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General Information

e Course and Lab materials available on

o Moodle:

o Contact: {mathew motlicek}@idiap.ch
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Intro (repeat)

Speech/Audio signal analysis (applied signal processing)
Sound production and perception

Speech coding:
LPC (2.4kbps), voiced /unvoiced synthesis (~ 1kbps)
Skype — G.723.1 (~ 6kbps)

Audio coding:
MP3 — Lame (~ 32kbps)
MPEG4 — HE-AAC, AMR-WB+ (~ 32kbps)

Quality assessment
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All starts from speech ...
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Speech Coding

e Source, receiver

o Purpose: We speak in order to be heard in order to be

U.IldeI'StOOd (Roman Jakobson)

¥

Speaker listener

AV AV A Vaae

speech signal
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How humans communicate ...

message
linguistic code (~ 50 b/s)
motor control text-to-speech
. synthesis
speech speech production
coding SPEECH SIGNAL (~50 kb/s)
speech perception automatic
- speech
cognitive processes recognition

linguistic code (~ 50 b/s)
message
Communication:
classical signal analysis techniques
production based processing techniques
perception based processing techniques

goal oriented processing techniques
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Human hearing ...

\
frequency
O 0 0O 0O O 0

time
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The goal of speech/audio signal processing

To describe the signal, so that it can be:
stored and/or efficiently transmitted and reconstructed
modified and reconstructed
possibly used for useful information extraction
Signals and systems:
relation

focus on time <+ frequency
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Signals

arbitrary physical values

one or more independent axis (usually time), one dependent

variable.

Example: acoustic pressure generated by humans, gray scales of
B/W video frames, ratio of EURo

ELR

0.545755
0.822032
0795309
0.774585
0. 750862

0.727139

Bpr 27 Maw 26 Jun 24 Jul 23 Aug 24

o22010 x-rates.com
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Mathematics view of signals (1 dependent variable)

According to character of T', we divide signals:
Continuous time signals: ¢t € R, s(¢).

Discrete time signals: n € 7.
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Deterministic and non-deterministic signals

Deterministic signals can be described by equation:

Example 1: square continuous time impulse:

A s (t)

2 for —2<t<2 2 _
x(t) = , .

0 elsewhere

-2 0 2 Tt
Example 2: discrete unit impulse:
Wi

1 for n=0

d[n] = 19

0 elsewhere

-3-2-1¢9 1 2 3 s

Non-deterministic signals cannot be described by equation.

Fel0I30
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Periodic and non-periodic signals

For periodic signals, we can find such T'or V:
s(t+T)=s(t) continuous time

sln + N] = s(n) discrete time

For continuous time:

S (%)

A WA A A

~90 10 o 40 20 P YO 50O #

For discrete signals:

Sl»]

LI I

> m
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Harmonic Signals continuous time

A harmonic is a signal whose frequency is an integral (whole number) multiple of the
frequency of the same reference signal. As part of the harmonic series, the term can also refer
to the ratio of the frequency of such a signal to the frequency of the reference signal.

s(t) = Cq cos(wit + ¢1)

s@) = C, cos (it + (104)

C4 (‘,os(ff‘q) : /
% ; _ : :
_Z\ T = an

FelCiI30
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Harmonic signals aicrete sime

s|n] = C1 cos(win + ¢1)
C'1 — amplitude,
w1 — frequency [rad|, ¢1 phase [rad].
PERIODICITY !!!

There is a small problem with fundamental period of harmonic
sequence, that cannot be computed similarly as for continuous time
using: N1 = i—? It doesn’t have to be integer number. Rule of

periodicity must be fulfilled:

cos |wy(n + N1)| = coswin.

wl(n + Nl) —wWin = w1N1 = ]CQ’]T,

Fel0I30
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Harmonic signals aicrete sime

Example 1: s[n| = 5cos(2mn/12), w; = /6.

i,

—20 —310

It

|
2

Jo
Bl
o)

20

& N1 = k2, solution: k=1, Ny = 12
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Harmonic signals aicrete sime

Example 2: s|n] = cos(8mn/31), w; = 87/31.
8T N1 = k2w, k = 5= Ny, 31k = 4Ny. Solution is: k =4, Ny = 31.

