of CG at (0, 0)

�

which is equivalent
to the boundedness of CG in (128)

�

is sufficient to ensure its continuity
over S(Rd) ⇥ S(Rd). Finally, the covariance form CG satisfies the Cauchy-
Schwarz-like inequality

|CG('
1

, '
2

)| 
p

CG('
1

, '
1

)
p

CG('
2

, '
2

) < 1, (131)

which is equivalent to the positive definiteness of the matrix C
X

in the proof
of Proposition 22.
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4.2.1 Reproducing kernels and mean-square continuity

A classical stochastic process on Rd—that is, an indexed collection of ran-
dom variables {G(x) : x 2 Rd}—can be viewed as a special instance of a
generalized stochastic process G in S 0(Rd) for which the space of test func-
tions has been extended to include the sampling functionals �(· � x

0

) for
any x

0

2 Rd. In other words, the generalized process must be such that its
sample values

G(x)
M
= hG, �(· � x)i

are well-defined random variables for all x 2 Rd. In particular, this implies
that the mean of the process is an ordinary function of x

E{G(x)} = hE{G}, �(· � x)i = µG(x).

Likewise, under the second-order (or finite variance) hypothesis, the covari-
ance function of G is an “ordinary” bivariate function, which is given by

rG(x, y) = E{�G(x) � µG(x
��

G(y) � µG(y)
�}, (132)

an expression that is compatible with the more general definition of the
kernel rG of the covariance form CG in Theorem 22. We also note that the
covariance function rG : Rd ⇥ Rd ! R is symmetric and positive-definite; in
particular, it satisfies

|rG(x, y)| 
p

rG(x, x)
p

rG(y, y)

for any x, y 2 Rd (see Proposition 21 in Appendix A), which is the kernel
counterpart of (131).

In addition to their variance being finite, a minimum requirement for
classical stochastic processes is that they be continuous in the mean-square
sense.

Definition 24 (Mean-square continuity). A real-valued stochastic process
{G(x) : x 2 Rd} is said to be mean-square continuous at x

0

2 Rd if
E{[G(x

0

)]2} < 1 and

lim
x!x

0

E{⇥G(x) � G(x
0

)
⇤

2} = 0.

Let us assume, for simplicity, that the process is centered; i.e., E{G(x)} =
µG(x) = 0 for all x 2 Rd. We can then expand the above expectation as

E{⇥G(x) � G(x
0

)
⇤

2} = E{G(x)2 + G(x
0

)2 � 2G(x)G(x
0

)}
= rG(x, x) + rG(x

0

, x
0

) � 2rG(x, x
0

),
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which shows that G is mean-square continuous if and only if its covariance
function rG : Rd ⇥ Rd ! R is (jointly) continuous at the point (x

0

, x
0

).
For a non-centered process, we obviously also require the mean function
µG : Rd ! R to be continuous at x

0

.
Thus, to ensure the mean-square continuity of G over Rd, we need the

continuity of (x, y) 7! rG(x, y) over the diagonal of its domain—i.e., for any
x = y 2 Rd—which, somewhat remarkably, is equivalent to its continuity
over Rd ⇥ Rd.

Theorem 23 (Mean-square continuity of stochastic processes). A second-
order stochastic process G over Rd ismean-square continuous if and only if
its mean and covariance functions, µG and rG, are continuous over Rd and
Rd ⇥ Rd, respectively. This also implies that rG : Rd ⇥ Rd ! R is a valid
reproducing kernel.

Proof. We shall assume that G(x) is zero-mean; otherwise, we recenter the
process by taking G(x) � µG(x). In light of the above discussion, the only
delicate issue is to prove that the continuity of rG over the diagonal implies
continuity everywhere.

Using the property that the covariance matrix of X = (X
1

, X
2

) with
X

1

= G(x) and X
2

= G(y) � G(y
0

) is positive-definite, we first show that

|rG(x, y) � rG(x, y
0

)|2 = |E {X
1

X
2

}|2
 E

�

X2

1

 

E
�

X2

2

 

(by positive definiteness)
= rG(x, x)

⇥

rG(y, y) + rG(y
0

, y
0

) � 2rG(y, y
0

)
⇤

.

The continuity of rG over the diagonal implies that both rG(y, y) and rG(y, y
0

)
tend to rG(y

0

, y
0

) as y ! y

0

, so that lim
y!y

0

|rG(x, y) � rG(x, y
0

)| = 0.
Since rG is symmetric, the latter is equivalent to its separate continuity in
each argument. By applying the same method once more, we find that

|rG(x, y) � rG(x
0

, y
0

)|  |rG(x, y) � rG(x, y
0

)| + |rG(x, y
0

) � rG(x
0

, y
0

)|

p

rG(x, x)
⇥

rG(y, y) + rG(y
0

, y
0

) � 2rG(y, y
0

)
⇤

1

2

+
p

rG(y
0

, y
0

)
⇥

rG(x, x) + rG(x
0

, x
0

) � 2rG(x, x
0

)
⇤

1

2 ,

which implies the continuity of rG over Rd ⇥ Rd. The final point is that the
continuity and the positive definiteness of rG are sufficient for the reproduc-
ing kernel property (see Theorem 6).
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Note that the joint continuity assumption of Theorem 23 together with
the requirement that rG 2 S 0(Rd ⇥ Rd) in Theorem 22 is equivalent to the
existence of some ↵ 2 R such that rG 2 C

b,↵(Rd ⇥ Rd). It then follows
from Theorem 6 that the covariance function rG : Rd ⇥ Rd ! Rd is the
reproducing kernel of a unique RHKS H 2 C

b,↵(Rd). In such a scenario,
the covariance operator RG is the Riesz map H0 ! H, which has some
pleasing consequences for the theory of Gaussian processes and the link with
variational splines.

To conclude this discussion of continuity properties, we remark that the
mean-square continuity at x

0

implies the continuity of G in probability.
Indeed, we have that, for any ✏ > 0,

lim
x!x

0

Prob (|G(x) � G(x
0

)| > ✏) = lim
x!x

0

E{�G(x + ✏) � G(x)
�

2}
✏2

= 0,

which follows directly from Tchebyshev’s inequality.

4.2.2 Effect of a linear transformation

The mean µG and the covariance form CG('
1

, '
2

) provide a complete char-
acterization of the first and second-order moments of the generalized pro-
cess G. It is not difficult to infer the effect of a linear transformation
T : S 0(Rd) ! S 0(Rd) on those quantities. Specifically, we have that

E{hT{G}, 'i} = hµG, T⇤{'}i = hT{µG}, 'i

which shows that µ
TG = TµG. Likewise,

C
TG('

1

, '
2

) = CG(T⇤'
1

, T⇤'
2

) = h'
1

, TRGT⇤'
2

i

so that r
TG(x, y) = CG(T⇤{�(· � x)}, T⇤{�(· � y)}) and R

TG = TRGT⇤, so
that there is a direct parallel with the properties of the covariance matrix in
finite-dimensional statistics.

