Spectral Graph Theory

Dr Dorina Thanou April 17, 2023

Spectral graph theory in a nutshell

- Another way to look at networks or graphs
 - We represent the graph as a connectivity matrix
 - We study the eigenvectors and the eigenvalues of that matrix
- What makes eigenvalues interesting:
 - Eigenvalues are usually related to vibrations
 - Used by Shannon to determine the theoretical limit of information transmission
 - Useful for solving the Schrödinger equation
 - Define the natural frequencies of the bridge

Quantum mechanics

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

Schrödinger equation

Can we discover properties of the graph from the spectrum?

- Spectral graph theory: A topic studied from different perspectives
 - Theoretical computer science, machine learning, statistics
 - Differential geometry, mathematics, astronomy, chemistry, computer vision...

Outline

- Graph Laplacian operator
- Eigendecomposition of the graph Laplacian
 - What do the eigenvalues reveal about the graph?
 - What are the basic properties of the eigenvectors?
- Applications
 - Spectral embeddings
 - Spectral clustering
 - PageRank

Outline

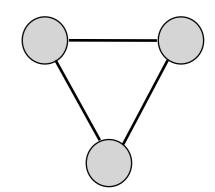
Graph Laplacian operator

- Eigendecomposition of the graph Laplacian
 - What do the eigenvalues reveal about the graph?
 - What are the basic properties of the eigenvectors?
- Applications
 - Spectral embeddings
 - Spectral clustering
 - PageRank

Recap of classical graph matrices

• Undirected graph of N nodes, i.e., $|\mathcal{V}| = N$:

$$G = (\mathcal{V}, \mathcal{E}, W), \quad \mathcal{E} \subseteq \{(i, j) : i, j \in \mathcal{V}\}, \quad (i, j) = (j, i)$$



Adjacency matrix or weight matrix :

$$W_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

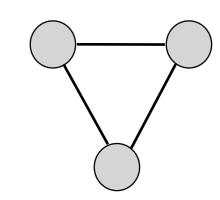
$$W = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

• If the graph is unweighted (often denoted as A):

$$W_{ij} = \begin{cases} 1, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

Recap of classical graph matrices

• Neighborhood of node i: Set of nodes connected to node i by an edge



$$\mathcal{N}_i = \{j : (i,j) \in \mathcal{E}\}$$

• Degree of a node i: It is the sum of the weights of the edges incident to node i

$$W = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Degree matrix: A diagonal matrix containing the degree of each node

 $D_i = \sum_i W_{ij}$

$$\downarrow$$

$$D_{ij} = \begin{cases} \sum_{j} W_{ij}, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

The graph Laplacian matrix

The combinatorial Laplacian is defined as:

$$L = D - W$$

 $L = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$

- Symmetric
- Off-diagonal entries non-positive
- Rows sum up to zero
- It is a positive semi-definite matrix:
 - For each function $f: \mathcal{V} \to \mathbb{R}$, where f_i is the value on the i^{th} node of the graph:

$$f^{T}Lf = f^{T}(D - W)f = \sum_{i=1}^{N} D_{ii}f_{i}^{2} - \sum_{i,j=1}^{N} f_{i}f_{j}W_{ij}$$
$$= \frac{1}{2} \sum_{i,j=1}^{N} W_{ij}(f_{i} - f_{j})^{2} \ge 0, \quad \forall f \in \mathbb{R}^{N}$$

Connection to continuous Laplacian

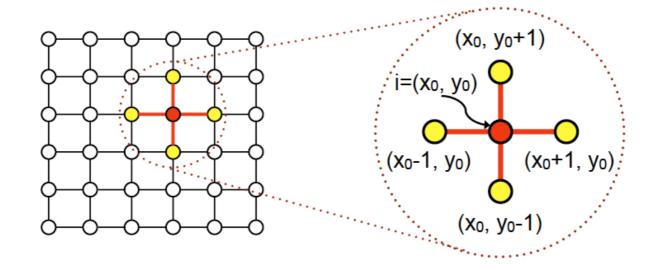
Graph Laplacian: A discrete differential operator

$$(Lf)(i) = \sum_{j \in \mathcal{N}_i} W_{i,j}(f_i - f_j)$$

- The Laplace operator:
 - A second-order differential operator: divergence of the gradient $\Delta f =
 abla^2 f$
 - The gradient is defined as: $\nabla f = (\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_N})$
 - Finally, the Laplacian is: $\Delta f = \sum_{i=1}^{N} \frac{\partial^2 f}{\partial x_i^2}$
- The Laplacian matrix is the graph analogue to the Laplace operator on continuous functions!

Illustrative example

Example: Unweighted grid graph



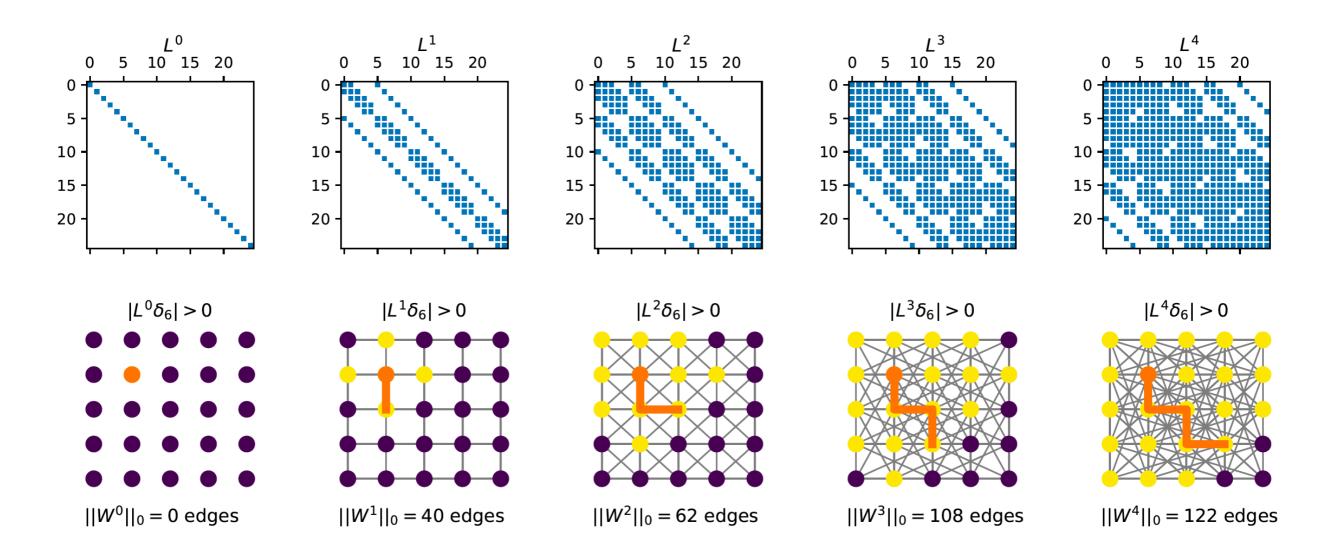
$$-Lf(i) = [f(x_0 + 1, y_0) - f(x_0, y_0)] - [f(x_0, y_0) - f(x_0 - 1, y_0)]$$

$$+ [f(x_0, y_0 + 1) - f(x_0, y_0)] - [f(x_0, y_0) - f(x_0, y_0 - 1)]$$

$$\sim \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = (\Delta f)(x_0, y_0)$$

Powers of the graph Laplacian

 L^K defines the K-hop neighborhood: $d_G(v_i, v_j) > K \to (L^K)_{ij} = 0$



[Slide adapted from M. Defferrard]

Other Laplacian matrices

- Normalized Laplacian:
 - Symmetric matrix
 - Bounded spectrum (more in the following slides)

$$L_{sum} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$

- Random walk Laplacian:
 - Asymmetric matrix
 - Used often in dimensionality reduction techniques

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Random walk matrix

Outline

- Graph Laplacian operator
- Eigendecomposition of the graph Laplacian
 - What do the eigenvalues reveal about the graph?
 - What are the basic properties of the eigenvectors?
- Applications
 - Spectral embeddings
 - Spectral clustering
 - PageRank

Spectral decomposition of the Laplacian matrix

• L has a complete set of orthonormal eigenvectors $L = \chi \Lambda \chi^T$

$$L = \begin{bmatrix} | & & | \\ \chi_1 & \dots & \chi_N \\ | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_N \end{bmatrix} \begin{bmatrix} - & \chi_1 & - \\ & \dots & \\ - & \chi_N & - \end{bmatrix}$$

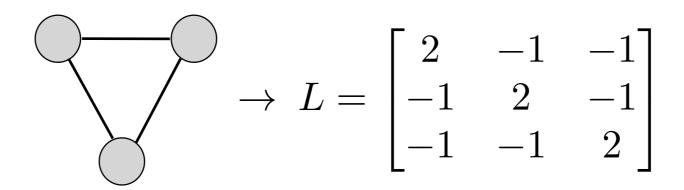
$$\chi$$

$$\chi$$

$$\Lambda$$

$$\chi$$

- Eigenvalues are usually sorted increasingly: $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_N$
- In the case of the normalized Laplacian: $\lambda_N \leq 2$

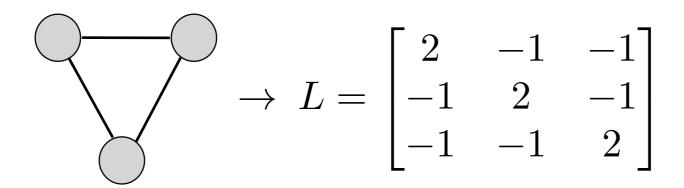


- From the spectral decomposition: $L\chi=\Lambda\chi$
- What is an eigenvector of L?