: lTHIJ H H H H H hl JIHTJ :

1 Le ) : 1 : A : ) )
—20 —10 (@] 10 20
N

Example 3: s[n] = cos(n/6), w; = 1/6.
%Nl = k2w, N1 = k127. No solution, non-periodic signals

Z=10130
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Some interesting signals aicrete time

Unit step and impulse:

1 for n>0 1 for n=0
oln] = o[n] =
0 elsewhere 0 elsewhere

G pile]

FelCiI30

T — - —— — 3
-3=2-10 123 4§ p -2 10 123 m
d|n] = o[n] — oln — 1]
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Some interesting signals aicrete time

Shifted unit impulse: d[n — k:

FelCiI30

Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013

18



Some interesting signals continuous time

Unit step:
1 for t>0

o(t) =
0 elsewhere

Unit impuls:

5(t) = d‘;ff)
5 (t) _ dO‘C?t(t)
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Some interesting signals continuous time

Dl

~ ¥

FelCiI30
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Some interesting signals continuous time

The Dirac delta can be loosely thought of as a function on the real line which is zero
everywhere except at the origin, where it is infinite,

5(:!:):{{:00’ z;g

A (E) k{ (€)
A

and which is also constrained to satisty the identity

/jo d(z)dz = 1.

(6.9]

FelCiI30
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Fourier analysis

...study of the way general functions may be represented or approximated by sums of simpler
trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after
Joseph Fourier, who showed that representing a function as a sum of trigonometric functions
greatly simplifies the study of heat transfer.

Trigonometry _
. -\-"‘1\
— AN A
1 [ ?—.___}w.—._kﬂ
\ 3
sin(6) '-.h r

/ 9 )

cos(6 . .
. period . period

Trigonometric functions = real functions which relate an angle of a right-angled triangle to ratios
of two side lengths.

Describe complex function as a weighted sum of simpler functions:
simpler functions are known - sines and cosines and need to be

orthogonal

weights can be found

o 1G1B0 Digital Speech and Audio Coding, Doctoral Course Autumn 2022-2023 22



How to get weights - Fourier series

A Fourier series = a sum that represents a periodic function as a sum of sine and cosine waves.
The frequency of each wave in the sum, or harmonic, is an integer multiple of the periodic
function's fundamental frequency

The functions f and g are orthogonal when _ T (271)
this integral is zero, whenever fzg e o |
,,,,, P /_”\\\‘\/ S ]
T v YRty
Jo f(t) dt =ag -

T
ap =7 [, f(t)dt
How to get other weights?
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sin(nx) and sin(mx)
are orthogonal on the

interval
10 40 20
XE(_ﬂ’ﬂ) 5//\\&_\ f 20/\ m 10/\ "
when m+n N, I NN [ S WAV
and n and m are . = Y
o ) 0 2 4 8 o 2 4 6 0o 2 4 &
pOSltlve lntegers. §—— 20 -
SN 1 . o 5 S
0 : \ 10 / /\ / \ 0 / -I-\ \ H-I}‘
A f/ H /.\-/
\x_/x 5 + \/ + \\ 5 \\7 "/
% 2 g 8 % > 4 6 0 2 1 5
5
2\ 2 st/ e 0 \ 4 e
OA_\\ / + 0 +\ #+ : \ /\
L=/ - \_/“ - 2 l\
2 v SN U+
0o 2 4 8 o 2 a4 6 % 2 4 &
27 (T)

f(t) =ao+ f1(t) + fo(t) = ag + a1- sinwt + az- sin2wt
fOT f(t): sinwt dt = a;
fOT f(t) sin2wt dt = as

fOT sinwt dt = %
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Fourier Transform

Signal s(7) Fourier Transform S(w)
cosine wave single frequency
séno flinction m,;,mmmmd,,d

Time Domain Frequency Domain /\ -/\

sit) S(w) e —_
X (juw) = / 1(t)e It dt, | e e
—00
X (jw) will be called Fourier projection/image of signal z(¢).
Ooma/: )
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Fourier Transform

Part of a series of articles on the

Spectral function of unity impulse: mathematical constant e

FelCiI30

+00 Im,h
X(]w) — / 5(t - T)e_jwtdt p— 6_~]WT : ew=c05(p+isj11(‘g
— OO
sin @
@I bl
COS(P RE
1
A
ot —T
(D 0 ©
arg S) 4
\ »
0 W
e
0 t -TW
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Fourier Transform

Direct signal:
X(jw) =21 Ad(w)

1 o .
x(t) = %27#1/ S(w)e?“tdw = A.