4.2.3 Stationary processes

A case of special interest is when the generalized process G is centered (zero-
mean) and stationary. The direct implication of the stationarity property in
Definition 22 is that

rG(x, y) = CG

�

�(· � x), �(· � y)
�

= CG

�

�, �(· � (y � x)
�

= rG
�

0, (y � x)
�

= aG(y � x)
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so that the correlation function only depends on the relative displacement
(y�x). The univariate function aG : Rd ! R is the autocorrelation function
of the stationary process G; its classical definition is

aG(⌧ )
M
= E{G(x)G(x + ⌧ )}.

4.3 The characteristic functional

We have seen that a generalized stochastic process G in S 0(Rd) is completely
characterized by its probability measure PG. An alternative representation
is provided by its characteristic functional cPG, which can be interpreted as
the infinite-dimensional Fourier transform of this probability measure.

Definition 25 (Characteristic functional). The characteristic functional cPG :
S(Rd) ! C of the generalized stochastic process G in S 0(Rd) is given by

cPG(')
M
= E{ejhG,'i} =

Z

S0
(Rd

)

ejhg,'iPG(dg)

where the right-hand side is an abstract Lebesgue integral over the function
space S 0(Rd).

Since G is an infinite-dimensional entity, cPG is indexed by a function '
rather than the usual scalar or vectorial Fourier-domain variable ⇠.

To demystify the concept, we shall now determine the characteristic func-
tional of the stochastic processes of Section 4.1.4. The simplest instance is

cPG
Const

(') = E{ejhGConst

,'i} = ejhp0,'i, (133)

which characterizes the deterministic process G
Const

= p
0

. As for the finite-
dimensional Gaussian process GN

0

=
PN

0

n=1

Anpn, we first write the charac-
teristic function of the Gaussian random variable Y = hGN

0

, 'i ⇠ N (0, �2

Y )

with �2

Y =
PN

0

n=1

�2

n|hpn, 'i|2 as

p̂Y (⇠) = E{ej⇠Y } = exp
��1

2

⇠2�2

Y

�

Next, we observe that p̂Y (⇠)|⇠=1

= E{ejY } = E{ejhGN
0

,'i} = cPGN
0

('),
which yields

cPGN
0

(') = exp

 

�1

2

N
0

X

n=1

�2

n|hpn, 'i|2
!

.
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We use the same identification technique to obtain the characteristic func-
tional of the Gaussian white noise process

cPW
Gauss

(') = e
�1

2

k'k2
L
2

(Rd) . (134)

We observe that the latter is the infinite-dimensional counterpart of p̂
Gauss

(⇠) =

e�
1

2

k⇠k2
2 : the characteristic function of the N -dimensional multivariate nor-

mal distribution p
Gauss

(x) = (2⇡)�N/2e�
1

2

kxk2
2 (see derivation of (162) in

Appendix E.3).
A classical result of probability theory is that all characteristic func-

tions are continuous, positive-definite and normalized (see Theorems 38 and
39 in Appendix E). We shall now see that the same holds true in infinite-
dimensions, the fundamental difference being that one is dealing with func-
tionals rather than functions.

Definition 26 (Continuous functional). A functional F : X ! C is said to
be continuous (with respect to the topology of the function space X ) if, for
any convergent sequence ('n) in X with limit ' 2 X , the sequence F ('n)
converges to F ('); that is,

lim
n

F ('n) = F (lim
n

'n).

Definition 27 (Positive-definite functional). A complex-valued functional
F : X ! C defined over the function space X is said to be positive-definite
if

N
X

m=1

N
X

n=1

zmF ('m � 'n)zn � 0 (135)

for every possible choice of '
1

, . . . , 'N 2 X , z
1

, . . . , zN 2 C, and N 2 N+.
Likewise, it is said to be conditionally positive-definite if (135) holds subject
to the constraint

PN
n=1

zn = 0.

Example 5. Let H be a Hilbert space with inner product h·, ·iH. Then,

F (') = e�
1

2

k'k2H is positive-definite over H, while G(') = log F (') =
�1

2

k'k2H is conditionally positive-definite. We readily verify the last state-
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ment by noting that

�1

2

N
X

m=1

N
X

n=1

zmznk'm � 'nk2H =

= �1

2

N
X

n=1

zn

| {z }

=0

N
X

m=1

zmk'mk2H � 1

2

N
X

m=1

zm

| {z }

=0

N
X

n=1

znk'nk2H +
N
X

m=1

N
X

m=1

zmznh'm, 'niH

=
N
X

m=1

N
X

n=1

zmznh'm, 'niH =
�

�

N
X

n=1

zn'n

�

�

2

H � 0,

for any '
1

, . . . , 'N 2 H and z
1

, . . . , zN 2 C such that
PN

n=1

zn = 0. Unfortu-
nately, establishing the positive definiteness of F (') = eG(') is not as easy.
We bypass the difficulty by invoking Schoenberg’s correspondence principle
(Theorem 27).

We now proceed with the derivation the key properties of the character-
istic functional, in direct analogy with Theorem 38 of Appendix E, which
lists the corresponding properties of the characteristic function of a finite-
dimensional random variable X in RN .

Theorem 24. The characteristic functional cPG : S(Rd) ! C of a general-
ized stochastic process G in S 0(Rd) enjoys the following properties:

1. cPG is continuous, bounded (i.e. |cPG(')|  1), Hermitian-symmetric
(i.e., cPG(�') = cPG(')) and normalized such that cPG(0) = 1.

2. cPG is positive-definite in the sense of Definition 27.

3. Connection with joint pdf: Let '
1

, . . . , 'N 2 S(Rd) be any fixed col-
lection of test functions. Then, the joint pdf of the random vector
G = (hG, '

1

i, . . . , hG, 'N i) is given by the following finite-dimensional
inverse Fourier transform

p
G

(x) =

Z

RN

cPG(⇠
1

'
1

+ · · · + ⇠N'N )e�jh⇠,xi d⇠

(2⇡)N
.

with Fourier-domain variable ⇠ = (⇠
1

, · · · , ⇠N ).

4. Linear transformation: Let T be a continuous linear operator S 0(Rd) !
S 0(Rd) and µ

0

2 S 0(Rd) some constant generalized function. Then, the
characteristic functional of the transformed process Q = T{G} + µ

0

is

cPQ(') = cP
T{G}+µ

0

(') = cPG(T⇤')ejhµ0

,'i
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where T⇤ : S(Rd) ! S(Rd) is the (continuous) adjoint of T.

5. Sum of independent stochastic processes: Let G
1

and G
2

be two inde-
pendent generalized stochastic processes with characteristic functionals
cPG

1

and cPG
2

, respectively. Then, the characteristic functional of
G = G

1

+ G
2

is

cPG
1

+G
2

(') = cPG
1

(')cPG
2

(').

Let cPG(') = E{ejhG,'i} be the characteristic functional of the generalized
stochastic process G in S 0(Rd). Then, G is

1. stationary iff. cPG(') = cPG

�

'(· + x

0

)
�

for any ' 2 S(Rd) and any
x

0

2 R.

2. self-similar with Hurst exponent H iff. cPG(') = cPG

�

aH+d'(a·)� for
any ' 2 S(Rd) and any contraction factor a 2 R+.