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- From the spectral decomposition: $L\chi=\Lambda\chi$
- What is an eigenvector of *L*?

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



- From the spectral decomposition: $L\chi=\Lambda\chi$
- What is an eigenvector of L?

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

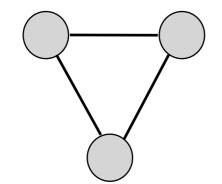
- From the spectral decomposition: $L\chi=\Lambda\chi$
- What is an eigenvector of L?

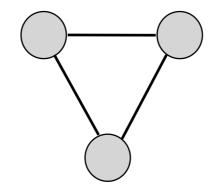
$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

For any graph, $\chi_1 = [1, 1, \dots, 1]^T$ is always an eigenvector with eigenvalue 0!

An extended toy example

Consider a network of two disconnected components

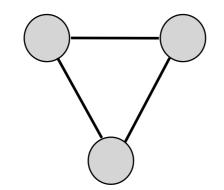


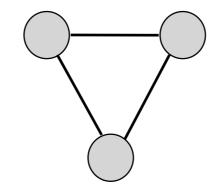


How does the first eigenvector change?

An extended toy example

Consider a network of two disconnected components



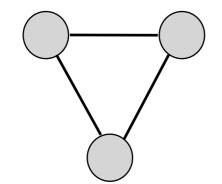


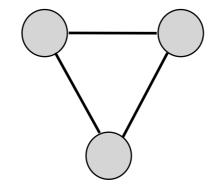
How does the first eigenvector change?

$$\begin{bmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

An extended toy example

Consider a network of two disconnected components



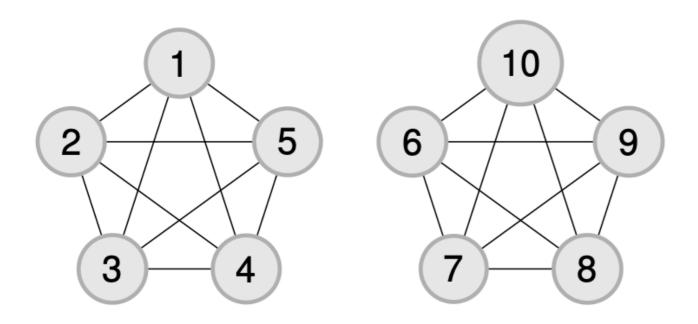


How does the first eigenvector change?

$$\begin{bmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The multiplicity of eigenvalue 0 is equal to the number of connected components!

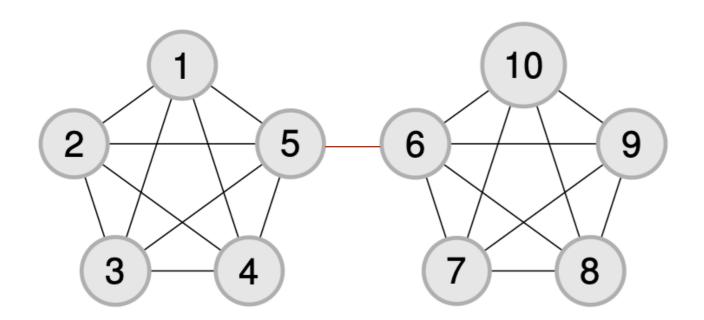
- The second eigenvalue is $\lambda_2 > 0$ iff the graph is connected
- More connected graphs have higher values of λ_2



$$\lambda_2 = 0$$

- The eigenvalue λ_2 is called the algebraic connectivity
- The eigenvector corresponding to λ_2 is called the Fiedler vector

- The second eigenvalue is $\lambda_2 > 0$ iff the graph is connected
- More connected graphs have higher values of λ_2

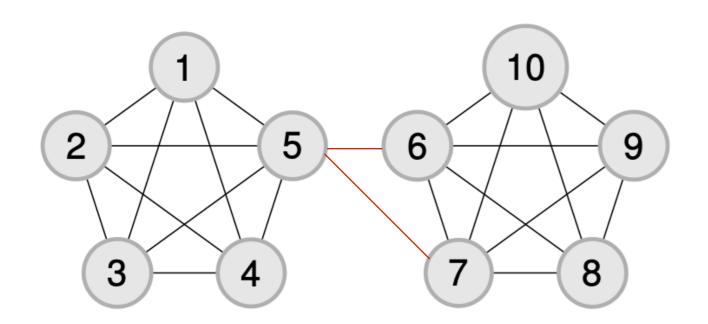


$$\lambda_2 = 0$$

$$\lambda_2 \approx 0.298$$

- The eigenvalue λ_2 is called the algebraic connectivity
- The eigenvector corresponding to λ_2 is called the Fiedler vector

- The second eigenvalue is $\lambda_2 > 0$ iff the graph is connected
- More connected graphs have higher values of λ_2



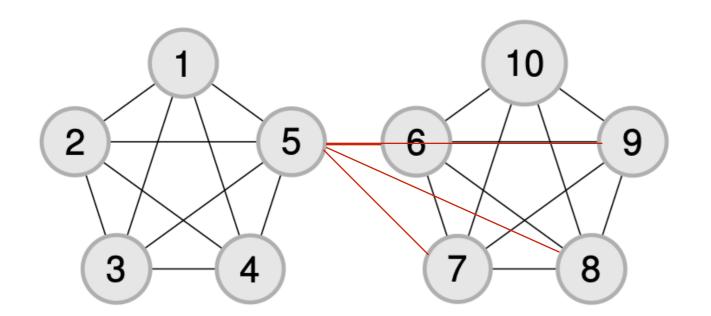
$$\lambda_2 = 0$$

$$\lambda_2 \approx 0.298$$

$$\lambda_2 \approx 0.535$$

- The eigenvalue λ_2 is called the algebraic connectivity
- The eigenvector corresponding to λ_2 is called the Fiedler vector

- The second eigenvalue is $\lambda_2 > 0$ iff the graph is connected
- More connected graphs have higher values of λ_2



$$\lambda_2 = 0$$

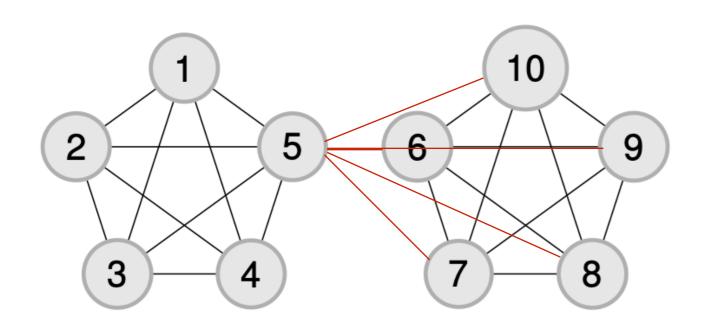
$$\lambda_2 \approx 0.298$$

$$\lambda_2 \approx 0.535$$

$$\lambda_2 \approx 0.876$$

- The eigenvalue λ_2 is called the algebraic connectivity
- The eigenvector corresponding to λ_2 is called the Fiedler vector

