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General Information

• Course and Lab materials available on

◦ Moodle: 

• Contact: {mathew,motlicek}@idiap.ch
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Intro (repeat)

• Speech/Audio signal analysis (applied signal processing)

• Sound production and perception

• Speech coding:

◦ LPC (2.4kbps), voiced/unvoiced synthesis (∼ 1kbps)

◦ Skype – G.723.1 (∼ 6kbps)

• Audio coding:

◦ MP3 – Lame (∼ 32kbps)

◦ MPEG4 – HE-AAC, AMR-WB+ (∼ 32kbps)

• Quality assessment

• . . .
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All starts from speech . . .
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Speech Coding

• Source, receiver

• Purpose: We speak in order to be heard in order to be

understood (Roman Jakobson)
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How humans communicate ...

Communication:

• classical signal analysis techniques

• production based processing techniques

• perception based processing techniques

• goal oriented processing techniques
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Human hearing ...
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The goal of speech/audio signal processing

To describe the signal, so that it can be:

• stored and/or efficiently transmitted and reconstructed

• modified and reconstructed

• possibly used for useful information extraction

Signals and systems:

• relation

• focus on time ↔ frequency
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Signals

• arbitrary physical values

• one or more independent axis (usually time), one dependent

variable.

• Example: acoustic pressure generated by humans, gray scales of

B/W video frames, ratio of EURo
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Mathematics view of signals (1 dependent variable)

According to character of T , we divide signals:

• Continuous time signals: t ∈ ℜ, s(t).

• Discrete time signals: n ∈ Z.
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Deterministic and non-deterministic signals

Deterministic signals can be described by equation:

Example 1: square continuous time impulse:

x(t) =







2 for − 2 ≤ t ≤ 2

0 elsewhere

Example 2: discrete unit impulse:

δ[n] =







1 for n = 0

0 elsewhere

Non-deterministic signals cannot be described by equation.
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Periodic and non-periodic signals

For periodic signals, we can find such T or N :

s(t+ T ) = s(t) continuous time

s[n+N ] = s(n) discrete time

For continuous time:

For discrete signals:
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Harmonic signals continuous time

s(t) = C1 cos(ω1t+ φ1)
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A harmonic is a signal whose frequency is an integral (whole number) multiple of the 
frequency of the same reference signal. As part of the harmonic series, the term can also refer 
to the ratio of the frequency of such a signal to the frequency of the reference signal.



Harmonic signals discrete time

s[n] = C1 cos(ω1n+ φ1)

• C1 – amplitude,

• ω1 – frequency [rad], φ1 phase [rad].

PERIODICITY !!!

There is a small problem with fundamental period of harmonic

sequence, that cannot be computed similarly as for continuous time

using: N1 = 2π
ω1

. It doesn’t have to be integer number. Rule of

periodicity must be fulfilled:

cos [ω1(n+N1)] = cosω1n.

ω1(n+N1)− ω1n = ω1N1 = k2π,
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Harmonic signals discrete time
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n

s[n
]

Example 1: s[n] = 5 cos(2πn/12), ω1 = π/6.

π
6N1 = k2π, solution: k = 1, N1 = 12
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Harmonic signals discrete time

Example 2: s[n] = cos(8πn/31), ω1 = 8π/31.
8π
31N1 = k2π, k = 4

31N1, 31k = 4N1. Solution is: k = 4, N1 = 31.
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0.5

1

n
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]

Example 3: s[n] = cos(n/6), ω1 = 1/6.
1
6N1 = k2π, N1 = k12π. No solution, non-periodic signals
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Some interesting signals discrete time

Unit step and impulse:

σ[n] =







1 for n ≥ 0

0 elsewhere
δ[n] =







1 for n = 0

0 elsewhere

δ[n] = σ[n]− σ[n− 1]
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Some interesting signals discrete time

Shifted unit impulse: δ[n− k]:
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Some interesting signals continuous time

Unit step:

σ(t) =







1 for t ≥ 0

0 elsewhere

Unit impuls:

δ(t) =
dσ(t)

dt

δ∆(t) =
dσ∆(t)

dt
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Some interesting signals continuous time

δ(t) = lim
∆→0

δ∆(t)

∫ +∞

−∞

δ(t)dt = 1
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Some interesting signals continuous time
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The Dirac delta can be loosely thought of as a function on the real line which is zero 
everywhere except at the origin, where it is infinite,

and which is also constrained to satisfy the identity



Fourier analysis

Describe complex function as a weighted sum of simpler functions:
• simpler functions are known - sines and cosines and need to be

orthogonal

• weights can be found
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 ...study of the way general functions may be represented or approximated by sums of simpler 
trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after 
Joseph Fourier, who showed that representing a function as a sum of trigonometric functions 
greatly simplifies the study of heat transfer.