— OO

SeT)

s(t)

-

- -

t O W

VIR |
MAEERTLEEELTLEEEEEEE R |

FelCiI30
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Inverse projection of square spectral

Square impuls: We know: ffb eTI%Ydy = 2b sinc(bx). Let’s have

b= g, y=1t, x = w,we obtain:

- 9
e IWtdt = D2§sinc (§w> = Dsinc (—w)
2 2 2

S
0.8 — - - = DU
RN ]
‘ TNAT YN VM v V MV M
Part o-fztl‘;e r\‘ollf:)rlali;;i sin::g(blue) [;nd ur%ncrm'i::zed ;‘;c fur2112tion |
=2m/v 0 2m/v 4m/v 61T/L W
s(tH arg S(w) A
TThE---- - _
D o
0 W
—u/2 u/2 t et -
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Inverse projection of square spectral

N\ VAN

Saw, VAR

1 o0 . 1 We . H We )
z(t) = %/ X(jw)e¥dw = — HetI9%w = —/ eI duw =

21 ). 2T

FelCiI30

H . Hw, .
= —2w,sinc(w,t) = sinc(wet)
2T T
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Hints about spectra of non periodic signals

s=10130

z(t) X(jw)
linearity azry(t) + bxy(t) aX,(jw) + bXp(Jw)
shift in time x(t—T) X (jw)e vt
1 w
change of scale s(mt) m >0 —X (—)
m  \m
convolution | z1(t) x z2(t) = / x1(T)zo(t — T)dT X1 (Jw) X2 (jw)
Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013 30




Time-shift

just argument/phase of spectral function will be changed: —wT.

FelCiI30

Example:
arg S) i
TOE----- —_— ___ —_—
/2
s(t)4
o
-/2 O m2 m W
—TU/2
. =Tt
-2 2 t
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Time-shift

1 s delay: X (jw) multiplied by function e/, thus w will be

subtracted from argument:

()4

FelCiI30
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Time-shift

1 s take over: X (jw) multiplied by function ¢’%, thus w will be added

to the argument:

()4

FelCiI30
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Examples of modification of time axis

o) 5
5 Sy
2D
/
- -
101 t 0 T W
s(O4 Se) A
6D
D
- = N\ —
-3 3 t ~ o \_— T+ w
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Now on ... only discrete signal processing

FelCiI30
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Why discrete signal processing 7

reproducibility

no changes due to material and temperature
no setting and calibration

possibility of adaptive processing

simulation = application

compatible with the boom of computer technology, Internet,

mobile communication

Fel0I30
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A /D conversion

X(t x[n digital y[n y(t)
J’ A/D n | processing n + D/A g
(PC, DSP) |
storing
:|’> transmission
Interpretayion

other processing ...

At the input — continuous time signal: defined for ¢t € (—o0, +00),

time has oo values

o dis0 Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013
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A /D conversion

A
X(t)

~ N

S \/
0 t

To represent the signal in spectral domain, we use Fourier transform:

X = [ atera

— o0

where X (f) is denoted to as spectral function. X (f) is defined for V f

Fel0I30
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A /D conversion

from —oo to oo and X(f) is complex:
- | X(f)| and /X (f) are called module and argument of X (f).
For real signals — we can just remember the right part of X (f) for

f>0:
X(f) = X*(—f).

This means | X (f)| = |X(—f)| and arg X (f) = —arg X (—f).

Con\’lmja:l‘c Symme‘k-ric S‘.sna.\ Examp\a

XERY= (A - = 1o

Le"' x(k)= \f:-ivé,k Also : 3 A =
—0 X0d= k-3l = .
Ep L é X( |
= on even signal
R‘“‘l : J A complex-valued signal x[k] is conjugate symmetric if
L x[—k] = x*[K] for all k
x(w) .\sd:" ‘°’_\‘}“3‘{'° m The Asterisk Denotes Complex Conjugation
r i il B u I x[K] = a[K] + jb[K], then x*[K] = a[K] — jbK]
IMAS; = odd s'\y\o\\ m A Conjugate Symmetric Complex-Valued Signal Has An Even
L Real Part and Odd Imaginary Part
-W 0 w
/\. p max max
= Intelligent signals are frequency constrained: energy lies in
(07 f maa:) .
Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013 39
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A /D conversion

x(t)

antialias.
filter

Y

sampling

sampled
signal x[n]

quantized
S Xq[1]

~ quantization

/.