- The second eigenvalue is $\lambda_2 > 0$ iff the graph is connected
- More connected graphs have higher values of λ_2



$$\lambda_2 = 0$$

$$\lambda_2 \approx 0.298$$

$$\lambda_2 \approx 0.535$$

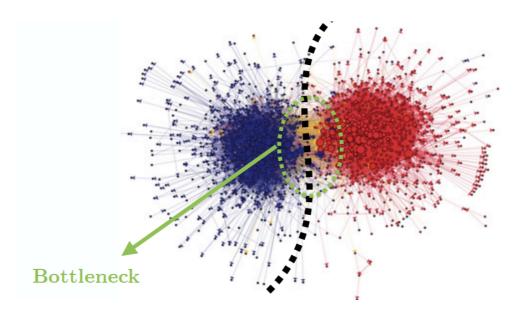
$$\lambda_2 \approx 0.876$$

$$\lambda_2 \approx 1$$

- The eigenvalue λ_2 is called the algebraic connectivity
- The eigenvector corresponding to λ_2 is called the Fiedler vector

Graph partitioning

- One of the fundamental problems when dealing with graphs
- It aims at cutting a weighted, undirected graph into two or more subgraphs, so that the total weight of the cut edges is as small as possible



Subgraph 1 edges
Subgraph 2 edges
Cut edges

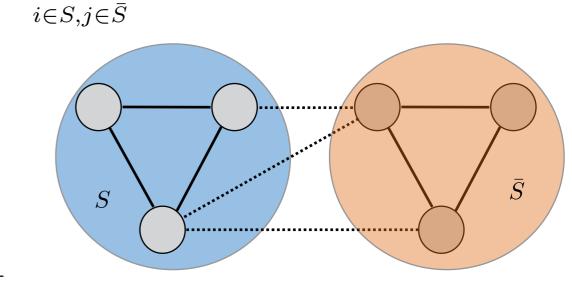
What can the spectrum tell us about partitioning the graph?

Cuts and bottlenecks

- Cut: Partition of the vertices into two disjoint sets
 - Let $S \subset V$, and $\bar{S} := V S$ its complement
 - The cut induced by S is defined as $w(S, \bar{S}) := \sum_{i \in S} W_{ij}$
 - The volume of the set is

$$vol(S) := \sum_{i \in S} D_{ii}$$

$$h_G(S) := \frac{w(S, \bar{S})}{\min\{vol(S), vol(\bar{S})\}}$$



- Conductance of a graph i.e., Cheeger constant
 - Small conductance means well-connected and partitionable subgraphs
 - Measures the presence of a bottleneck

$$h_G := \min_{S \subset V} h_G(S)$$

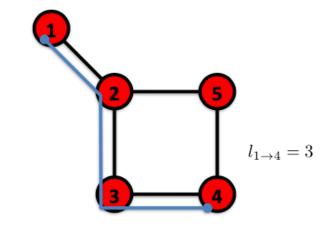
Bottlenecks and spectrum

 Cheegers inequality: relates the conductance of the graph with the eigenvalues of the normalized Laplacian

$$\frac{\lambda_2}{2} \le h_G \le \sqrt{2\lambda_2}$$

Connection between diameter and spectrum

$$d_{max}(G) \ge \frac{1}{\lambda_2 vol(G)}$$



- $\lambda_2 \to 0$: graph disconnected, large bottlenecks, large diameter
- $\lambda_2 \to 1$: graph fully connected, no bottlenecks, small diameter

Outline

- Graph Laplacian operator
- Eigendecomposition of the graph Laplacian
 - What do the eigenvalues reveal about the graph?
 - What are the basic properties of the eigenvectors?
- Applications
 - Spectral embeddings
 - Spectral clustering
 - PageRank

Rayleigh quotient

• For every function f which assigns a value to each vertex of the graph, the Rayleigh quotient of L is defined as

$$R_L(f) = \frac{f^T L f}{f^T f} = \frac{\sum_{i,j}^N W_{ij} (f_i - f_j)^2}{2f^T f} \ge 0$$

- The Rayleigh quotient is maximized if f is an eigenvector of L corresponding to the largest eigenvalue
 - Hint on the proof: Set the gradient to the zero vector

$$\nabla \frac{f^T L f}{f^T f} = \frac{(f^T f)(2Lf) - (f^T L f)(2f)}{(f^T f)^2} = 0$$

$$L f = \underbrace{\frac{f^T L f}{f^T f}} f \qquad \text{Eigenvalue!}$$

A generalization of Rayleigh quotient

• From the Courant-Fischer theorem, for any symmetric matrix $\,L\,$ with increasing order of eigenvalues:

$$\chi_1 = \underset{f \in \mathbb{R}^N, \|f\|=1}{\operatorname{argmin}} f^T L f, \text{ and } \lambda_1 = \chi_1^T L \chi_1 = 0$$

$$\chi_2 = \underset{f \in \mathbb{R}^N, \|f\|=1, f \perp \chi_1}{\operatorname{argmin}} f^T L f, \text{ and } \lambda_2 = \chi_2^T L \chi_2$$

$$\vdots$$

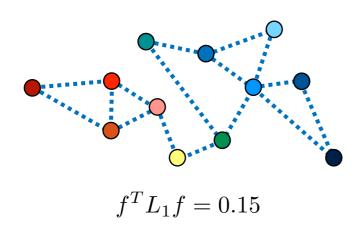
$$\chi_N = \underset{f \in \mathbb{R}^N, \|f\|=1, f \perp \chi_1, \cdots, \chi_{N-1}}{\operatorname{argmin}} f^T L f, \text{ and } \lambda_N = \chi_N^T L \chi_N$$

- Proof can be found in chapter 1 of the book (see references)
- Similar results hold for the normalized Laplacian

• The smoothness of a function f on the graph is given by the graph Laplacian quadratic term

$$S_2(f) = \frac{1}{2} \sum_{i \in \mathcal{V}} \|\nabla_i f\|_2^2 = \sum_{i,j \in \mathcal{V}}^N W_{ij} (f_i - f_j)^2 = f^T L f$$

• $S_2(f)$ is small, i.e., the function f is smooth, when it has similar values at neighbouring vertices

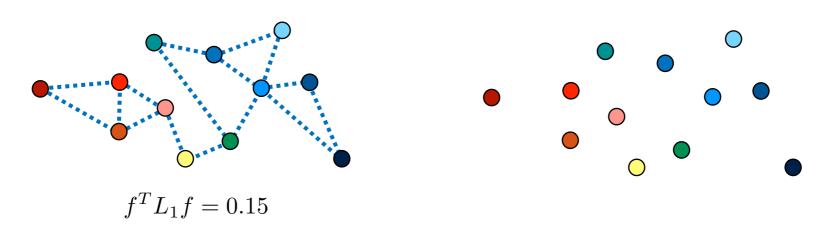


Proof in [6]

• The smoothness of a function f on the graph is given by the graph Laplacian quadratic term

$$S_2(f) = \frac{1}{2} \sum_{i \in \mathcal{V}} \|\nabla_i f\|_2^2 = \sum_{i,j \in \mathcal{V}}^N W_{ij} (f_i - f_j)^2 = f^T L f$$
Proof in [6]

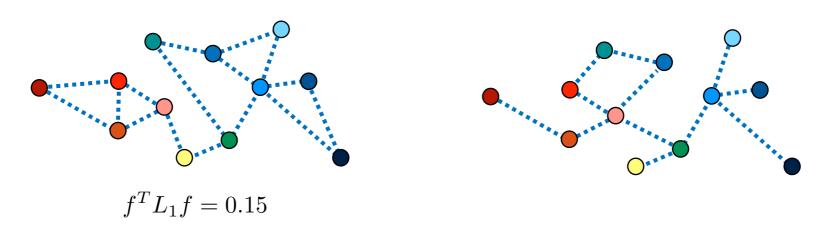
• $S_2(f)$ is small, i.e., the function f is smooth, when it has similar values at neighbouring vertices



• The smoothness of a function f on the graph is given by the graph Laplacian quadratic term

$$S_2(f) = \frac{1}{2} \sum_{i \in \mathcal{V}} \|\nabla_i f\|_2^2 = \sum_{i,j \in \mathcal{V}}^N W_{ij} (f_i - f_j)^2 = f^T L f$$

• $S_2(f)$ is small, i.e., the function f is smooth, when it has similar values at neighbouring vertices

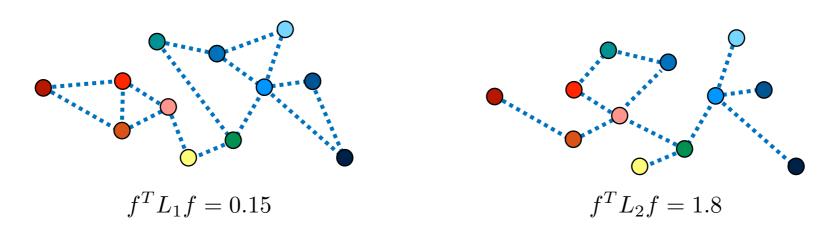


Proof in [6]