Proof. The boundedness, Hermitian symmetry and normalization properties
are readily deduced from the measure-theoretic definition of the characteris-
tic functional; i.e.,

�

�

�

cPG(')
�

�

�

=

�

�

�

�

�

Z

S0
(Rd

)

ejhg,'iPG(dg)

�

�

�

�

�


Z

S0
(Rd

)

PG(dg) = cPG(0) = PG

�S 0(Rd)
�

= 1.

This representation also provides the basis for establishing the positive def-
initeness by performing the same manipulation as in the finite-dimensional
case (see Definition 42 in Appendix E and subsequent derivation).

To derive the linear transformation property, it is convenient to switch
back to the expectation notation, which yields

cP
T{G}+µ

0

(') = E{ejhT{G}+µ
0

,'i} = E{ejhT{G},'iejhµ0

,'i}
= E{ejhG,T⇤{'}i} ejhµ0

,'i

= cPG(T⇤{'}) ejhµ0

,'i.

Let X = hG, '
0

i where '
0

2 S(Rd) is fixed. Then, the characteristic
function of X is given by

p̂X(!) = E{ej!X} = E{ej!hG,'
0

i} = E{ejhG,!'
0

i} = cPG(!'
0

)
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where we have simply used the linearity of the duality product and applied
the definition of the characteristic functional with ' = !'

0

.
Now, the stationary property in Definition 22 yields cPG(!'

0

) = cPG

�

!'
0

(·�
x

0

)
�

for any '
0

2 S(Rd) and x

0

2 Rd. The claim in Item 1 then follows
by taking ! = 1 and '

0

= '. The argument also carries over for the self-
similarity property (Item 2).

Similarly, let X
1

= hG
1

, '
0

i and X
2

= hG
2

, '
0

i whose characteristic
functions are given by p̂X

1

(!) = E{ej!X1} = cPG
1

(!'
0

) and p̂X
2

(!) =
cPG

2

(!'
0

), respectively. By Definition 20, the independence of the general-
ized processes G

1

and G
1

is equivalent to the independence of the random
variables X

1

and X
2

so that the characteristic function of X
1

+X
2

(see Prop-
erty 5 in Theorem 38) is equal to the product of the individual functions

p̂X
1

+X
1

(!) = p̂X
1

(!)p̂X
2

(!) = cPG
1

(!'
0

)cPG
2

(!'
0

)

Moreover, we have that X
1

+ X
2

= hG
1

+ G
2

, '
0

i (by the linearity property
of generalized stochastic processes) so that

cPG
1

+G
2

(!'
0

) = p̂X
1

+X
1

(!) = cPG
1

(!'
0

)cPG
2

(!'
0

),

which yields the desired factorization by setting ' = '
0

and ! = 1.
Finally, we show that the continuity of cPG : S(Rd) ! C follows from the

continuity requirement in Definition 19. To that end, we consider a series
of random variables Xn = hG, 'ni where ('n) is a converging sequence in
S(Rd). The convergence of the Xn in law is equivalent to limn!1 p̂Xn(!) =

limn!1 cPG
2

(!'n) = cPG(! limn!1 'n) for any ! 2 R (by Lévy’s continu-
ity theorem); in particular, for ! = 1, which proves the claim.

We recall that the continuity, positive definiteness and normalization of
the characteristic function are central to the finite-dimensional theory of
probability because the implication also goes the other way around; i.e.,
if a function p̂ : RN ! C displays these three properties, then its inverse
Fourier transform p = F�1{p̂} is guaranteed to be a valid probability density
function (or probability measure) over RN , as stated in Theorem 39. It
turns out that Bochner’s theorem can be extended to the functional setting
F : X ! C, but only if the space X is nuclear, which rules out5 all infinite-
dimensional Hilbert or Banach spaces. This is the fundamental reason why

5The classical counterexample is the functional cPWGauss(') = exp(� 1

2

k'k2L2(Rd
)

)

whose corresponding Gaussian white noise measure is well defined over the (large) space
of tempered distribution S 0

(Rd
), which is the dual of the nuclear space X = S(Rd

). While
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we are constraining the domain of the characteristic functional in Definition
25 to the nuclear space X = S(Rd), which corresponds to the specification of
a measure on its continuous dual: the space of tempered distribution S 0(Rd).
The foundational result that supports this characterization is the extended
version of Bochner’s theorem for generalized functions.

Theorem 25 (Minlos-Bochner for generalized stochastic processes). A func-
tional cPG : S(Rd) ! C is the characteristic functional of some general-
ized stochastic G in S 0(Rd) if and only if it is positive-definite, continuous
S(Rd) ! C and normalized such that cPG(0) = 1. This is equivalent to the
existence of a unique probability measure PG on S 0(Rd), such that

cPG(') =

Z

S0
(Rd

)

e�jhg,'iPG(dg) = E{e�jhG,'i}.

It often of interest to observe generalized stochastic processes with test
functions that not in S(Rd)—the most notable example being hG, �(·�x

0

)i,
which returns the “sampled” value G(x

0

). This is feasible provided that the
domain of the characteristic functional is extendable to some appropriate
function space X ✓ S 0(Rd). The next result shows that the crucial ingredient
for this extension is the continuity of the map cPG : X ! C.

Theorem 26 (Extension of the domain). Let cPG be a valid characteristic
functional whose domain of continuity is extendable to some topological vector
space X with the property that S(Rd) ✓ X ✓ S 0(Rd). Then, the extended
functional cPG : X ! C is continuous, positive-definite and normalized,
which implies that the random variable G(�) = hG, �i is well-defined for any
� 2 X .

Proof. The key for this transfer of positive definiteness is that S(Rd) is dense
in X , a property that is inherited from the denseness of S(Rd) in S 0(Rd).
Specifically, any �m 2 X can be approached as closely as desired by the
sequence of functions 'm,k = (�m ⇤ ûk)uk 2 S(Rd) ✓ X where (uk) is a
series of window functions in S(Rd) such that limk!1 uk = 1 (e.g., uk(x) =

e�(x/k)2). Then, thanks to the continuity of cPG on X and the property that
limk!1 'm,k = �m, we have that

N
X

m=1

N
X

n=1

zm cPG(�m � �n)zn = lim
k!1

N
X

m=1

N
X

n=1

zm cPG('m,k � 'n,k)zn � 0

we shall also see that cPWGauss is continuous, positive-definite over L
2

(Rd
), one has the

less intuitive property that PWGauss(L2

(Rd
)) = 0, which reflects the fact that none of its

realization W
Gauss

(!) has a finite energy.
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for any �
1

, . . . , �N 2 X and z
1

, . . . , zN 2 C, which proves that cPG is positive
definite.

Next, let X = hG, �
0

i with �
0

2 X fixed. If we now consider the re-
stricted family of test functions � = ⇠�

0

2 X with ⇠ ranging over R, we can
specify the map

⇠ 7! cPG(⇠�
0

) = E{ej⇠hG,�
0

i} = E{ej⇠X} = p̂X(⇠),

which is continuous, positive-definite over R and such that p̂X(0) = cPG(0) =
1, by construction. Hence, it is a valid characteristic function (by Bochner’s
theorem), which proves that X is a well-defined random variable.