Sampled signal is obtained in such a way that the original signal is

multiplied with time-periodic sequence of Dirac impulses.

S(t)

‘D

0

‘ Il
o 2P

|
-~

T

1.

() | X{H=xXOS)

FelCiI30
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A /D conversion

In theory Dirac impulses have: height — oo, width — 0, area/mass
— 1.

After multiplication: again sequence of Dirac impulses, but mass is

equal to the values of original signal in samples nT'.

A A
) X (H=X()S()

A A A 14 A A A A A

Y
/
|

|

0 T t i 0 ~
|

T is sampling period

1
F, = 7 is sampling frequency

10 Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013
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A /D conversion

What happens with spectrum of a sampled signal? It becomes

periodic !!!
1 < ny 1 <X
X =% > X(f-7)=7 > X(f-nF)

According to the ratio of f,,,, and F§, two possibilities can appear:
1) Fs > 2fmae: Original signal can be ideally reconstructed,
individual copies of the spectra do NOT overlap.

2) Fy < 2fnax: Original signal can NOT be anyhow reconstructed,
individual copies of the spectra DO overlap. Shannon — Nyquist

sampling theorem:

Fs > 2fmax

Fel0I30
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Reconstruction

Low-pass filter with cutting frequency €2, /2:

. T for —Qs/2 <w < Q/2
H,(jw) = 0 el
else

FelCiI30
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1. Exercise sampling and reconstruction — OK

Fs =8000 Hz, fmaee = 3000 Hz, thus 2, = 160007 rad /s,
Winaz = 60007 rad/s. T = === s

1 T T T T T T T
.l /\ |
O Il 1 1 1 1 1 I
—-1.5 -1 —0.5 (@] 0.5 1 1.5
8000 T T T T T
6000 — —
4000 _
2000 —
0 Il 1 1 1 1 1 I
_13(51074 -1 —0.5 (@] 0.5 1 1.5
T T T T T T 1]
1 — —]
0.5 —
O Il 1 1 1 1 1 I
—1.5 -1 —0.5 (@] 0.5 1 1.5
1 T
0 1 1
—-1.5 gt —0.5 (@] 0.5 1 1.5
X 105
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2. Exercise sampling and reconstruction — BAD

Fy = 8000 Hz, frae: = 7000 Hz thus 2, = 160007 rad/s,

Wmar — 140007 rad/s T = m

: AN _

0.5 - ]
O Il 1 1
—-1.5 -1 —0.5 o 0.5 1 1.5
1F T = =3
0 1 1
—1.5 -1 —0.5 o 0.5 1 1.5
x 10°
Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013 45
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Antialiasing filter — restriction for |—F,/2, F,/2]

N
.~

1 1 1 1 1
: -0.5 0 0.5 :
1 T T T T T T
Ml / \ |
ol 1 1 1 1 1 1

. —-0.5 (0] 0.5

x 10°
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Spectrum of discrete-time sampled signals

Discrete Fourier transtorm — DFT — definition:

N-1
X (k) = Z x[n]e_j%n_f\? pro k €<0,N —1 >

n=0
How to apply DFT on discrete signal:

analysis of the “window” of length equal to N samples.

Output? If X (k) are multiplied by sampling period T', we obtain

an approximation of spectral function in frequency samples kA f,

Fy
where Af = N
N-1 -
X(EAf)=T Z x[n]e 72N
n=0

x|n] in the equation can be replaced by z(nT).

Fel0I30
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Spectrum of discrete-time sampled signals

Comparison with spectral function obtained using analog FT"

different results !!!

1. Spectrum of sampled signal is computed — periodic spectrum
(N samples ~ Fy). If we let k € (—o0, +00), we find out that
X (kAf) is periodic with period N.

2. Signal was segmented using a “window”. Properties of such the
window influence X (kAf). In time domain, the window is
multiplied with the original signal <= spectrum of the window
is convolved with X (kAf).

3. X(kAf) is discrete = spectrum of the periodic signal was
computed. We can imagine that the signal’s window is repeating

oo-times.

