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Previous lecture

• Signals

• Frequency Analysis

• Sampling . . . Nyquist theorem

• quantization - linear - logarithmic, scalar - vector
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Time-frequency plot for speech
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Periodicity
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Discrete-time systems

LTI (Linear Time Invariant systems):

• Most important characteristics: impulse response - how

systems react to an unit impulse

• However, we are more interested how the system reacts to any

kind of signal x[n]. We can decompose x[n] to set of unit

impulses:
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Discrete-time systems

Decomposition of signal into discrete unit impulses:

x[n] =
+∞
∑

k=−∞

x[k]δ[n − k]

Reaction of the system on the shifted unit impulse: δ[n − k] can be

denoted to as hk[n]. If the system is an LTI system, then all hn[k]

are similar and/but shifted in time: hk[n] = h[n − k]. Each shifted

impulse will start its hk[n].
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Discrete-time systems

We then just sum all together:

y[n] =
+∞
∑

k=−∞

x[k]h[n − k]

which is often written as

y[n] = x[n] ⋆ h[n] ⇐⇒ convolution
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Discrete-time systems

Example for h[n] a x[n]:
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Frequency characteristic of systems

Similarly to an unit impulse, the input signal will be the complex

exponential:

x[n] = ejω1n,

with normalized angular frequency ω1

y[n] = h[n]⋆x[n] =
∞
∑

k=0

h[k]x[n−k] =
∞
∑

k=0

h[k]ejω1(n−k) = ejω1n
∞
∑

k=0

h[k]e−jω1k.

The output signal contains also the input part multiplied by:

H(ejω1) =
∞
∑

k=0

h[k]e−jω1k

and we can write:

y[n] = x[n]H(ejω1)
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Frequency characteristic of systems

For arbitrary frequency, we get (complex) frequency charasteristics:

H(ejω) =
∞
∑

k=0

h[k]e−jωk

We can notice that the frequency characteristics is a

DTFT-projection of impulse response:

h[n]−→H(ejω)

Properties:

• periodicity of spectra (also impulse response is a discrete

signal!) – we should correctly mark H(ejω) as H̃(ejω):

• symmetry: H(ejω) = H⋆(e−jω)
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Fundamental blocks of systems:

input: x[n], output y[n], where n is a pointer to the sample

(discrete time).

Fundamental blocks:
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Fundamental blocks of systems:

• Delay - will hold a sample for one sampling period and then it

will be returned.

• multiplication - multiplies a sample by some coefficient.

• addition - . . .

An example :
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Fundamental blocks of systems:

can be built up:

To prove it ⇐⇒ check an impulse response.
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Non-recursive and recursive systems

If the filter works only with an actual and delayed samples of an

input signal – It’s impulse response is finite - finite impulse

response – FIR - non-recursive filters.

In case of recursive filters, we take into account also delayed

samples of the output, for example:
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Non-recursive and recursive systems

This filter has an impulse response:

h[n] =







0 for n < 0

1 − a (−a)2 (−a)3 . . . for n = 0, 1, 2, 3, . . .

thus:

h[n] =







0 for n < 0

(−a)n for n ≥ 0

The impulse response is infinite - infinite impulse response –

IIR.
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General recursive system

z -1 z -1 z -1...

bQ-1

z -1 z -1 z -1Σ

...

-a

-a

1

2

bQ

...

bQ-2

-a Pb0

-ab1 P-1

...

y(n)

x(n)

Output can be written by differencial equation:

y[n] =

Q
∑

k=0

bkx[n − k] −
P

∑

k=1

aky[n − k]
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z-TRANSFORM

will help us, similarly to Laplace transform in continuous domain,

to describe discrete signals and systems using complex variable z.

z-transform is defined:

X(z) =

∞
∑

n=−∞

x[n]z−n,

where z is complex variable. Let’s mark it:

x[n]−→X(z)

inverse transform

X(z)−→x[n]
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z-TRANSFORM

3 properties:

• Linearity:

x1[n] −→ X1(z)

x2[n] −→ X2(z)

ax1[n] + bx2[n] −→ aX1(z) + bX2(z)