• The smoothness of a function f on the graph is given by the graph Laplacian quadratic term

$$S_2(f) = \frac{1}{2} \sum_{i \in \mathcal{V}} \|\nabla_i f\|_2^2 = \sum_{i,j \in \mathcal{V}}^N W_{ij} (f_i - f_j)^2 = f^T L f$$

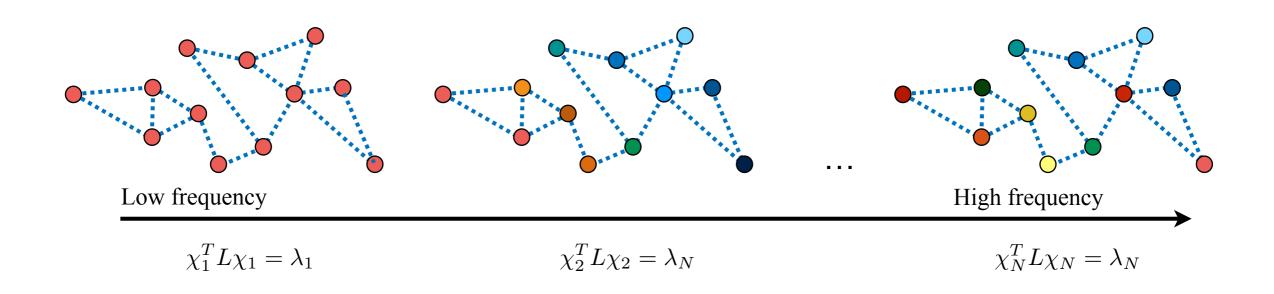
• $S_2(f)$ is small, i.e., the function f is smooth, when it has similar values at neighbouring vertices



Proof in [6]

Eigenvectors as functions on the graph

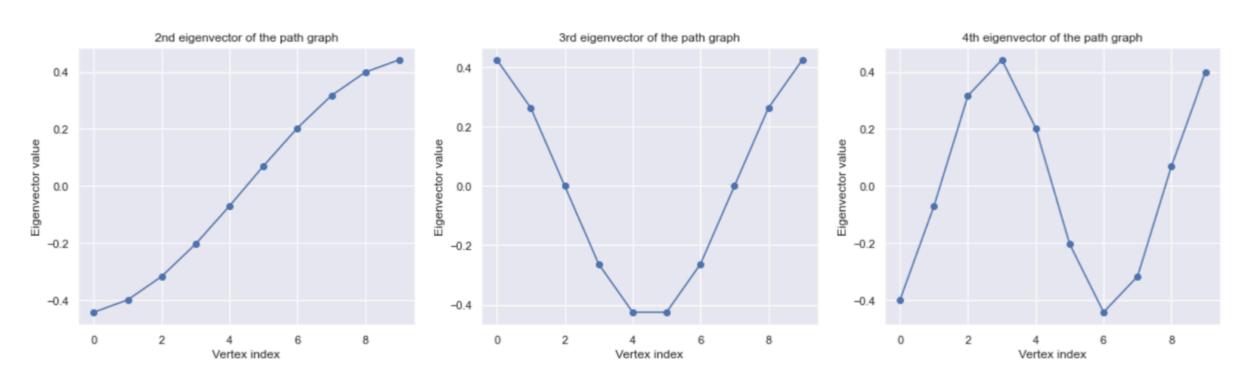
- From the generalization of the Rayleigh quotient and the global smoothness on the graph:
 - Eigenvectors form an orthonormal basis that goes from the most smooth to the least-smooth on the graph
 - Eigenvalues indicate how smooth eigenvectors are



Example: The path graph

An example of 10 nodes:

The corresponding eigenvectors:



Summary of the basic properties of the Laplacian matrix

- Consists of real, and non-negative eigenvalues
- It is positive semidefinite
- Some eigenvalues reveal information related to the connectivity of the graph
- Eigenvectors can be seen as functions on the graph with different levels of smoothness

Outline

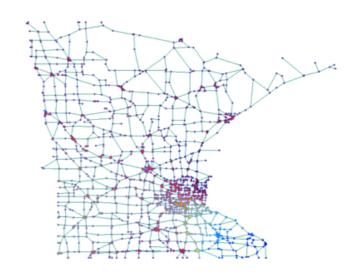
- Graph Laplacian operator
- Eigendecomposition of the graph Laplacian
 - What do the eigenvalues reveal about the graph?
 - What are the basic properties of the eigenvectors?

Applications

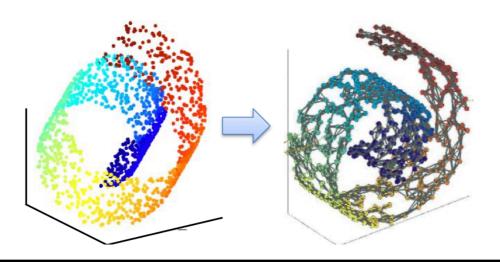
- Spectral embeddings
- Spectral clustering
- PageRank

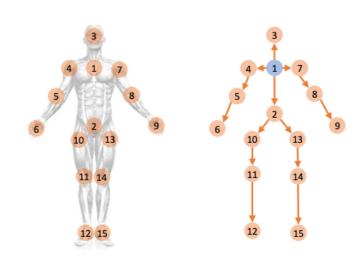
Spectral graph theory: A tool for analysing geometry

- Efficient data processing requires preserving underlying geometry
 - Often given in a network form ...



- ... or constructed from the data



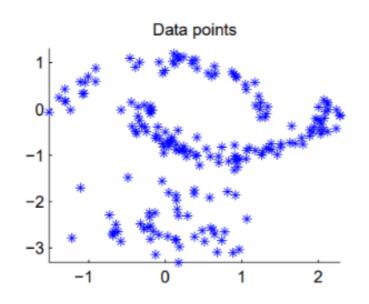


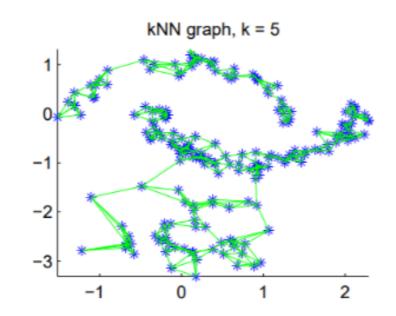
What if the graph is not explicitly given?

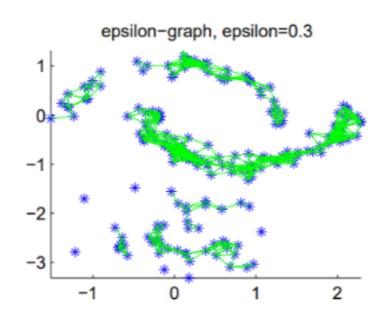
- It is usually constructed based on some feature/data similarity:
 - Compute a graph kernel matrix; usually an RBF kernel

$$K(i,j) = \exp\left(-\frac{\|x_i - x_j\|_2^2}{2\sigma^2}\right)$$

- Sparsify the kernel matrix to obtain a connectivity matrix
 - ϵ -nearest neighbor graph
 - \cdot K-nearest neighbor graph

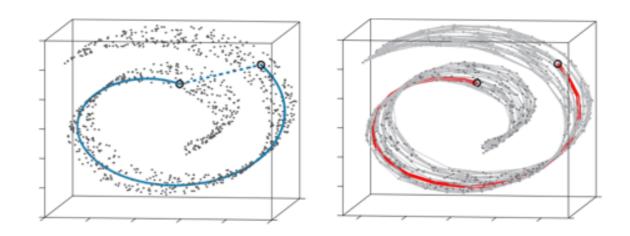






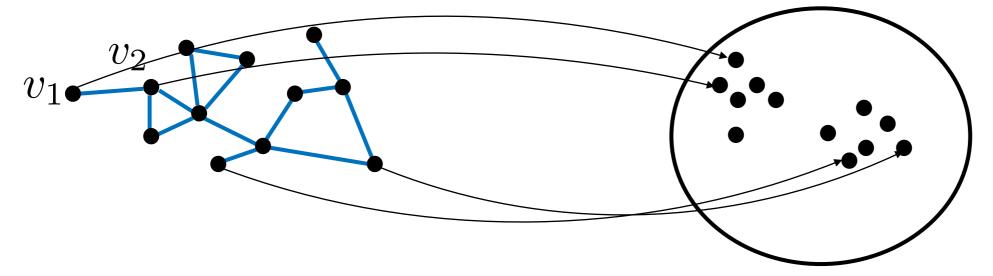
Applications of spectral graph theory

 How can we exploit the spectrum of the graph to design algorithms that capture the underlying geometry?