A very useful application of Theorem 26 is the extension of Property
4 in Theorem 38 to the much broader class of linear operators T whose
adjoint T⇤ continuously maps S(Rd) ! X ✓ S 0(Rd). Indeed, the extended
continuity of cPG : X ! C implies the continuity and positive definiteness
of ' 7! cPG(T⇤') over S(Rd). We then invoke Theorem 25, which ensures
that T{G} is a well-defined generalized stochastic process in S 0(Rd).

4.4 Characterization of Gaussian processes

We shall now rely on the proposed functional framework to derive the key
properties of generalized Gaussian processes, starting from their axiomatic
Definition 21.

Proposition 17 (Gaussian white noise). The generalized Gaussian innova-
tion process W

Gauss

in S 0(Rd) has the following characteristics:

• E{W
Gauss

} = 0 , E{hW
Gauss

, 'i} = 0 for any ' 2 L
2

(Rd).

• E{hW
Gauss

, '
1

ihW
Gauss

, '
2

i} = h'
1

, '
2

iL
2

for any '
1

, '
2

2 L
2

(Rd), or,
equivalently, RW

Gauss

= I (identity operator).

• cPW
Gauss

(') = E{ejhWGauss

,'i} = exp
⇣

�1

2

k'k2
L
2

(Rd
)

⌘

for all ' 2 L
2

(Rd)

where the characteristic functional cPW
Gauss

: L
2

(Rd) ! R is continu-
ous and positive-definite.

Proof. The first statement is simply the re-transcription of the defining zero-
mean property. For any given '

1

, '
2

2 L
2

(Rd), we define the random vari-
ables

Y
1

= hW
Gauss

,
'
1

+ '
2p

2
i and Y

2

= hW
Gauss

,
'
1

� '
2p

2
i
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which, by definition of the Gaussian innovation process, are zero-mean Gaus-
sian with variance �2

Y
1

= 1

2

k'
1

+ '
2

k2
L
2

(Rd
)

and �2

Y
2

= 1

2

k'
1

� '
2

k2
L
2

(Rd
)

,
respectively. Likewise, we consider

X
1

= hW
Gauss

, '
1

i =
Y
1

+ Y
2p

2
and X

2

= hW
Gauss

, '
2

i =
Y
1

� Y
2p

2
.

We then observe that X
1

X
2

= 1

2

(Y 2

1

� Y 2

2

), from which we deduce that

E{hW
Gauss

, '
1

ihW
Gauss

, '
2

i} = 1

2

E{Y 2

1

}�1

2

E{Y 2

2

} = 1

2

�2

Y
1

�1

2

�2

Y
2

= h'
1

, '
2

iL
2

(Rd
)

.

By definition, the probability density of X is pX(x) = 1p
2⇡�X

exp
⇣

� x2

2�2

X

⌘

.
The characteristic function of X is the conjugate Fourier transform of pX ,
which is given by

p̂X(!) = F⇤{pX}(!) =

Z

R
pX(x)ej!xdx = e�

1

2

!2�2

X .

In terms of expected values, this is equivalent to

E{ej!X} = E{ej!hWGauss

,'i} = exp
⇣

�1

2

!2k'k2L
2

(Rd
)

⌘

.

Since the latter identity holds for any ' 2 L
2

(Rd) and ! 2 R, we obtain the
desired result by setting ! = 1.

To establish the positive definiteness of cPW
Gauss

: L
2

(Rd) ! C, we use
the property that the functional G : ' 7! �1

2

k'k2
L
2

(Rd
)

is continuous and
conditionally positive-definite on L

2

(Rd) (see Example 5). We then invoke
Theorem 27 below with ⌧ = 1, which is the functional counterpart of Schoen-
berg’s correspondence principle [2, 4].

Theorem 27 (Schoenberg’s correspondence [?, Lemma 2.3]). Let G : H !
C be a complex-valued functional defined over a Hilbert space H such that
G(0) = 0. Then, G is conditionally positive-definite if and only if F (') =
exp

�

⌧G(')
�

is positive-definite on H for any ⌧ 2 R+.

The proof of this correspondence is essentially the same as the one for
the scalar case with H = R [2, 3].

As cPW
Gauss

is the composition of F (·) = �1

2

k ·k2
L
2

(Rd
)

, which is obviously
continuous L

2

(Rd) ! R, and the exponential function, which is continuous
R ! R, we readily deduce that cPW

Gauss

= exp � F continuously maps
L
2

(Rd) ! R.
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Theorem 28. A generalized stochastic process G in S 0(Rd) is Gaussian if
and only if cPG(') = E{ejhG,'i} = exp

��1

2

CG(', ') + jhµG, 'i� where CG

is a continuous positive-definite bilinear form : S(Rd) ⇥ S(Rd) ! R and
µG 2 S 0(Rd). This generalized Gaussian process is uniquely characterized by
its mean

E{G} = µG

and its covariance operator RG : S(Rd) ! S 0(Rd) defined as

' 7! hRG{'}, ·i = CG(', ·),

which is indicated as G ⇠ N (µG, RG) in S 0(Rd), whereas the covariance form
of the process is CG, as the notation suggests.

Proof. We use the same arguments as in the proof of Proposition 17 to
first show that the functional ' 7! �1

2

CG(', ') + jhµG, 'i is continuous
and conditionally-positive-definite over S(Rd). This allows us to deduce
that cPG(') is a valid characteristic functional, which proves that G is a
generalized stochastic process in S 0(Rd).

We then apply the definition cPG(') = E{ejhG,'i} to determine the char-
acteristic function of the scalar random variable X

1

= hG, '
1

i as

E{ej!X1} = E{ejhG,!'
1

i} = cPG(!'
1

)

= exp
��1

2

CG(!'
1

, !'
1

) + jhµG, !'
1

i�

= exp
��1

2

!2CG('
1

, '
1

) + j!hµG, '
1

i� = e�
1

2

!2�2

1ej!µ1 (136)

with µ
1

= hµG, '
1

i and �2

1

= CG('
1

, '
1

), which is recognized as the (conju-
gate) 1D Fourier transform of a Gaussian with mean µ

1

and variance �2

1

. In
other words, we have established that hG, 'i ⇠ N �hµG, 'i, CG(', ')

�

for any
' 2 S(Rd). This proves that G is a generalized Gaussian process in S 0(Rd)
and allows us to identify µG as the mean of the stochastic process and CG

as its covariance form—i.e., CG('
1

, '
2

) = E{hG � µG, '
1

ihG � µG, '
2

i}.
For the converse part of the claim, we invoke Theorem 22 to show that the

continuity and positive definiteness of CG : S(Rd) ⇥ S(Rd) ! R is not only
sufficient but also necessary for this construction. The same is obviously
true for the condition µG = E{G} 2 S 0(Rd). In addition, Theorem 22
ensures the existence of the symmetric, positive-definite covariance operator
RG : S(Rd) ! S 0(Rd) such that CG('

