Spectral Graph Theory

Dr Dorina Thanou
April 17, 2023

i i Network Machine Learning - EE452 //
= P = I Dr Dorina Thanou
== A Prof. Pascal Frossard




Spectral graph theory in a nutshell

e Another way to look at networks or graphs
We represent the graph as a connectivity matrix
We study the eigenvectors and the eigenvalues of that matrix

Quantum mechanics

 What makes eigenvalues interesting: ih (1) = HI(0)

Eigenvalues are usually related to vibrations Sehrodinger equation
Used by Shannon to determine the theoretical limit of information transmission
Useful for solving the Schrodinger equation

Define the natural frequencies of the bridge

Can we discover properties of the graph from the spectrum?

e Spectral graph theory: A topic studied from different perspectives

Theoretical computer science, machine learning, statistics
Differential geometry, mathematics, astronomy, chemistry, computer vision...
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Outline

 Graph Laplacian operator

 Eigendecomposition of the graph Laplacian
- What do the eigenvalues reveal about the graph?
- What are the basic properties of the eigenvectors?

* Applications
Spectral embeddings
Spectral clustering
PageRank
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Recap of classical graph matrices

* Undirected graph of N nodes, i.e., |V| = N: Q\—
G=WV,EW), ECH{(i,7):1,7€V}, (1,7) = (74,1)

* Adjacency matrix or weight matrix :

0, otherwise

—_ O = <

wii, if (i,7) € € 0
1

 If the graph is unweighted (often denoted as A) :

1, if(i,f) €&

0, otherwise

Wz‘j:<

\
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Recap of classical graph matrices

* Neighborhood of node: : Set of nodes connected to —
node ¢ by an edge

e Degree of a node i : It is the sum of the weights of the
edges incident to node ¢

Di=Y» W; v
JEN; B
 Degree matrix: A diagonal matrix containing the
degree of each node

—_ O
—_ O = <

Dij:<ZjWij’ i =7 D=

0, otherwise
\ i

O O N
o o
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The graph Laplacian matrix

 The combinatorial Laplacian is defined as:

L=D-W L=

- Symmetric
- Off-diagonal entries non-positive
- Rows sum up to zero

e |t is a positive semi-definite matrix:

2

—1 -1
|
-1 2
1
L1=0

For each function f : V — R, where f; is the value on the i*" node of the graph:

N N
fTLf=fT(D—W)f:E:Diz']"}2 - Z JiliWis

i j=1

:_ZWZ] 207

VfeRY
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Connection to continuous Laplacian

 Graph Laplacian: A discrete differential operator

(LF)@) = D> Wi (fi = f7)

JEN;
 The Laplace operator:
- A second-order differential operator: divergence of the gradient Af=V2f
- The gradient is defined as: VS = (ﬁ ﬁ)
85171 T 8:1;N
N
82
- Finally, the Laplacian is: Af=>" (9:1;£

 The Laplacian matrix is the graph analogue to the Laplace operator
on continuous functions!
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lllustrative example

 Example: Unweighted grid graph

—Lf(i) = [f(xo+1,90) — f(xo,y0)] — |f(z0,¥0) — f(xo — 1,y0)]
+ [f(zo,y0 + 1) — f(o,%0)] — [f(zo,%0) — f(xo,y0 — 1)]

0% f 0% f
~ —=(xo, + —=(xp, = (A f)(xo,
6582( 0 yO) ayQ( 0 yO) ( f)( 0 yO)
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Powers of the graph Laplacian

L* defines the K-hop neighborhood: dg(v;,v;) > K — (L*);; =0

LO
10 1

5 20

IW°||o = 0 edges

Lt L?

0O 5 10 15 20 0 5 10 15 20

10 - L] [T

15 7] .I ==l .l
20 - T, |
IL166| >0

[|W?||o = 40 edges

[|W?||o = 62 edges

[|W3||o = 108 edges

L3 L4
10 15 20 0 5

10 15 20

IIHSE
DSBS
"i \:"4‘ |§"

-,

\/
SBISESINIA

\VASRAVL? SATAES AT
A\“" Aé‘ 'ZA“'QA‘

anl e I\

[|W*||o = 122 edges

[Slide adapted from M. Defferrard]
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Other Laplacian matrices

* Normalized Laplacian:
Symmetric matrix
Bounded spectrum (more in the following slides)

Lsym = D Y2rp-Y2 1 _ p-12ywp—1/2

e Random walk Laplacian:
Asymmetric matrix
Used often in dimensionality reduction techniques

L. =D'[=] —

Random walk matrix
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Outline

 Graph Laplacian operator

 Eigendecomposition of the graph Laplacian
- What do the eigenvalues reveal about the graph?
- What are the basic properties of the eigenvectors?