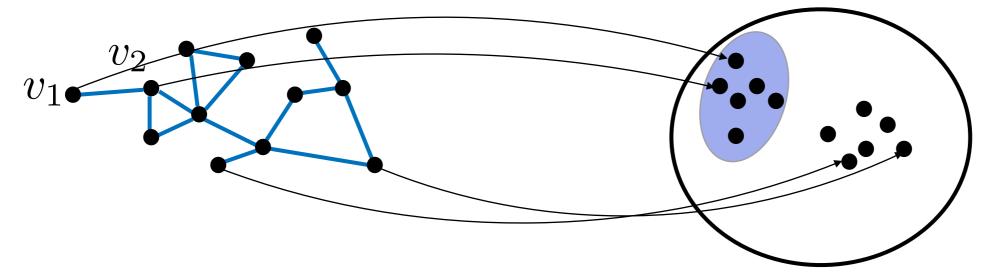
- Some of the well-known applications:
 - Spectral embeddings
 - Spectral clustering
 - Graph neural networks (more in the following lectures)
 - And many more...

- Represent each node of the graph by a vector of low dimensions
 - Similarity in the embedding space takes intro account the complex graph structure



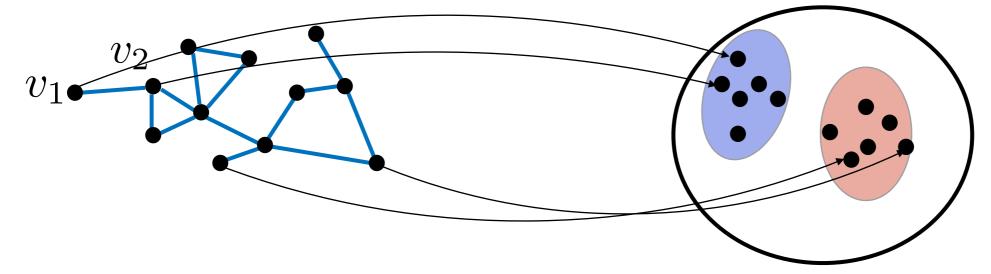
- An important step for further learning tasks (e.g., classification, clustering)
 - Discover relevant features
 - Data visualization and exploratory data analysis
 - Dimensionality reduction

- Represent each node of the graph by a vector of low dimensions
 - Similarity in the embedding space takes intro account the complex graph structure



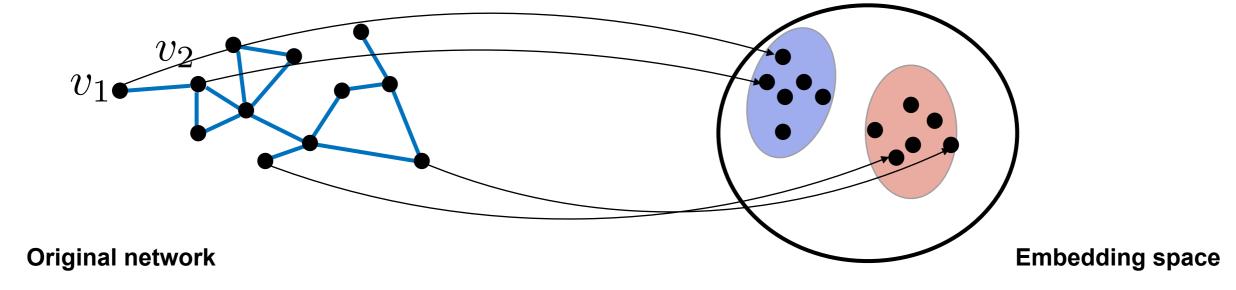
- An important step for further learning tasks (e.g., classification, clustering)
 - Discover relevant features
 - Data visualization and exploratory data analysis
 - Dimensionality reduction

- Represent each node of the graph by a vector of low dimensions
 - Similarity in the embedding space takes intro account the complex graph structure



- An important step for further learning tasks (e.g., classification, clustering)
 - Discover relevant features
 - Data visualization and exploratory data analysis
 - Dimensionality reduction

- Represent each node of the graph by a vector of low dimensions
 - Similarity in the embedding space takes intro account the complex graph structure



- An important step for further learning tasks (e.g., classification, clustering)
 - Discover relevant features
 - Data visualization and exploratory data analysis
 - Dimensionality reduction

A spectral approach to node embedding

 Compute embeddings that minimize the expected square distance between nodes that are connected

Centered embeddings

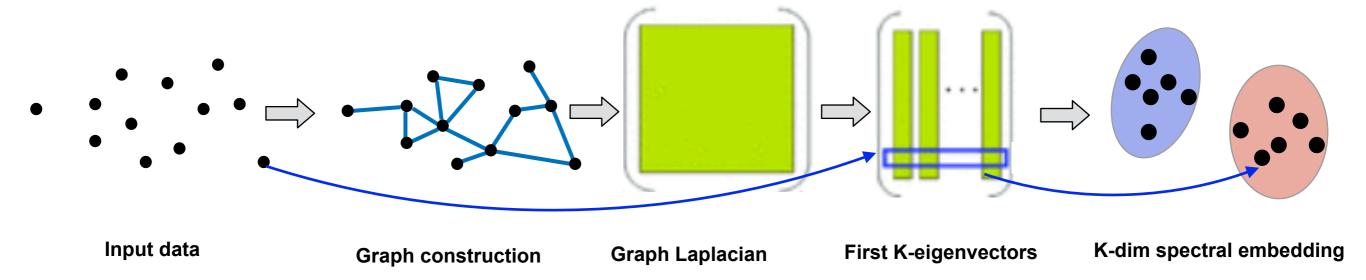
Uncorrelated embedding coordinates

$$\min_{\substack{Y \in \mathbb{R}^{N \times K}: Y^T 1 = 0 \text{ of } Y = I_K \\ Y \in \mathbb{R}^{N \times K}: Y^T 1 = 0; Y^T Y = I_K \\ Y \in \mathbb{R}^{N \times K}: Y^T 1 = 0; Y^T Y = I_K \\ } \operatorname{tr}(Y^T L Y) \\ \downarrow \quad \text{Lagrangian}} \\ \min_{\substack{Y \in \mathbb{R}^{N \times K}: Y^T 1 = 0 \\ Y \in \mathbb{R}^{N \times K}: Y^T 1 = 0 \\ Y \in \mathbb{R}^{N \times K}: Y^T 1 = 0 \\ }} \operatorname{tr}(Y^T L Y - (Y^T Y - I_K) \Gamma) \\ \downarrow \quad \text{Gradient}} \\ LY = Y\Gamma \quad \Rightarrow \quad u_i \to (\chi_2(i), ..., \chi_{K+1}(i))$$

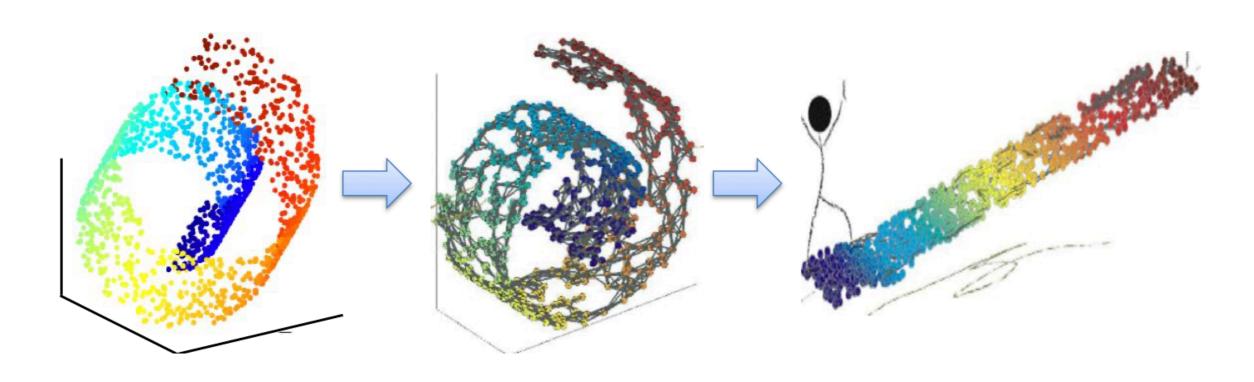
Laplacian Eigenmaps: K first non-trivial eigenvectors of the Laplacian!