1

, '
2

) = hRG{'
1

}, '
2

i.
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Observe the striking similarity between this characterization of general-
ized Gaussian processes and the description of multivariate Gaussian distri-
butions of Appendix E.4. In particular, there is a direct correspondence
between the covariance operator RG : S(Rd) ! S 0(Rd) and the covari-
ance matrix C of a multivariate Gaussian, which can also be viewed as a
positive-definite operator RN ! RN . In effect, we have substituted the
finite-dimensional linear functional ⇠ 7! µ

T
⇠ = hµ, ⇠i and the quadratic

form ⇠ 7! ⇠

TC⇠ = hC⇠, ⇠i in Definition 43 by their infinite-dimensional
counterparts ' 7! hµG, 'i and ' 7! hRG{'}, 'i, respectively. While this
seems quite reasonable retrospectively, the important point is that the con-
struction is mathematically sound, thanks to Schwartz’s kernel theorem and
the nuclearity of the dual pair of spaces

�S(Rd), S 0(Rd)
�

. Based on this anal-
ogy, one may also wonder if there is an infinite-dimensional counterpart to
(164) (the equation of the multivariate Gaussian pdf). Unfortunately, this is
bound to failure because of the curse of dimensionality, the main point being
that (164) vanishes as the dimension N tends to infinity (because of the term
(2⇡)N/2 in the denominator). This confirms the claim that is not possible
to write the pdf of an infinite-dimensional random object—by contrast with
its probability measure, which is always well defined.

In order to categorize stochastic processes, it is of interest to investi-
gate the effect of simple coordinate transformations. As preliminary step,
we identify classes of operators whose action commutes with the primary
coordinate transformations: translation, scaling and rotation.

Definition 28 (Invariances). Let g 2 S 0(Rd) be a continuous linear func-
tional on S(Rd) and T a continuous linear operator S(Rd) ! S 0(Rd). Then,
g and T respectively are said to be

• shift-invariant if, for any ' 2 S(Rd) and x

0

2 Rd,

hg(· � x

0

), 'i M
= hg, '(· + x

0

)i = hg, 'i
T{'(· � x

0

)} = T{'}(· � x

0

)

• scale-invariant of order � if, for any a 2 R+,

hg(a·), 'i M
= hg, |a|�d'(·/a)i = a�hg, 'i

T{'(a·)} = a�T{'}(a·)
• rotation-invariant if, for any rotation matrix R : Rd ! Rd,

hg(R·), 'i M
= hg, '(R�1·)i = hg, 'i

T{'(R·)} = T{'}(R·).
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While the complete characterization of the linear maps that meet the
above properties is a research topic on his own right, we can at least pro-
vide some guidelines. The simplest case is shift-invariance, which is met iff.
g = Const and T is a generalized convolution operator such that T{'} = h⇤'
where h = T{�} 2 S 0(Rd) is the impulse response of the underlying filter.
The scale-invariant functionals correspond to the class of so-called homoge-
neous distributions which is closed under the generalized Fourier transforma-
tion [?]. When the functional g : ' 7! hg, 'i =

R

Rd g(x)'(x)dx is associated
with an ordinary function g : Rd ! R, g is rotation-invariant iff. it is a purely
radial function; i.e., g(x) = g

pol

(kxk) for any x 2 Rd. The tempered dis-
tributions that are both scale- and rotation-invariant reduces to the family
h�(x) = kxk� with � 2 R. This allows us to identify the family of operators
that are simultaneously shift, scale and rotation-invariant as ' 7! h� ⇤ ',
where the latter convolution is defined in the distributional sense; it is such
that

h� ⇤ ' = F�1{ĥ�'̂},

where ĥ� = F{h�} 2 S 0(Rd) and '̂(!) =
R

Rd '(x)e�jh!,xidx 2 S(Rd) are the
generalized and ordinary Fourier transforms of h� 2 S 0(Rd) and ' 2 S(Rd),
respectively.

Since a Gaussian process in S 0(Rd) is uniquely specified by its mean
and covariance operator—or, in more abstract terms, by a pair of linear
and bilinear functionals on S(Rd) and S(Rd)⇥S(Rd), respectively—one can
expect some form of equivalence (and transfer) between the properties of the
process and the properties of these functionals. This is now made explicit
for the invariance and continuity properties encountered so far.

Proposition 18 (Properties of Gaussian processes). Let G ⇠ N (µG, RG) be
a generalized Gaussian stochastic process in S 0(Rd) with mean µG 2 S 0(Rd)
and covariance operator RG : S(Rd) ! S 0(Rd), as specified in Theorem 28.
Then, depending on the properties of µG and RG, the process G is:

• stationnary iff. both µG and RG are shift-invariant; that is, when µG =
Const and RG is a (positive-definite) convolution operator.

• self-similar with Hurst exponent H iff. µG and RG are scale-invariant
of order H and 2H, respectively;

• isotropic iff. both µG and RG are rotation-invariant;

• continuous in the mean-square sense on Rd iff. there exists some ↵ 2 R
such that µG = E{G} 2 C

b,↵(Rd) and rG 2 C
b,↵(Rd ⇥ Rd) where rG
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is the kernel of the covariance operator RG. In other words, the mean
and the covariance functions of G both need to be continuous and of
slow growth.

Proof. We focus on the reverse implication (necessity) since the direct part
of these statements is obvious. According to Definition 22, G is stationary
iff. µ = hµG, 'i = hµG, '(· + x

0

)i and Var{G(')} = CG

�

', '
�

= CG

�

'(· +
x

0

), '(· + x

0

)
�

= Var{G
�

'(· + x

0

)
�} for any ' 2 S(Rd) and x

0

2 Rd.
The first condition yields µG = Const, while the second is equivalent to
CG

�

'
1

(· � x

0

), '
2

(· � x

0

)
�

= CG

�

'
1

, '
2

�

for any x

0

2 Rd, in view of (130)
and the linearity of the shift operator. By taking ' = '

2

(·�x

0

), the latter is
rewritten as hRG{'

1

(· � x

0

)}, 'i = hRG{'
1

}, '(· + x

0

)i, which is equivalent
to the shift-invariance of RG.

Similar considerations apply for the self-similarity and isotropy proper-
ties. For instance, the definition of a self-similar process with Hurst index
H yields aHhµG, |a|d'(a·)i = hµG, 'i and a2HCG

�|a|d'
1

(a·), |a|d'
2

(a·)� =
CG('

1

, '
2

) for any a 2 R+. With the (surface preserving) change of variable
' = |a|d'

2

(a·), the latter identity translates into

a2HhRG{'
1

(a·)}, 'i = hRG{'
1

}, |a|�d'(·/a)i = hRG{'
1

}(a·), 'i�,

which is equivalent to the announced scale-invariance of the covariance op-
erator. Likewise, the isotropy property implies that

CG

�

'
1

(R�1·), '
2

(R�1·)� = CG

�

'
1

, '
2

�

= hRG{'
1

}, '
2

i

for any rotation matrix R, from which we deduce the rotation-invariance of
RG by taking ' = '

2

(R�1·).
The last statement on mean-square continuity follows directly from The-

orem 23. Since the two functions µG : Rd ! R and rG : Rd ⇥ Rd ! R are
constrained to be of slow growth, this is equivalent to the existence of some
↵ 2 R such that µG 2 C

b,↵(Rd) and rG 2 C
b,↵(Rd ⇥ Rd).