 Trigonometric functions = real functions which relate an angle of a right-angled triangle to ratios 
of two side lengths.



How to get weights - Fourier series

∫ T

0
f(t) dt = a0

a0 = 1
T

∫ T

0
f(t) dt

How to get other weights?

Digital Speech and Audio Coding, Doctoral Course Autumn 2022-2023 23

The functions f and g are orthogonal when 
this integral is zero, whenever f≠g

A Fourier series =  a sum that represents a periodic function as a sum of sine and cosine waves. 
The frequency of each wave in the sum, or harmonic, is an integer multiple of the periodic 
function's fundamental frequency



f(t) = a0 + f1(t) + f2(t) = a0 + a1· sinωt+ a2· sin2ωt
∫ T

0
f(t)· sinωt dt = a1

∫ T

0
f(t)· sin2ωt dt = a2
∫ T

0
sin2ωt dt = T

2
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s in(nx)  and  s in(mx)  
are  or thogona l  on  the  
in terva l  
x∈(－π,π)
when m≠n
and n and m are 
posi t ive  integers .  



Fourier Transform

X(jω) =

∫ +∞

−∞

x(t)e−jωt dt,

X(jω) will be called Fourier projection/image of signal x(t).
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Fourier Transform

Spectral function of unity impulse:

X(jω) =

∫ +∞

−∞

δ(t− τ)e−jωtdt = e−jωτ
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Fourier Transform

Direct signal:

X(jω) = 2πAδ(ω)

x(t) =
1

2π
2πA

∫ +∞

−∞

δ(ω)ejωtdω = A.

A

t

s(t)
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Inverse projection of square spectral

Square impuls: We know:
∫ b

−b
e±jxydy = 2b sinc(bx). Let’s have

b = ϑ
2 , y = t, x = ω, we obtain:

X(jω) = D

∫ +ϑ

2

−ϑ

2

e−jωtdt = D2
ϑ

2
sinc

(

ϑ

2
ω

)

= Dϑsinc

(

ϑ

2
ω

)

−υ/2 υ/2 t

s(t)

D

−π
0 ω

π
arg S(  )ω

|S(  )|
D

−2π/υ 0 2π/υ 4π/υ 6π/υ

υ
ω

ω
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Inverse projection of square spectral

H

0−ω ω ω

ω

c c

S(  )

x(t) =
1

2π

∫ ∞

−∞

X(jω)e+jωtdω =
1

2π

∫ ωc

−ωc

He+jωtdω =
H

2π

∫ ωc

−ωc

e+jωtdω =

=
H

2π
2ωcsinc(ωct) =

Hωc

π
sinc(ωct)
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Hints about spectra of non periodic signals

x(t) X(jω)

linearity axa(t) + bxb(t) aXa(jω) + bXb(jω)

shift in time x(t− τ) X(jω)e−jωτ

change of scale s(mt) m > 0
1

m
X

( ω

m

)

convolution x1(t) ⋆ x2(t) =

∫ ∞

−∞

x1(τ)x2(t− τ)dτ X1(jω)X2(jω)
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Time-shift

just argument/phase of spectral function will be changed: −ωτ .

Example:

t

s(t)

-2 2

arg S(  )ω

0

−π/2

ω −π/2  π/2   π

π/2

−π

π
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Time-shift

1 s delay: X(jω) multiplied by function e−jω, thus ω will be

subtracted from argument:

t

s(t)

1 3

arg S(  )ω

0

π/2

−π/2

ω −π/2  π/2   π

π

−π
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Time-shift

1 s take over: X(jω) multiplied by function ejω, thus ω will be added

to the argument:

t

s(t)

1-3

arg S(  )ω

0

π/2

−π/2

ω−π/2  π/2    π

π

−π
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Examples of modification of time axis

t

s(t)
D

1-1

S(  )ω

ωπ

2D

0

t

s(t)

D

-3 3

S(  )ω

ωπ0

6D
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Now on . . . only discrete signal processing
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Why discrete signal processing ?

• reproducibility

• no changes due to material and temperature

• no setting and calibration

• possibility of adaptive processing

• simulation = application

• compatible with the boom of computer technology, Internet,

mobile communication
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A/D conversion

A/D
digital
processing
(PC, DSP)

D/A

storing
transmission
interpretayion
other processing ...

- - - -

..................................................

x(t) x[n] y[n] y(t)

At the input – continuous time signal: defined for t ∈ (−∞,+∞),

time has ∞ values
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A/D conversion

t0

x(t)

To represent the signal in spectral domain, we use Fourier transform:

X(f) =

∫ −∞

−∞

x(t)e−j2πftdt,

where X(f) is denoted to as spectral function. X(f) is defined for ∀f
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A/D conversion

from −∞ to ∞ and X(f) is complex:
-  |X(f)| and 6 X(f) are called module and argument of X(f). 
For real signals – we can just remember the right part of X(f) for 
f > 0:

X(f) = X⋆(−f).