Fel0I30
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Spectrum of discrete-time sampled signals

Timesdomain Finite extent Infinite extent
Properties
’ Fourier Series Fourier Transform .
Continuous (FS) (FT) Infinite extent
Discrete Fourier Discrete-Time
Discrete Transform Fourier Transform Finite extent
(DFT) (DTFT)
Discrete Continuous Frequency:doimain
Properties
periodic | | | DFT | | | discrete
discrete - '.:.||| Ll Ml - — il - - periodic
we } b e
periodic o /M o A..I|||||I... discrete
| b
10t discrete /\ ‘F /\ not periodic
10t periodic not discrete
DTFT
discrete ..|||”||l|.‘ — . /yy\ ak pCl’lOdlL
A o
e 1 Y WL T
priodic o nllalblll: sl S

DF _DCT

Fourier Series (FS)

Fourier Transform (FT)

For z(t) of duration T, set wo = 2&.

z(t): 0<t<T

X[k k=...,-2,-1,0,1,2,...
I ;
X[k = T x(t) e TRty
t=0
z(t) = Z X [k] efkwot
k=—o00

z(t): —oo<t< oo
X(w): —oo<w< o0
X(w) = / () e~*tdt
t=—c0
L[> wt
z(t) = X (w) e“*dw

oM o

time

frequency

sampling

periodic

periodic

discrete

Discrete Fourier Transform (DFT)

Discrete-Time Fourier Transform

(DTFT)
For z[n] of length N, set wy = %‘
zln]z 1=, =2,—1,0,1,2,...
zn]: n=0,1,..., N-—-1 Xw): —-T<sw<m
X[K: k=0,1,...,N—1
00
N-1 X(w) = Y a[n]en
X[k = Z x[n] eFkwon n=-o0
n=0
7[
Ne1 zln] = %/ X (w) e“"dw
1 . T S s
zn] = FZ X k] efkwon
k=0

FelCiI30
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idiap
Sticky Note
In particular, it is well known that any discontinuities in a function reduce the rate of convergence of the Fourier series...the smoother the function is, the fewer terms in its DFT or DCT are required to represent it accurately, and the more it can be compressed... However, the implicit periodicity of the DFT means that discontinuities usually occur at the boundaries... In contrast, a DCT where both boundaries are even always yields a continuous extension at the boundaries. This is why DCTs...generally perform better for signal compression than DFTs and DSTs. In practice, a type-II DCT is usually preferred for such applications, in part for reasons of computational convenience.

idiap
Sticky Note
Cosine transforms are nothing more than shortcuts for computing the Fourier transform of a sequence with special symmetry (e.g. if the sequence represents samples from an even function)

idiap
Sticky Note
https://math.stackexchange.com/questions/1177/comparing-contrasting-cosine-and-fourier-transforms/1205#1205


Example — Real signal!

Analysis of a voiced segment of a speech signal:

s = wavread(’test.wav’)’;
sfr = frame (s,160,80);

x = sfr(:,13);

plot (x);

L L L L L L L
o 20 40 SO 80 100 120 140 160

10130
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Example — Real signal!

Only DFT -

Fs = 8000; £ = (0:159) / 160 * Fs; X = fft(x);
subplot (211); plot(f,abs(X)); subplot (212); plot(f,angle(X));

O r N W » 0 O N

| | |
0] 1000 2000 3000 4000 5000 6000 7000 8000

| | | | | | |
(0] 1000 2000 3000 4000 5000 6000 7000 8000

s=10130
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Example — Real signal!

Only DFT — upper part of the spectrum is symmetric to the lower
part

Fs = 8000; £ = (0:79) / 160 * Fs; X = fft(x); X = X(1:80);
subplot (211); plot(f,abs(X)); subplot (212); plot(f,angle(X));

O r N W M 01 O N

1 1 | B e —
(0) 500 1000 1500 2000 2500 3000 3500 4000

1 1 1 1 1 1 1
o 500 1000 1500 2000 2500 3000 3500 4000
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Example — Real signal!

More samples in the spectrum — the frame cannot be enlarged =
zero padding:
Fs = 8000; £ = (0:511) / 1024 x Fs;

X = fft([x’ zeros(1,1024-160)]1); X = X(1:512);
subplot (211); plot(f,abs(X)); subplot (212); plot(f,angle(X));

I | I
() 500 1000 1500 2000 2500 3000 3500 4000

Il Il Il Il Il Il Il
(@) 500 1000 1500 2000 2500 3000 3500 4000

s=10130
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Quantization

* Less
quantization
if quantization bits are quantization noise noise for weaker
increased by 1, the SNR N signals

increases by 6dB. ]

) [ o 180, | |

ouT out

Pulse Code Modulation (PCM):
dynamic range of speech is about 50-60dB — 11bits/sample

maximum frequency in telephone speech is 3.4kHz — F; = 8kHz

= 88 kbps — simple/universal but not efficient in case of lir car
quantization:

SNR=6B+ K (N%)dB = 20log ./ = 6N

in dB, where B = number of bits, K - const. depending on the

o 1G1B0 Digital Speech and Audio Coding, Doctoral Course Autumn 2022-2023 54
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Sticky Note
Number of quantization levels, Nq = quantization noise

idiap
Sticky Note
uniform quantizer is not good for small signals. However, in the nature, such as speech signal, most cases are small.