More details in [4]

Spectral embedding in a nutshell



Example: Swiss roll



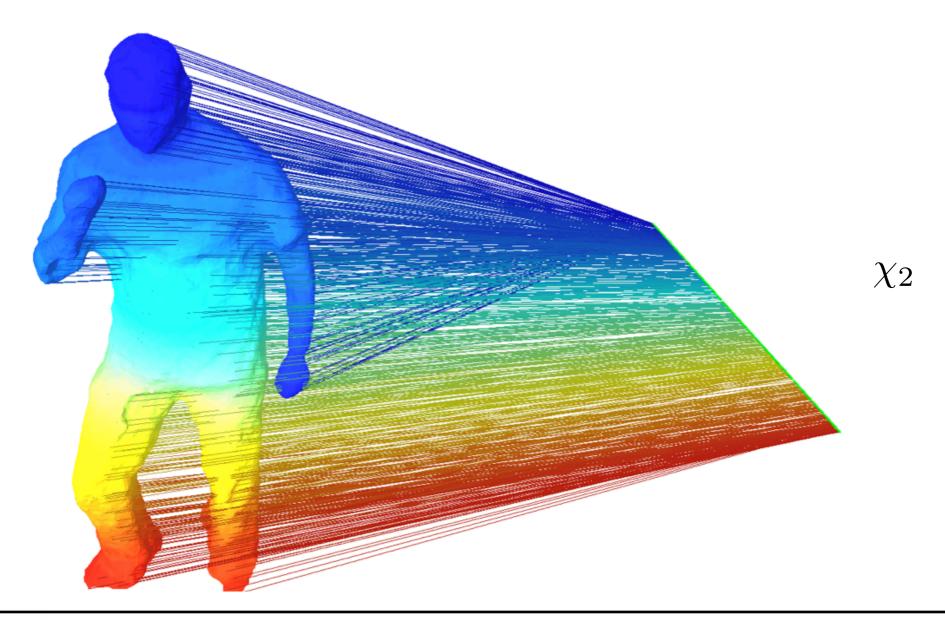
Swiss roll data

Graph construction

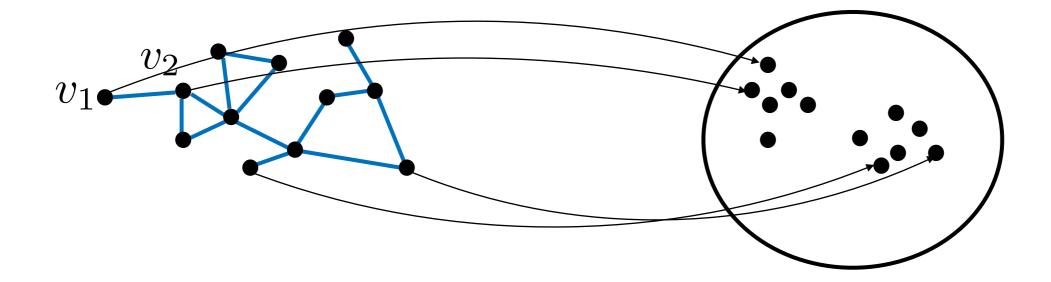
Spectral embedding

Example: 3D geometries

 Mapping a mesh/graph on the Fiedler vector of the normalized Laplacian

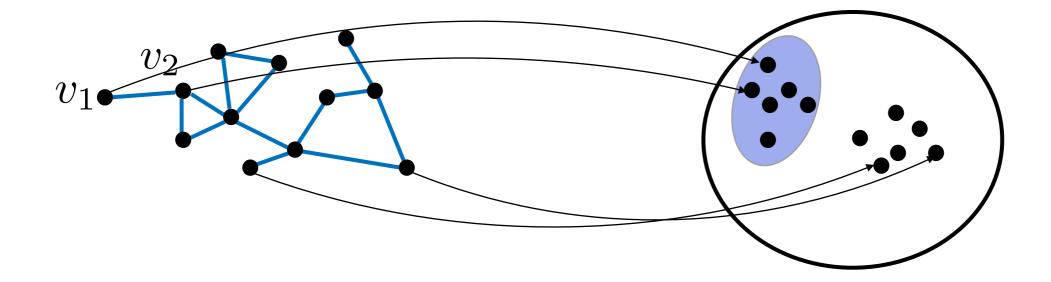


- Objective: Partition nodes of the graph into clusters
 - Points in the same cluster are similar to each other



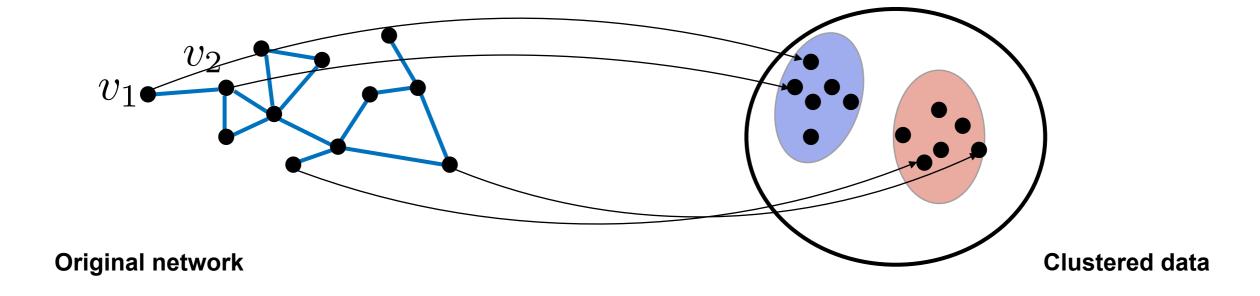
- Requirement: Appropriate distance measure between nodes
 - Close relation to node embeddings

- Objective: Partition nodes of the graph into clusters
 - Points in the same cluster are similar to each other



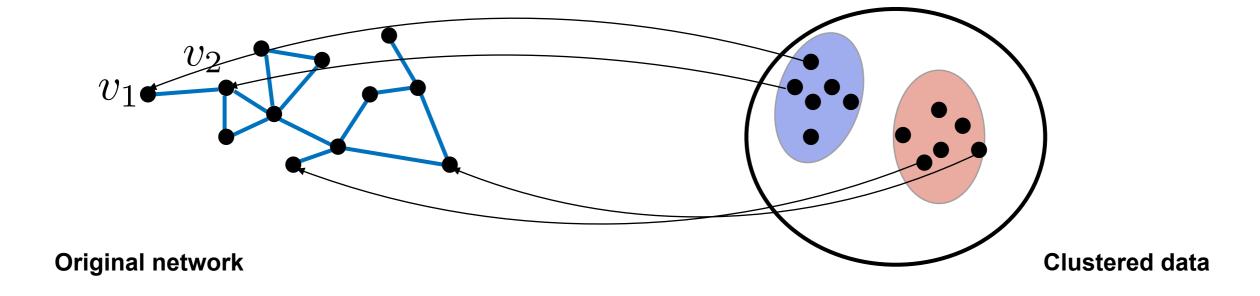
- Requirement: Appropriate distance measure between nodes
 - Close relation to node embeddings

- Objective: Partition nodes of the graph into clusters
 - Points in the same cluster are similar to each other



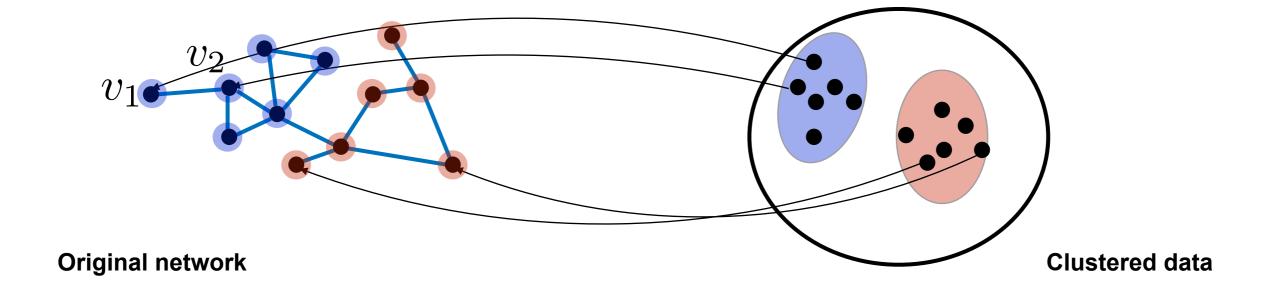
- Requirement: Appropriate distance measure between nodes
 - Close relation to node embeddings