This means |X(f)| = |X(−f)| and arg X(f) = − arg X(−f).

ω

−ω ω ω0max

|X(j   )|

max

⇒ Intelligent signals are frequency constrained: energy lies in
(0, fmax).
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A/D conversion

sampled
signal xs[n]

- -

�
�
��
 -

�
�
�
- antialias.

filter
sampling quantization

quantized
s xq[n]

x(t)

Sampled signal is obtained in such a way that the original signal is

multiplied with time-periodic sequence of Dirac impulses.

s
D

x (t)=x(t)s(t)

t

s(t)

0t0 1/D T

D
s(t)
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A/D conversion

In theory Dirac impulses have: height → ∞, width → 0, area/mass

→ 1.

After multiplication: again sequence of Dirac impulses, but mass is

equal to the values of original signal in samples nT .

1

s

t0 T

s(t) x (t)=x(t)s(t)

t0

T is sampling period

Fs =
1

T
is sampling frequency

Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013 41



A/D conversion

What happens with spectrum of a sampled signal? It becomes

periodic !!!

Xs(f) =
1

T

+∞
∑

n=−∞

X
(

f − n

T

)

=
1

T

+∞
∑

n=−∞

X (f − nFs)

According to the ratio of fmax and Fs, two possibilities can appear:

1) Fs > 2fmax: Original signal can be ideally reconstructed,

individual copies of the spectra do NOT overlap.

2) Fs ≤ 2fmax: Original signal can NOT be anyhow reconstructed,

individual copies of the spectra DO overlap. Shannon – Nyquist

sampling theorem:

Fs > 2fmax
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Reconstruction

Low-pass filter with cutting frequency Ωs/2:

Hr(jω) =







T for − Ωs/2 < ω < Ωs/2

0 else
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1. Exercise sampling and reconstruction – OK

Fs = 8000 Hz, fmax = 3000 Hz, thus Ωs = 16000π rad/s,

ωmax = 6000π rad/s. T = 1
8000 s
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2. Exercise sampling and reconstruction – BAD

Fs = 8000 Hz, fmax = 7000 Hz, thus Ωs = 16000π rad/s,

ωmax = 14000π rad/s. T = 1
8000 s
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Antialiasing filter – restriction for [−Fs/2, Fs/2]
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Spectrum of discrete-time sampled signals

Discrete Fourier transform – DFT – definition:

X(k) =
N−1
∑

n=0

x[n]e−j2π nk

N pro k ∈< 0, N − 1 >

How to apply DFT on discrete signal:

• analysis of the “window” of length equal to N samples.

• Output? If X(k) are multiplied by sampling period T , we obtain

an approximation of spectral function in frequency samples k∆f ,

where ∆f =
Fs

N

X̂(k∆f) = T
N−1
∑

n=0

x[n]e−j2π nk

N

x[n] in the equation can be replaced by x(nT ).
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Spectrum of discrete-time sampled signals

Comparison with spectral function obtained using analog FT:

different results !!!

1. Spectrum of sampled signal is computed → periodic spectrum

(N samples ∼ Fs). If we let k ∈ (−∞,+∞), we find out that

X̂(k∆f) is periodic with period N .

2. Signal was segmented using a “window”. Properties of such the

window influence X̂(k∆f). In time domain, the window is

multiplied with the original signal ⇐⇒ spectrum of the window

is convolved with X̂(k∆f).

3. X̂(k∆f) is discrete ⇒ spectrum of the periodic signal was

computed. We can imagine that the signal’s window is repeating

∞-times.
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Spectrum of discrete-time sampled signals

time frequency

sampling periodic

periodic discrete
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DFT/DCT

idiap
Sticky Note
In particular, it is well known that any discontinuities in a function reduce the rate of convergence of the Fourier series...the smoother the function is, the fewer terms in its DFT or DCT are required to represent it accurately, and the more it can be compressed... However, the implicit periodicity of the DFT means that discontinuities usually occur at the boundaries... In contrast, a DCT where both boundaries are even always yields a continuous extension at the boundaries. This is why DCTs...generally perform better for signal compression than DFTs and DSTs. In practice, a type-II DCT is usually preferred for such applications, in part for reasons of computational convenience.

idiap
Sticky Note
Cosine transforms are nothing more than shortcuts for computing the Fourier transform of a sequence with special symmetry (e.g. if the sequence represents samples from an even function)

idiap
Sticky Note
https://math.stackexchange.com/questions/1177/comparing-contrasting-cosine-and-fourier-transforms/1205#1205



Example – Real signal!