* Applications
Spectral embeddings
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Spectral decomposition of the
Laplacian matrix

L has a complete set of orthonormal eigenvectors L = yAy’

* Eigenvalues are usually sorted increasingly: 0 = A\ < XAy < ... < An

* In the case of the normalized Laplacian: Ay < 2
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Back to our toy example

— 2 -1 -1
- L =1-1 2 -1

-1 -1 2

 From the spectral decomposition: Ly = Ay

 What is an eigenvector of L?

2
—1
—1

—1
2
—1

1]
1 _
2

cPL
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Back to our toy example

— 2 -1 —1]
— L=1-1 2 -1
-1 -1 2
 From the spectral decomposition: Ly = Ay

 What is an eigenvector of L?

2
—1
—1

—1
2
—1

1]
—1
2

For any graph, x1 = |1,1,..., 11" is always an eigenvector with eigenvalue 0!
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An extended toy example

e Consider a network of two disconnected components

AVAERVA

 How does the first eigenvector change?

2 -1 -1 0 0 0
-1 2 =1 0 0 O
-1 -1 2 0 0 0

0 0 0 2 -1 -1
0 0 o -1 2 -1
0 0 o -1 -1 2
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2
—1
—1

0

0

0

—1
2
—1

0
0
0

—1
—1

2
0
0
0

0 0 O07][1 0 0 0
0 0 0|1 0 0 0
0 0 0|1 0] |0 o0
2 -1 —1|1]0 1| |0 o
—1 2 -1} |0 0 0
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An extended toy example

e Consider a network of two disconnected components

AVAERVA

 How does the first eigenvector change?

2 -1 -1 0 0 0 0 0
-1 2 -1 0 0 0 0 0
-1 -1 2 0 0 0 0 0
0 0 0 2 -1 -1 0 0
0 0 0 -1 2 -1 0 0

0 0 0 -1 -1 2|0 1] Jo o

The multiplicity of eigenvalue 0 is equal to the number of connected components!
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Fiedler vector

* The second eigenvalue is A2 > 0 iff the graph is connected
* More connected graphs have higher values of A

Ao =0
1 10
//\\ 6//\\9

LT A

3 — 4 / — 8

* The eigenvalue A2 is called the algebraic connectivity
* The eigenvector corresponding to Az is called the Fiedler vector
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Fiedler vector

* The second eigenvalue is A2 > 0 iff the graph is connected
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Ao =0
1 10
2//\\5_6//\\9 Mo =~ 0.298
VAKX UAK]
3 — 4 / — 8
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Fiedler vector
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Fiedler vector

* The second eigenvalue is A2 > 0 iff the graph is connected
* More connected graphs have higher values of A

Ao =0

// \\ //\\ Mo A (0.208

VST N

3 — 4 / — 8
)\2%1

* The eigenvalue A2 is called the algebraic connectivity
* The eigenvector corresponding to Az is called the Fiedler vector
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Graph partitioning

* One of the fundamental problems when dealing with graphs

e |t aims at cutting a weighted, undirected graph into two or more
subgraphs, so that the total weight of the cut edges is as small as
possible

Subgraph 1 edges
Subgraph 2 edges

What can the spectrum tell us about partitioning the graph?
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Cuts and bottlenecks

e Cut: Partition of the vertices into two disjoint sets

Let SCcV,and S:=V — S its complement
The cut induced by S is defined as w(S,5) == » W

The volume of the set is i€S,jeS
UOZ(S) — ZDZ’L
icS
e Conductance of a cut:
w(S, S)

ha(S) = min{vol(S), vol(S)}

 Conductance of a graph i.e., Cheeger constant

Small conductance means well-connected and partitionable subgraphs
Measures the presence of a bottleneck

hg := mingcyha(S)

i i Network Machine Learning - EE452
= P l- I Dr Dorina Thanou

Prof. Pascal Frossard 18



Bottlenecks and spectrum

 Cheegers inequality: relates the conductance of the graph with
the eigenvalues of the normalized Laplacian

< hg < /2

A2
2

e Connection between diameter and spectrum

1
>
dmaz (G) 2 A0l ()

« X — 0: graph disconnected, large bottlenecks, large diameter
e A2 — 1: graph fully connected, no bottlenecks, small diameter
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Outline

 Graph Laplacian operator

 Eigendecomposition of the graph Laplacian
- What do the eigenvalues reveal about the graph?
- What are the basic properties of the eigenvectors?

* Applications
Spectral embeddings
Spectral clustering
PageRank
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Rayleigh quotient

e For every function f which assigns a value to each vertex of the
graph, the Rayleigh quotient of L is defined as

_ fILf _ Zf\; Wii(fi — f3)? -

RL(f) fo 2fo l

* The Rayleigh quotient is maximized if f is an eigenvector of L
corresponding to the largest eigenvalue

- Hint on the proof: Set the gradient to the zero vector

fTLf _ (FTH)QLE) — (fTLF)(2f)
I (/712

Lf Eigenvalue!