Let us recall that the kernel of the covariance operator coincides with
the covariance function rG(x, y). When the latter is the reproducing kernel
of a RHKS H ✓ S 0(Rd), we can rewrite the characteristic functional of
G in Theorem 28 as cPG(') = exp

��1

2

k'k2H0 + jhµG, 'i� where H0 is the
dual of the RKHS generated by rG. Accordingly, we may safely extend
the domain of cPG from S(Rd) to H0 (see Theorem 26). The advantage of
this configuration is that H0 (as the dual of a RKHS) includes the sampling
functionals �(·�x

0

) for any x

0

2 Rd (see Definition 6). This allows us to give
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a meaning to the random variables {G(x) = hG, �(·�x)i : x 2 Rd}, thereby
drawing the connection with the classical formulation of stochastic processes.
This leads to the following result, the last part of which incorporates the
characterization of RKHS in Theorem 6.

Corollary 5 (Classical Gaussian process). A generalized stochastic process
G in S 0(Rd) is equivalent to a “classical” Gaussian process on Rd if and only
if its characteristic functional is of the form

cPG(') = exp
��1

2

k'k2H0 + jhµG, 'i� (137)

with
k'k2H0 =

Z

Rd

Z

Rd
'(x)rG(x, y)'(y)dxdy = h', RG{'}i

and µG 2 H, where rG : Rd ⇥ Rd ! Rd is the reproducing kernel of some
RKHS H ✓ S 0(Rd). This means that G ⇠ N (µG, RG) and that its sample
values, {G(x) : x 2 Rd}, are well-defined Gaussian random variables with
mean

E{G(x)} = µG(x)

and covariance function

E
��

G(x) � µG(x)
��

G(y) � µG(y)
� 

= rG(x, y) = RG{�(· � y)}(x).

Finally, G is mean-square continuous if and only if rG 2 C
b,↵(Rd ⇥ Rd) for

some ↵ 2 R, which implies that H ✓ C
b,↵(Rd).

Moreover, based on Proposition 18, we immediately deduce that such a
Gaussian process is

• stationary iff. µG(x) = E{G(x)} = Const and rG(x, y) = aG(x � y)
where aG 2 C

b,↵(Rd) for some ↵ 2 R;

• self-similar of order H � 0 iff. µG(ax) = aHµG(x) and rG(ax, ay) =
a2HrG(x, y) for all x, y 2 Rd and any a 2 R+;

• isotropic iff. µG(x) = µ
pol

(kxk) and rG(x, y) = r
pol

(kxk, kyk) for all
x, y 2 Rd; that is, iff. the mean and covariance functions are purely
radial functions.

We conclude this section on Gaussian processes with the determination
of their finite-dimensional probability density functions (or marginals).
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Proposition 19 (Gaussian marginals). Let G ⇠ N (µG, RG) with RG : ' 7!
R

Rd rG(·, y)'(y)dy be a Gaussian process on Rd whose covariance function
rG : Rd ⇥ Rd ! R is the reproducing kernel of a RKHS H ✓ S 0(Rd) and
such that µG 2 H. Then, Y = (hG, '

1

i, . . . , hG, 'N i) is a well-defined
multivariate Gaussian vector if and only if '

1

, . . . , 'N 2 H0. Specifically,
Y ⇠ N (µ

Y

,C
Y

) with mean vector

µ

Y

= (hµG, '
1

i, . . . , hµG, 'N i) 2 RN

and covariance matrix C
Y

2 RN⇥N such that

[C
Y

]m,n = hRG{'m}, 'ni = h'm, 'niH0

=

Z

RN

Z

RN
'm(x)rG(x, y)'n(y)dxdy.

Proof. Theorem 28 yields the characteristic functional of the process, which
is rewritten as

cPG(') = E{ejhG,'i} = exp
��1

2

h', 'iH0 + jhµG, 'i� .

Since the domain of continuity of ' 7! h', 'iH0 and ' 7! hµG, 'i for any
fixed µG 2 H is precisely H0 (from the definition of the inner and duality
products), the property carries over to the characteristic functional; i.e., cPG

is continuous and positive-definite over H0 (sufficiency). The characteristic
function of Yn = hG, 'ni is then given by

⇠ 7! E{ej⇠Yn} = cPG(⇠'n) = exp
��1

2

⇠2h'n, 'niH0 + j⇠hµG, 'ni� , (138)

from which we immediately deduce that Yn ⇠ N (µn, �2

n) with µn = hµG, 'ni
and �2

n = k'nk2H0 . Conversely, the formal expression on the rhs of (138) is
continuous positive-definite—and hence a valid characteristic function (by
Bochner’s theorem)—iff. h'n, 'niH0 < 1, which establishes the necessity of
the condition 'n 2 H0 for all n. The same mapping technique applies to the
determination of the joint characteristic function of Y . Specifically, we have
that

p̂
Y

(⇠) = cPG(⇠
1

'
1

+ · · · + ⇠M'M )

= exp

 

�1

2

N
X

m=1

N
X

n=1

⇠m⇠nh'm, 'niH0 + j
N
X

n=1

⇠nhµG, 'ni
!

= exp
��1

2

⇠

TC
Y

⇠ + jµT
Y

⇠

�
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where we have made use of the (bi)linearity of the inner- and duality prod-
ucts and identified the underlying mean vector µ

Y

and covariance matrix
C

Y

. Finally, we refer to Definition 43 for the general expression of the
characteristic function of a multivariate Gaussian.

4.5 Gaussian solutions of stochastic differential equations

Let us consider a generalized Gaussian process S in S 0(Rd) whose covariance
operator is factorizable as RS = TT⇤ where the continuous linear operators
T : S 0(Rd) ! L

2

(Rd) and T⇤ : S(Rd) ! L
2

(Rd) form an adjoint pair. We
shall now show that S ⇠ N (µS , RS) can be synthesized by linear transforma-
tion (or filtering) of the Gaussian white noise (or innovation process) W

Gauss

specified in Proposition 17. We shall also investigate variations around this
theme that involve the solution of linear stochastic differential equations.

The proposed construction is described by the following (deterministic)
map

! 7! w = W
Gauss

(!) 7! s = S(!) = T{w} + µS , (139)

where s and w denote the realizations of the Gaussian stochastic processes S
and W

Gauss

for the same outcome ! in our universal sample space ⌦. Since
s, w 2 S 0(Rd) by assumption, the explicit transcription of the above rhs.
equality is

hs, 'i = hT{w} + µS , 'i = hw, T⇤'i + hµS , 'i (140)

for all ' 2 S(Rd). Implicit to this manipulation is the continuity of ' 7!
hw, T⇤'i, which follows from our assumptions; namely,

1. T⇤' 2 L
2

(Rd) since T⇤ continuously maps S(Rd) ! L
2

(Rd);

2. the domain of the random functional ' 7! hW
Gauss

, 'i is extendable to
L
2

(Rd), as shown in Proposition 17.