• Delay of signals:

x[n] −→ X(z)

x[n − k] −→
∞
∑

n=−∞

x[n − k]z−n =

=
∞
∑

n=−∞

x[n]z−n−k = z−k
∞
∑

n=−∞

x[n]z−n = z−kX(z)
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z-TRANSFORM

x[n − 1] −→ z−1X(z)

1 sample delay:

z -1

• Relation to DTFT: Fourier transform with discrete time:

X̃(ejω) =
∞
∑

n=−∞

x[n]e−jωn

it is quite similar to ZT, if z will be ejω:

X̃(ejω) = X(z)|z=ejω ,
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Transformation function of recursive system

For system:

we will define:

H(z) =
Y (z)

X(z)

y[n] =

Q
∑

k=0

bkx[n−k]−
P

∑

k=1

aky[n−k] −→ Y (z) =

Q
∑

k=0

bkX(z)z−k−
P

∑

k=1

akY (z)z−k

Y (z) +
P

∑

k=1

akY (z)z−k =

Q
∑

k=0

bkX(z)z−k

and we get:

H(z) =
Y (z)

X(z)
=

∑Q
k=0 bkz−k

1 +
∑P

k=1 akz−k
=

B(z)

A(z)
,
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Frequency characteristics of filters

We just replace z by ejω and we keep ω varying in interval we are

interested – e.g. from 0 to π (half of sampling frequency):

H(ejω) = H(z)|z=ejω =

∑Q
k=0 bke−jωk

1 +
∑P

k=1 ake−jωk
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Frequency characteristics of filters
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Frequency characteristic from nulls and poles

H(ejω):

H(ejω) = b0z
−(Q−P )

∏Q
k=1(z − nk)

∏P
k=1(z − pk),

|z=ejω = b0e
jω(P−Q)

∏Q
k=1(e

jω − nk)
∏P

k=1(e
jω − pk),
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Example - non-recursive filter:

y[n] = x[n] + 0.5x[n − 1]

• Impulse response?

• Transformation function (coef. a, b)?

• Frequency characteristics?

• by hand – freq. charfacteristics using nulls and poles.

Solution:

• h[n] = 1, 0.5 for n = 0, 1, null elsewhere.

• Y (z) = X(z) + 0.5X(z)z−1 Y (z) = X(z)[1 + 0.5z−1]

H(z) = 1 + 0.5z−1 = 1+0.5z−1

1 , thus b0 = 1, b1 = 0.5, a0 = 1.

Digital Speech and Audio Coding, Doctoral Course Autumn 2010-2011 24



Example - non-recursive filter:

• z = ejω, let’s call:

H=freqz([1 0.5],[1],256); om=(0:255)/256 * pi;

subplot(211); plot(om,abs(H)); grid

subplot(212); plot(om,angle(H)); grid
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Example - non-recursive filter:

⇒ Low pass filter:

• Nulls and poles: H(z) = 1+0.5z−1

1 = z(1+0.5z−1)
z = z+0.5

z

Numerator is equal to zero for z = −0.5, thus, filter will have 1

null n1 = −0.5.

Denominator will be zero for z = 0, thus one pole: p1 = 0
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• Freq. characteristics using nulls and poles:

H(z) = z−(−0.5)
z−0 H(ejω) = ejω

−(−0.5)
ejω

−0
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Digital resonator
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All-pole model
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Short-Time Analysis
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Short-Time Analysis

Frames:

• Signal should be stationary. BUT – is not

• Division into shorter segments

• New parameters:

◦ Length of segments L: short enough to ensure stationarity;

long enough to well estimate parameters of the segment.

◦ Overlap O: small - fast computing but parameters can

change dramataically from one segment to the other;

efficiency due to bit-rates!!