Quantization

character of the signal.

FelCiI30
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Quantization

For speech signal - linear quantization is not optimal:

speech contains many “small values”, PDF can be approximated

by Laplace distribution:

1 V2|
e ox

p(z) = T ,

where o0, is the standard deviation. Example - speech without

silence:

Perceptual properties of human auditory system: logarithmic

e idisn Digital Speech and Audio Coding, Doctoral Course Autumn 2012-2013
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Quantization

sensitivity to the amplitude of acoustic signal

FelCiI30
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Logarithmic PCM

Compression in coder <= expansion in decoder
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Logarithmic PCM

Non-linearity cannot be log-directly: (log(0) = —o0) =

approximation: 6/

Europe: A-law:

\

1/2

1 +1n ALzl ————
S :
u(n) =5 T s1gn|s(n where A = 87.56.
( ) max 1 n InA g [ ( )]7
USA: p-law:
Table: Folded binary code and nature binary code

|S(n)| [ Polarity | Nature | Folded | Levels |
A0 1111 | 1111 | 15
In (1 T p g ) 1110 | 1110 | 14
max . 1101 1101 13
u(n) =95 Stgn|s\n 1100 | 1100 | 12
() e In(1+ ) [s(n)] +  [10m (1011 [ 11
1010 | 1010 | 10
_ _ o 1001 | 1001 | 9
The PCM consists of three steps: sampling, quantization, and (1)(1)(1)({ (1)888 g
coding. 0IT0 | 000 | 6
_ _ _ _ 0101 | 0010 | 5
» A-law 13 broke line: the input range [0, 1] is non-uniformly _ 8(1)(1)(1) 8(1)(1)(1) g
divided into 8 segments, [0, 1/128], ..., [1/4, 1/2], [1/2, 1]. irse T L I
» Each segment is uniformly divided into 16 smaller segments. ooop Wl ] 0O

©|


idiap
Sticky Note
a-law


Logarithmic PCM

Comparison of A-law a u-law:

= both practically similar, the both improve qualities for “small
signals” by 12dB. For telephone applications, log-PCM with 8bits
reaches same quality as lin-PCM with 13bits — CCITT G.711.
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Vector quantization

Why:

Usually, processing of speech/acoustic vectors, vectors are
correlated.

Scalar quantization - inefficient utilization of bits

How about spread into P-dimensional space “typical vectors —
centroids” and quantize new vectors according to these centroids.

Variants of VQ: split-VQ, algebraic VQ, random codebook,
tree-structured VQ, multi-stage VQ
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Vector quantization
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Vector quantization

Code vectors, centroids, Voronoi’s regions ...
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Training of code vectors

Code vectors need to be trained on data: N-training vectors,
expected codebook Y of size K: a) K-means:

Inicialisation: k& = 0, define Y (0).
Step 1: asigning vectors to centroids:

Qx| =yi(k) if d(x,yi(k)) <d(x,y;(k)) pro j#i, jel...K

As d(x,y;), Euclidean distance can be used:

P
Ax,y) =/ (x— )T (x—y) = | 3 law — ml2.
\i=
Step 2: evaluation of quality of codebook:

Dvg =y > d(x(n), Qlx(n).

s=10130
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Training of code vectors

Dyq(k —1) — Dyq(k)
Dy q(k)
Step 4: New codebook:

If

< e, STOP training.

yi(k+1)zcent(oi(k)):Mik) S x
N e (k)

where M;(k) is number of training vectors in k-iteration to be

asigned for centroid <.

b) LBG — Linde-Buzo-Gray: K-means has problems with
initialization (Y (0)), no training vector for some centroid !!!

LBG - sequential incrementation of size of codebook:
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Training of code vectors

R xx )
x> EEET
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Training of code vectors
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