Based on the right-hand side of (140) and the interpretation of hµS , 'i as a
constant process whose characteristic form is given by (133) with p

0

= µS 2
S 0(Rd), we immediately deduce that

cPS(') = cPW
Gauss

(T⇤')ejhµS ,'i = exp
⇣

�1

2

kT⇤'k2L
2

(Rd + jhµG, 'i
⌘

.

This expression is compatible with the generic form of a generalized Gaussian
process given in Theorem 28, which proves that S ⇠ N (µG, TT⇤). The
covariance form of the process is specified by

CS(', ') = hT⇤', T⇤'i = kT⇤'k2L
2

(Rd = hTT⇤', 'i � 0
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for all ' 2 S(Rd). The central equality clearly shows that the operator
TT⇤ : S(Rd) ! S 0(Rd) is positive-definite, while it also suggests that the
factorization is not unique. In fact, there is a whole equivalence class of
possible transformations given by T̃ = TU where U is an arbitrary unitary
operator L

2

(Rd) ! L
2

(Rd) with the property that U�1 = U⇤.
We can relate the above procedure to the class of reproducing kernels

investigated in Section 2.7 by considering the innovation model

Ls = w (141)

where w = W
Gauss

(!) is a realization of the Gaussian innovation process and
L a spline-admissible operator in the sense of Definition 13.

In the easy case where L is invertible (coercive scenario), the solution
of (141) is given by s = L�1w, which is compatible with the above linear
generation mechanism if we set T⇤ = L�1⇤. This leads to the conclusion that
(141) uniquely specifies a generalized Gaussian process S ⇠ N (0, L�1⇤L�1)
in S 0(Rd) iff. L�1⇤ continuously maps S(Rd) ! L

2

(Rd).
The more interesting case is when L is a differential operator with a

non-trivial null space of dimension N
0

. To solve the corresponding linear
stochastic differential equation, one then needs to add N

0

boundary condi-
tions. A first possibility is to take

Ls = w s.t. �(s) = 0

where the linear operator � : S 0(Rd) ! RN
0 fullfills the admissibility con-

ditions of Definition 8. Alternatively, one may consider the more general
model

Ls = w s.t. �(s) = (a
1

, . . . , aN
0

) (142)

where the an are realizations of a series of independent Gaussian random
variables An with zero mean and variance �2

n. The solution of (142) is then
given by

s = L�1

�

w +

N
0

X

n=1

anpn (143)

where L�1

�

is the stable right-inverse of L specified in Theorem 10. At the
level of the random process itself, this translates into

S = L�1

�

W
Gauss

+

N
0

X

n=1

Anpn
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where the individual component processes L�1

�

W
Gauss

, A
1

p
1

, . . . , AN
0

pN
0

are
independent. By using the property that L�1⇤

�

continuously maps S(Rd) !
L
2

(Rd) together with Property 5 in Theorem 38, we find that

cPS(') = exp

 

�1

2

kL�1⇤
�

'k2L
2

� 1

2

N
0

X

n=1

�2

n|hpn, 'i|2
!

.

Likewise, we readily calculate the covariance function of S as

rS(x, y) = E{S(x)S(y)} = a
�

(x, y) +

N
0

X

n=1

�2

npn(x)pn(y)

where a
�

is the kernel of the symmetric, positive-definite operator A
�

=
L�1

�

L�1⇤
�

whose explicit formula is provided by Theorem 11. Interestingly,
we observe that the resulting composite kernel rS has the same parametric
form as a

�

in (59) modulo some adjustment of the constants rn,n ! rn,n+�2

n

that accounts for the variability of the An. One can also easily generalize
the model by taking A = (A

1

, . . . , AN
0

) ⇠ N (0,C
A

) to be multivariate
Gaussian with covariance matrix C

A

2 RN
0

⇥N
0 .

To obtain the description of the process in the generic form of Corollary
5, we define the symmetric rank-one operator

Pu : ' 7! uhu, 'i

which is parameterized by u 2 S 0(Rd). We then express the covariance
operator of S as

RS = A
�

+

N
0

X

n=1

�2

nPpn ,

which allows us to conclude that S ⇠ N (0, RS). The extension over the
linear generation mechanism described by (139) is the inclusion in (143) of
the additional “boundary” components anpn. While the elementary rank-
one operators Ppn : S(Rd) ! S 0(Rd) are continuous and positive-definite by
construction, they are not factorizable through L

2

(Rd) unless pn 2 L
2

(Rd),
which is never the case in practice—remember that the null-space compo-
nents of a differential operator is made up of polynomials and/or complex
sinusoids whose L

2

-norm is infinite.
At any rate, the remarkable outcome is that the covariance functions

rS : Rd ⇥ Rd ! R associated with the general class of Gaussian processes
that are solution of the stochastic differential equation (142) are in direct
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correspondence with the reproducing kernels investigated in Section 2.7; in
particular, we have an exact equivalence with the kernel in Theorem 11
(resp., the kernel in Theorem 12) by setting �2

n = 0 (resp., �2

n = 1) for
n = 1, . . . , N

0

.

4.6 MMSE solution of linear inverse problems

We now have all the elements to close the circle by making the connection
between the minimum-error estimation of a signal under the Gaussian hy-
pothesis (also known as the Wiener estimator) and the spline reconstruction
techniques investigated in Section 3.1. To that end, we consider the linear
measurement model:

s 7! y = ⌫(s) + n 2 RM (144)

where s = S(!) (our so-called signal) is a realization of a Gaussian process
S ⇠ N (µS , RS) on Rd and ⌫(s) = (h⌫

1

, si, . . . , h⌫M , si) is a linear measure-
ment operator S 0(Rd) ! RM that returns the values of M (noise-free) linear
measurements of the signal. The second component of the model, n 2 RM ,
is an additive disturbance term (discrete measurement noise) whose com-
ponents are assumed to be i.i.d. Gaussian with zero mean and variance �2

0

.
The signal and noise components of the model are assumed to be mutually
independent.

Given the prior knowledge of µS and RS , the problem is to reconstruct
the unknown signal s from its noisy measurements y 2 RM . Our working
assumption is that the mean and covariance forms of the process satisfy
the mean-square continuity hypotheses of Corollary 5, so that the stochastic
process {S(x) : x 2 Rd} is well-defined in an ordinary pointwise fashion. In
such a “classical” scenario, the Gaussian process is completely (and uniquely)
specified by its mean and covariance functions

µS(x) = E{S(x)} (145)
rS(x, y) = E

��

S(x) � µS(x)
��

S(y) � µS(y)
� 

(146)

for any x, y 2 Rd. Moreover, we have the guarantee that rS is the reproduc-
ing kernel of a RKHS H ✓ C

b,↵(Rd) for some ↵ 2 R, while the covariance
operator RS : ' 7! R

Rd rS(·, y)'(y)dy is the Riesz map H0 ! H (see Propo-
sition 7). The covariance form of the process is then given by

CS('
1

, '
2

)
M
= hRS{'

1

}, '
2

i =

Z

Rd

Z

Rd
'
1

(x)rS(x, y)'
2

(y)dxy

= h'
1

, '
2

iH0
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and it specifies the inner product for the Hilbert space H0 (the continuous
dual of the RKHS H). This also means that its domain of continuity has
been extended from CS : S(Rd) ⇥ S(Rd) ! R to CS : H0 ⇥ H0 ! R, which
as we shall see, has a direct incidence on the hypotheses on ⌫ for the well-
posedness of our signal recovery problem.