◦ frame-shift: S = L − O
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Short-Time Analysis

No overlapping O = 0:

lram

N

ram
p     =0

Nram =

⌊

N

lram

⌋

. . . ⌊·⌋ means flooring.
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Short-Time Analysis

lram

ram
p

N

ram
s

Nram = 1 +

⌊

N − lram

sram

⌋

. . . if the signal is at least one frame long.
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Short-Time Analysis

Selection of the signal by a window:

• Rectangular window:

w[n] =







1, for 0 ≤ n ≤ lram − 1

0, elsewhere

• Hamming window - attenuation of sides:

w[n] =







0.54 − 0.46 cos
2πn

lram − 1
for 0 ≤ n ≤ lram − 1

0 elsewhere
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Short-Time Analysis

What will happen with spectrum of the signal chopped by the

window: Multiplication of the signal by a window in time domain

⇐⇒ convolution of the both spectra

X(f) = S(f) ⋆ W (f)

Comparison of Rectangular and Hamming window:
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Short-Time Analysis
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Short-Time Analysis
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Short-Time fourier Transform
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Uncertainty principle
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Uncertainty principle

Originally from nuclear physics [Heisenberg], also applies to signal

processing [Gabor]:

Product of time and frequency resolution is constant

(High frequency resolution means low temporal resolution and

vice-versa)
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Spectrogram
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Spectrogram
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Spectrogram

long-term/narrow-band:

specgram(s,256,8000,hamming(256),200);
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Spectrogram

short-term/wide-band: specgram(s,256,8000,hamming(50));
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Spectrogram
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Spectrogram

Spectrogram of the word: “parenthese”: (a) narrow-band, (b)

wide-band.
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Multi-rate Signal Processing (MSP)

• Involves the change of sampling rate while the signal is in the

digital domain.

• It can reduce the algorithmic and HW complexity or increase

the resolution . . . by introducing additional signal samples.

• MSP – two basic soperations - up-sampling and down-sampling:

◦ down-sampling - increasing the sampling period - decreasing

samppling frequency and data-rate of the digital signal. A

sampling rate reduction by integer L:

xd[n] = x[nL]

◦ up-sampling - decreasing the sampling period - increasing

sampling frequency. A sampling rate increase by integer L:

ye[n] =







x[nL] for n is integer − multiple of L

0 elsewhere
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Multi-rate Signal Processing (MSP)

HD(ejΩ) =







1, 0 ≤ |Ω| ≤ π/L

0, π/L ≤ |Ω| ≤ π
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Multi-rate Signal Processing (MSP)

HU (ejΩ) =







M, 0 ≤ |Ω| ≤ π/M

0, π/M ≤ |Ω| ≤ π
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Quadrature Mirror Filter Banks

• The analysis of the signal in perceptual audio coding system:

filter banks, frequency-domain transformations, combination of

both

• Filter bank: to decompose the signal into several filter banks

⇒ subbnand coding
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Quadrature Mirror Filter Banks

Important aspect: aliasing between the different sub-bands – due to

imperfect frequency responses of the digital filters:

• Solved in 1977 by proposing perfect reconstruciton filter bank

known as QMF

• QMF: anti-aliasing filters, down/up-sampling stages,

interpolation filters
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Quadrature Mirror Filter Banks

How to:

• Signal is filtered and down-sampled:

Xd,k(ejΩ) = Xk(ejΩ/2) + Xk(ej(Ω−2π)/2))

• The reconstructed signal x̂[n] – derived by adding the

contributions from the up-sampling and interpolations of the

low and high band.
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Quadrature Mirror Filter Banks

It can be shown that the reconstructed signal in Z-domain:

X̂(z) = 1/2
(

H0(z)F0(z) + H1(z)F1(z)
)

X(z)+

+1/2
(

H0(−z)F0(z)H1(−z)F1(z)
)

X(−z)

The aliasing term can be cancelled by designing filters to have the

following mirror symetries:

F0(z) = H1(−z) Fz(z) = −H0(−z)

Under these conditions, the overall transfer function of QMF can

be:

T (z) = 1/2
(

H0(z)F0(z) + H1(z)F1(z)
)

If T (z) = 1 the filter bank allows for perfect reconstruction. Perfect

delay-less reconstruction is not realizable.
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Quadrature Mirror Filter Banks

For example: the choice of first-order FIR filter:

H0(z) = 1 + z−1 H1(z) = 1 − z−1

results in alias-free reconstruction. The overall T (z) function will

be:

T (z) = 1/2
(

(1 + z−1)2 − (1 − z−1)2
)

= 2z−1

The signal will be reconstructed within the delay of one sample and

with overall gain of 2.
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Quadrature Mirror Filter Banks

QMF can be cascaded to form tree structures. The theory of QMF

has been associated with wavelet transform theory.
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