Analysis of a voiced segment of a speech signal:

s = wavread(’test.wav’)’;

sfr = frame (s,160,80);

x = sfr(:,13);

plot (x);
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Example – Real signal!

Only DFT –

Fs = 8000; f = (0:159) / 160 * Fs; X = fft(x);

subplot (211); plot(f,abs(X)); subplot (212); plot(f,angle(X));
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Example – Real signal!

Only DFT – upper part of the spectrum is symmetric to the lower

part

Fs = 8000; f = (0:79) / 160 * Fs; X = fft(x); X = X(1:80);

subplot (211); plot(f,abs(X)); subplot (212); plot(f,angle(X));
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Example – Real signal!

More samples in the spectrum – the frame cannot be enlarged ⇒
zero padding:

Fs = 8000; f = (0:511) / 1024 * Fs;

X = fft([x’ zeros(1,1024-160)]); X = X(1:512);

subplot (211); plot(f,abs(X)); subplot (212); plot(f,angle(X));
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Quantization

s(n)^
Q

s(n)

Pulse Code Modulation (PCM):

• dynamic range of speech is about 50-60dB – 11bits/sample

• maximum frequency in telephone speech is 3.4kHz – Fs = 8kHz

⇒ 88 kbps – simple/universal but not efficient in case of linear
quantization:

SNR = 6B + K

in dB, where B = number of bits, K - const. depending on the
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if quantization bits are 
increased by 1, the SNR 
increases by 6dB.

idiap
Sticky Note
Number of quantization levels, Nq = quantization noise

idiap
Sticky Note
uniform quantizer is not good for small signals. However, in the nature, such as speech signal, most cases are small.




Quantization

character of the signal.
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Quantization

For speech signal - linear quantization is not optimal:

• speech contains many “small values”, PDF can be approximated

by Laplace distribution:

p(x) =
1√
2σx

e−
√

2|x|
σx ,

where σx is the standard deviation. Example - speech without

silence:
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• Perceptual properties of human auditory system: logarithmic

Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013 56



Quantization

sensitivity to the amplitude of acoustic signal
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Logarithmic PCM

Compression in coder ⇐⇒ expansion in decoder

F(s)

s

Q
u(n)^

Q-1
s(n)^

-1F    (u)

u

s(n) u(n)

uniform
quantization
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Logarithmic PCM

Non-linearity cannot be log-directly: (log(0) = −∞) ⇒
approximation:

• Europe: A-law:

u(n) = Smax

1 + lnA |s(n)|
Smax

1 + lnA
sign[s(n)], where A = 87.56.

• USA: µ-law:

u(n) = Smax

ln

(

1 + µ
|s(n)|
Smax

)

ln(1 + µ)
sign[s(n)], where µ = 255.
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Logarithmic PCM

Comparison of A-law a µ-law:
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⇒ both practically similar, the both improve qualities for “small

signals” by 12dB. For telephone applications, log-PCM with 8bits

reaches same quality as lin-PCM with 13bits – CCITT G.711.
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Vector quantization

Why:

• Usually, processing of speech/acoustic vectors, vectors are

correlated.

• Scalar quantization - inefficient utilization of bits

• How about spread into P-dimensional space “typical vectors –

centroids” and quantize new vectors according to these centroids.

• Variants of VQ: split-VQ, algebraic VQ, random codebook,

tree-structured VQ, multi-stage VQ
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Vector quantization
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Vector quantization

Code vectors, centroids, Voronoi’s regions . . .
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Training of code vectors

Code vectors need to be trained on data: N-training vectors,

expected codebook Y of size K: a) K-means:

• Inicialisation: k = 0, define Y(0).

• Step 1: asigning vectors to centroids:

Q[x] = yi(k) if d(x,yi(k)) ≤ d(x,yj(k)) pro j 6= i, j ∈ 1 . . .K

As d(x,yj), Euclidean distance can be used:

d(x,y) =
√

(x− y)T (x− y) =

√

√

√

√

P
∑

k=1

|xk − yk|2.

• Step 2: evaluation of quality of codebook:

DV Q =
1

N

N
∑

n=1

d (x(n), Q[x(n)]) .
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Training of code vectors

If
DV Q(k − 1)−DV Q(k)

DV Q(k)
≤ ε, STOP training.

• Step 4: New codebook:

yi(k + 1) = Cent(Ci(k)) =
1

Mi(k)

∑

x∈Ci(k)

x,

where Mi(k) is number of training vectors in k-iteration to be

asigned for centroid i.

b) LBG – Linde-Buzo-Gray: K-means has problems with

initialization (Y(0)), no training vector for some centroid !!!

LBG - sequential incrementation of size of codebook:
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Training of code vectors
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Training of code vectors
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