Rather then attempting to reconstruct s as a whole, we shall focus on
the optimal reconstruction of its sample value s(x) for any x 2 Rd. Since
S(x) with x fixed is an ordinary scalar random variable, we can then invoke
a classical result in estimation theory, which states that the minimum-mean-
square-error (MMSE) estimator of s(x) given y is provided by the conditional
mean; i.e.

s
MMSE

(x|y) = E{s(x)|y} =

Z

R
s p(s|y)ds

where p(s|y) is the conditional probability of s(x) given the noisy measure-
ment y 2 RM . Hence, the work that needs to be accomplished here is the
determination of p(s(x)|y), which can already be predicted to be Gaussian.

First, we get the statistical distribution of the signal component ⌫(S) by
invoking Proposition 19, which yields ⌫(S) ⇠ N (⌫(µS),G) where the mean
vector ⌫(µS) 2 RM and the covariance matrix G 2 RM⇥M are given by

⌫(µS) = (hµS , ⌫
1

i, . . . , hµS , ⌫
1

i) (147)

[G]m,n =

Z

Rd

Z

Rd
⌫m(x)rS(x, y)⌫n(y)dxdy. (148)

Thanks to the independence of the signal and noise components, we then de-
duce that the measurements Y ⇠ N (µ

Y

,C
Y

) have a multivariate Gaussian
distribution with mean µ

Y

= ⌫(µS) and covariance matrix C
Y

= G+�2

0

IM
where IM is the M ⇥ M identity matrix.

Next, for some fixed x 2 Rd, we consider S(x) = hS, �(· � x)i, which
is a scalar Gaussian random variable with mean E{S(x)} = µS(x) and
variance rS(x, x). To characterize the joint dependency between S(x) and
the noisy measurements Y = (Y

1

, . . . , YM ), we define the augmented random
variable Z = (S(x), Y ), which is multivariate Gaussian with mean vector
m

Z

=
�

µS(x), ⌫(µS)
�

and covariance matrix

C
Z

=

 

rS(x, x) ⌫

⇤(x)T

⌫

⇤(x) C
Y

!

where

⌫

⇤(x) =

0

B

@

⌫⇤
1

(x)
...

⌫⇤
M (x)

1

C

A
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with

⌫⇤
m(x) = E

�

S(x)Ym

 

.

Here, our use of the conjugate symbolism ⌫

⇤ is justified by the following
manipulation

⌫⇤
m(x) = E

�

S(x)hS, ⌫mi +

=0

z }| {

E
�

S(x)Nm

 

= E
�hS, �(· � x)ihS, ⌫mi = CS

�

�(· � x), ⌫m
�

=

Z

Rd

Z

Rd
�(⌧ � x)rS(⌧ , y)⌫m(y)d⌧dy

=

Z

Rd
rS(x, y)⌫m(y)dy, (149)

which shows that ⌫⇤
m = RS{⌫m} 2 H where the covariance operator RS is

also known to be the Riesz map H0 ! H.
By invoking Bayes’ rule p

�

s(x)|y� = p
�

s(x),y
�

/p
Y

(y) = p
Z

(z)/p
Y

(y)
(see Appendix E.5 for the details), we then find that the conditional proba-
bility p

�

s(x)|y� is univariate Gaussian with mean

E{s(x)|y} = µS(x) + ⌫

⇤(x)T (G + �2

0

I)�1

�

y � ⌫(µS)
�

and variance

�2

s(x)|y = rS(x, x) � ⌫

⇤(x)T (G + �2

0

I)�1

⌫

⇤(x).

We now summarize the outcome of this derivation in relation to our initial
signal recovery problem.

Theorem 29 (Generalized Gauss-Markov theorem). Let us consider the
following:

• rS : Rd ⇥ Rd ! R is the reproducing kernel of a RKHS H ✓ C
b,↵(Rd);

• S is a Gaussian process on Rd with mean E{S(x)} = µS(x) 2 H and
covariance function E

��

S(x) � µS(x)
��

S(y) � µS(y)
� 

= rS(x, y);

• the unknown signal s = S(!) 2 S 0(Rd) is a realization of S;

• ⌫ : s 7! ⌫(s) = (h⌫
1

, si, . . . , h⌫M , si) with ⌫m 2 H0 is a linear operator
that extracts M measurements from the signal s;
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• n 2 RM is an independent additive white Gaussian noise (AWGN)
component whose entries are i.i.d. with zero-mean and variance �2

0

.

Then, for any x 2 Rd, the minimum mean-square error (MMSE) estimation
of s(x) given the noisy linear observation y = ⌫(s) + n of s is

s
MMSE

(x|y) = E{s(x)|y} = µS(x) + ⌫

⇤(x)T (G + �2

0

IM )�1

�

y � ⌫(µS)
�

,

while the corresponding estimation error is

E
n

�

s
MMSE

(x|y) � s(x)
�

2

o

= rS(x, x) � ⌫

⇤(x)T (G + �2

0

IM )�1

⌫

⇤(x).

Here, ⌫

⇤ = (⌫⇤
1

, . . . , ⌫⇤
M ), with ⌫⇤

m specified by (149), is the Riesz conjugate
of the measurement operator ⌫, while G 2 RM⇥M is the corresponding
Gram/covariance matrix whose entries are given by (148).

In particular, if s is zero-mean (i.e., µS = 0), then the expression of the
conditional mean simplifies to

E{s(x)|y} = ⌫

⇤(x)T (G + �2

0

IM )�1y,

which is equivalent to

s
MMSE

(x|y) =

M
X

m=1

am⌫⇤
m(x) (150)

with

a = (a
1

, . . . , aM ) = (G + �2

0

IM )�1y. (151)

Remarkably, the statistical estimator defined by (150)-(151) happens to be
identical to the solution of the generalized smoothing spline problem (99) in
Proposition 15 for � = �2

0

and the choice of reproducing kernel rH = rS . In
other words, we have a perfect equivalence between generalized smoothing
splines and the hybrid form of Wiener reconstruction where the measure-
ments are finite and the reconstruction is achieved in the continuous domain.

An interesting consequence of this equivalence is that the MMSE recon-
struction of s is such that s

MMSE

2 H (because it also minimizes the spline
functional (99)), while this inclusion property is typically not met by the un-
derlying signal realization s 2 S 0(Rd). In fact, in the case where s is the solu-
tion of a stochastic differential equation such as (142), we even suspect that
Prob(s 2 H) = 0, because of the known property that PW

Gauss

�

L
2

(Rd)
�

= 0,
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which reflects the fact that w
Gauss

cannot have a finite energy. The same
holds true (almost surely) for all stationary signals due to their lack of de-
cay at infinity. At any rate, it remains that the spline reconstruction of the
signal provided by Theorem 29 is the best solution to our inverse problem
in the absolute as it minimizes the statistical mean-square estimation error
at every location x 2 Rd.
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