- Objective: Partition nodes of the graph into clusters
 - Points in the same cluster are similar to each other

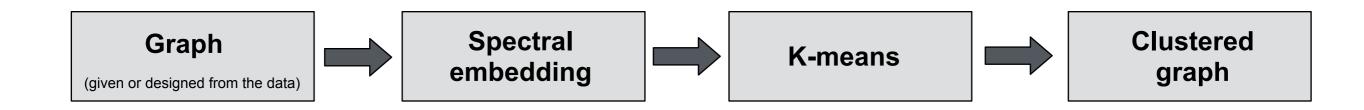


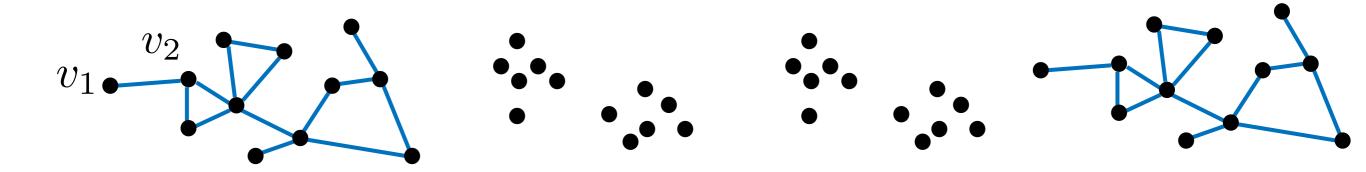
- Requirement: Appropriate distance measure between nodes
 - Close relation to node embeddings

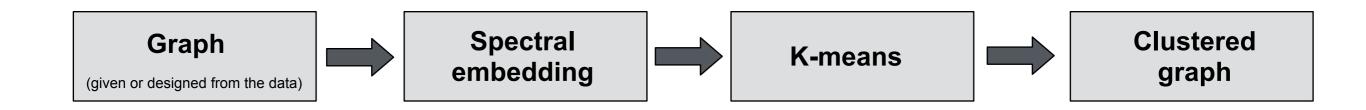
- Objective: Partition nodes of the graph into clusters
 - Points in the same cluster are similar to each other

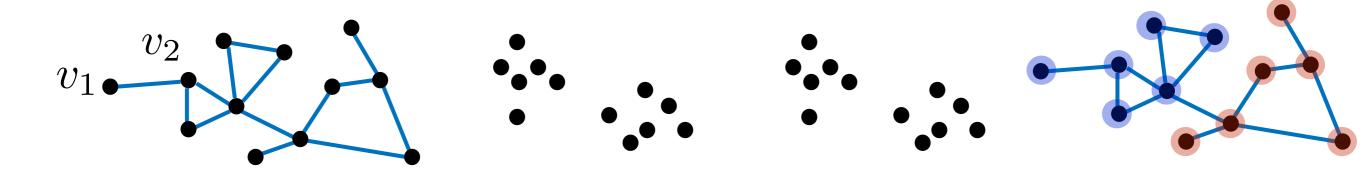


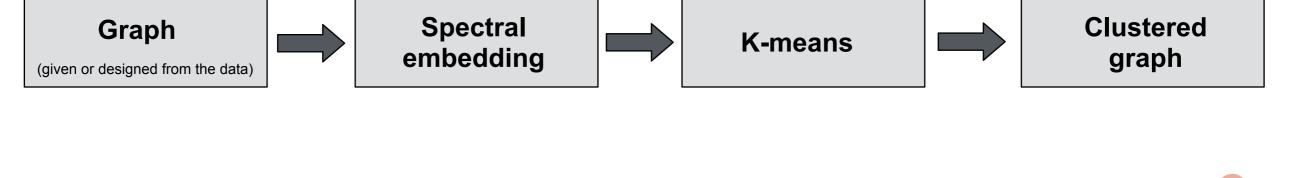
- Requirement: Appropriate distance measure between nodes
 - Close relation to node embeddings



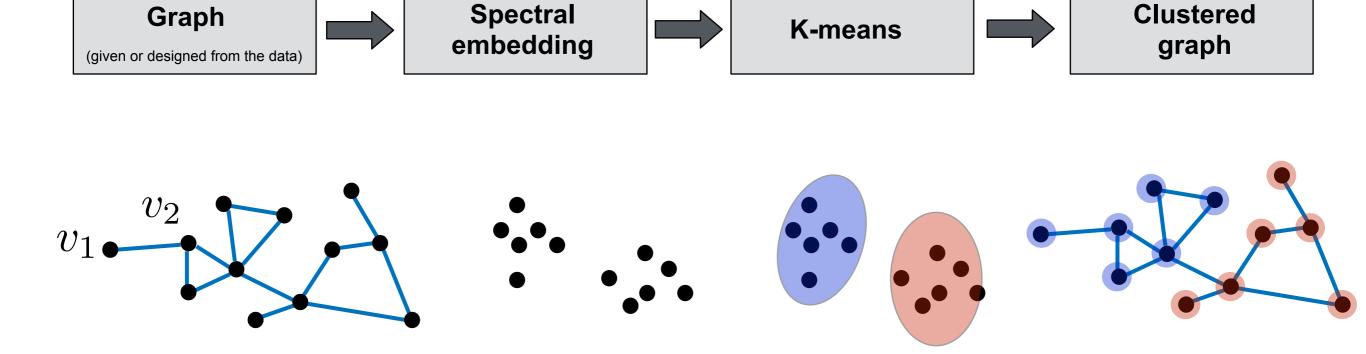












Spectral clustering: How to define spectral embeddings?

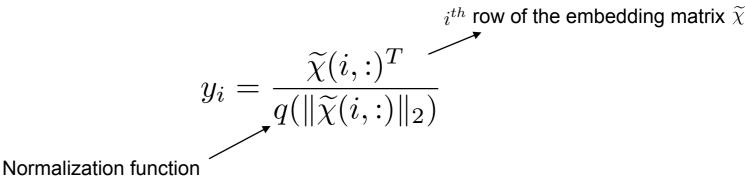
- Define a representative connectivity matrix:
 - Combinatorial graph Laplacian L = D W
 - Normalised graph Laplacian $L_{sym} = I D^{-1/2}WD^{-1/2}$
 - Random walk Laplacian $L_{rw} = I D^{-1}W$

Spectral embedding

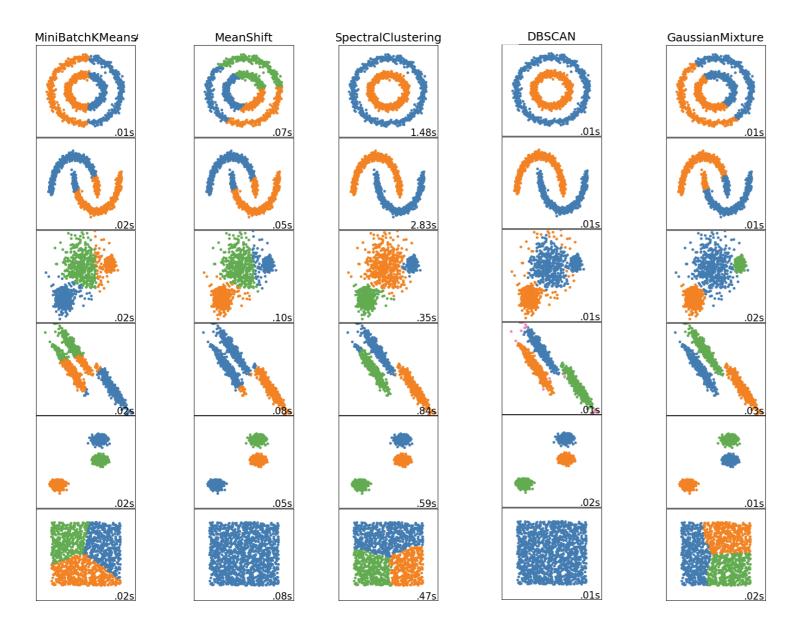
 \bullet Compute the eigenvectors associated to the K smallest eigenvalues of that matrix

$$\widetilde{\chi} = [\chi_1, \chi_2, ..., \chi_K]$$

Embed node i as follows:

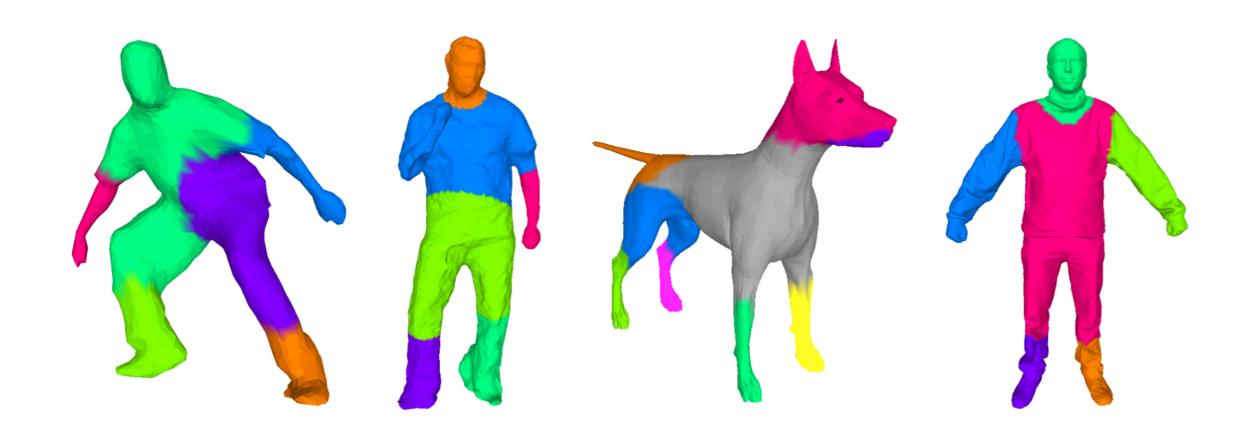


Illustrative example: Toy datasets in 2D



[Example from https://scikit-learn.org/stable/auto-examples/cluster/plot-cluster-comparison.html]

Shape segmentation



Spectral clustering on shapes lead to semantically meaningful clusters

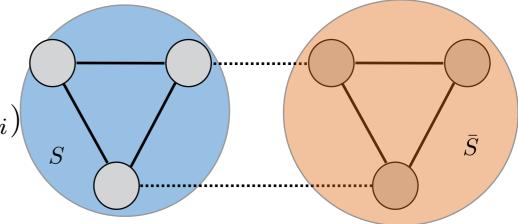
Why does it work?

- A graph partitioning viewpoint: Partition the graph such that:
 - Edges between clusters have a very low weight
 - Edges within a cluster have high weight

- Recall that:
$$W(S_i, \bar{S}_i) := \sum_{i \in S, j \in \bar{S}} W_{ij}$$

Graph cut:

$$\operatorname{cut}(S_1, ..., S_K) := \frac{1}{2} \sum_{i=1}^K W(S_i, \bar{S}_i)$$



Ratio cut:

RatioCut
$$(S_1, ..., S_K) := \sum_{i=1}^K \frac{\text{Cut}(S_i, \bar{S}_i)}{|S_i|}$$

Normalized cut:

$$\operatorname{NCut}(S_1, ..., S_K) := \sum_{i=1}^K \frac{\operatorname{Cut}(S_i, \bar{S}_i)}{\operatorname{vol}(S_i)}$$

NP hard!

Spectral clustering as an approximation

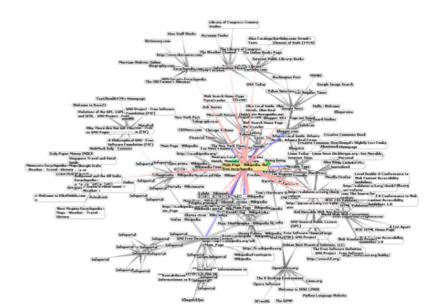
- The smallest non-null eigenvector of the normalized Laplacian approximates the RatioCut minimization criterion
- The smallest non-null eigenvectors of the random-walk Laplacian approximates the NCut criterion

- Another interpretation: A random walk viewpoint
 - Spectral clustering can be interpreted as trying to find a partition of the graph such that the random walk stays long within the same cluster and seldom jumps between clusters

Proof in [3]

Google PageRank

- One of the most popular algorithms for Internet search
 - Measures the most important web pages on the Internet that correspond to the user's search query
- PageRank consists of three steps:
 - User inputs query
 - Engine finds all relevant pages containing the query
 - Pages are ranked



Approach:

- Model the Web as a directed graph 'web graph'
- Nodes correspond to pages, and edges reflect directional links/recommendations
- Rank pages using the web graph link structure: a page is important if it has many 'important' links

Google PageRank algorithm

• For a directed graph $G=(\mathcal{V},\mathcal{E})$, the PageRank vector that we are looking for is defined as:

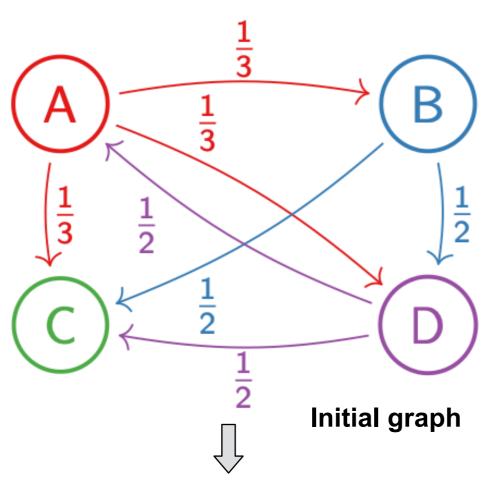
$$p = (1 - \alpha)W_{rw}p + \frac{\alpha}{|\mathcal{V}|}\mathbf{1}, \ p\mathbf{1}^T = \mathbf{1}, \ W_{rw}(j,i) = \frac{1}{|\mathcal{D}_{ii}|}$$
 Outdegree

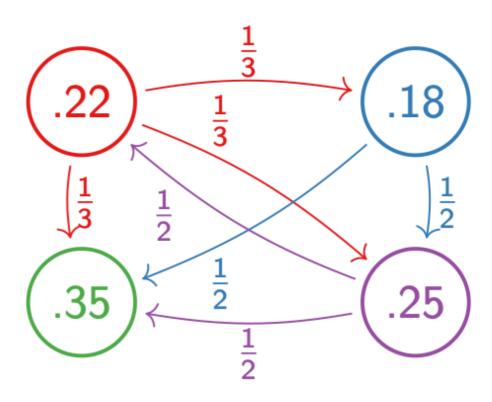
 The solution p is the eigenvector corresponding to the eigenvalue 1 of the matrix:

$$(1 - \alpha)W_{rw} + \frac{\alpha}{|\mathcal{V}|}\mathbf{1}^T\mathbf{1}$$

- Proof based on the Perron-Frobenious theorem for non-negative matrices [5]
- A stationary distribution of a randomized process "random surfer"
 - With probability $1-\alpha$ moves to a neighboring node
 - With probability α moves to a random node of the graph
 - The probability that a surfer visits a node is its PageRank

Example of PageRank





PageRank scores

$$W_{rw} = \begin{bmatrix} 0 & 0 & 1/4 & 1/2 \\ 1/3 & 0 & 1/4 & 0 \\ 1/3 & 1/2 & 1/4 & 1/2 \\ 1/3 & 1/2 & 1/4 & 0 \end{bmatrix} \Longrightarrow (1 - 0.15)W_{rw} + \frac{0.15}{4} \Longrightarrow p = \begin{bmatrix} 0.219 \\ 0.175 \\ 0.356 \\ 0.249 \end{bmatrix}$$
$$p = (1 - \alpha)W_{rw}p + \frac{\alpha}{|\mathcal{V}|}\mathbf{1}, \ p\mathbf{1}^T = \mathbf{1}, \ W_{rw}(j,i) = \frac{1}{D_{ii}}$$

Summary

- Spectral graph theory:
 - A useful mathematical framework that reveals properties of the graph or network
- Spectrum tells us a lot about:
 - connectivity, bottlenecks, diameter...
- Eigenvectors are useful for defining a notion of smoothness on the graph
 - First eigenvectors of the graph Laplacian are smooth functions
- Many applications in different areas
 - Established frameworks: spectral clustering, spectral embeddings, PageRank
 - Emerging research topics: graph signal processing, graph neural networks (more in the following lectures...)

References

- [1] Spectral and Algebraic Graph Theory, Daniel A. Spielman
- [2] Spectral graph theory, Fan Chung
- [3] A tutorial on spectral clustering, Ulrike von Luxburg Statistics and Computing, 2007
- [4] Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Belkin et al., *Neural Comp.*, 2003
- [5] How Google Ranks Web Pages, Brian White
- [6] The Emerging Field of Signal Processing on Graphs, Shuman et al, 2013