V =0
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A generalization of Rayleigh quotient

* From the Courant-Fischer theorem, for any symmetric matrix L
with increasing order of eigenvalues:

x1 = argmin f'Lf and A\ =xILyx; =0
FERN | f||=1

X2 = argmin  f'Lf, and Ao = x3 Lx2
FERN |IflI=1.f Lxx

XN = argmin fYLf, and Ay = xnLxn
fERN7||f||:17fJ—X17 Yy XN —1

* Proof can be found in chapter 1 of the book (see references)
e Similar results hold for the normalized Laplacian
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Connection with smoothness on the
graph

 The smoothness of a function f on the graph is given by the
graph Laplacian quadratic term

N

Sa(/) = %2; IVarl = 32 Wt~ £)* =115
i i e

Proof in [6]

¢ So(f) is small, i.e., the function f is smooth, when it has similar
values at neighbouring vertices

.0. L]
L 4

fY'Lif =0.15
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Connection with smoothness on the
graph

 The smoothness of a function f on the graph is given by the
graph Laplacian quadratic term

N

Sa(/) = %2; IVarl = 32 Wt~ £)* =115
i i e

Proof in [6]

¢ So(f) is small, i.e., the function f is smooth, when it has similar
values at neighbouring vertices

“‘Q
“‘:--..‘.. :: . . O
------- ‘. “" Tedd Las
&P & * o © o ©
Te, . .“' . "‘ :. .‘0. “‘ O
PR B ® o
O ® O o
fY'Lif =0.15
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Connection with smoothness on the
graph

 The smoothness of a function f on the graph is given by the
graph Laplacian quadratic term

N

Sa(/) = %2; IVarl = 32 Wt~ £)* =115
i i e

Proof in [6]

¢ So(f) is small, i.e., the function f is smooth, when it has similar
values at neighbouring vertices

“‘Q
A O..g P
.:::~ ----- ‘..'Q "“ .I-.“.“‘ .N, ‘#, .' .
h....“t A 0.’. \‘ tttttt D ...
“‘ ' ’0’:‘ '.‘ .O.'
'L, f=0.15
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Connection with smoothness on the
graph

 The smoothness of a function f on the graph is given by the
graph Laplacian quadratic term

N

Sa(/) = %2; IVarl = 32 Wt~ £)* =115
i i e

Proof in [6]

¢ So(f) is small, i.e., the function f is smooth, when it has similar
values at neighbouring vertices

.0. L]
L 4

. ...
L 4
L4
L4
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Eigenvectors as functions on the graph

 From the generalization of the Rayleigh quotient and the global
smoothness on the graph:

Eigenvectors form an orthonormal basis that goes from the most smooth to the
least-smooth on the graph

Eigenvalues indicate how smooth eigenvectors are

“" ““Q ““Q
wel R S o
@@ "u @@ @ 9..,"'..‘ @@ @: @ Q‘x g @
OQ...“t ' O.....“t “‘ * ' #....“t '
o Q) o ® O @)
Low frequency High frequency >
X1 Lx1 =X\ Xz Lx2 = An XnIxn = A
= = Network Machine Learning - EE452
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Example: The path graph

 An example of 10 nodes:

* The corresponding eigenvectors:

2nd eigenvector of the path graph 3rd eigenvector of the path graph 4th eigenvector of the path graph

04 04 04

02 0.2 02
(V) LY U
- of - ]
® ™ ©
> > >
o S S

o 00 © 00 o 00
(7} [T} ©
> > >
[ 4 c c
(7] (7] O
=g @ =g
w w w

-02 02 -0.2

04 04 04

0 2 4 6 8 0 2 4 6 8 0 2 4 6
Vertex index Vertex index Vertex index
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Summary of the basic properties of the
Laplacian matrix

e Consists of real, and non-negative eigenvalues
|t is positive semidefinite

e Some eigenvalues reveal information related to the connectivity of
the graph

* Eigenvectors can be seen as functions on the graph with different
levels of smoothness
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Outline

 Graph Laplacian operator

 Eigendecomposition of the graph Laplacian
- What do the eigenvalues reveal about the graph?
- What are the basic properties of the eigenvectors?

 Applications
Spectral embeddings
Spectral clustering
PageRank
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Spectral graph theory: A tool for
analysing geometry

e Efficient data processing requires preserving underlying geometry
Often given in a network form ...

1 H ’ L.
- . A; !
4 »
*—3 v .
R . T i, -, \
e SENRSARPW.= 2
v Y Rasth
b Y a7 TS| .
% Fam N R *
dop ™ o 1 . R - .a?
.
$ .'\ Te . .*’ ". )
N LY
L the e ]y 4
- FEE R BRI .
St < e
- L - | Eng 'y
T 17 et
= Sl e
: tod—t vl ¥
v e s R -
R :
..... IS N .
e S { ey
1 b L *..
P 4 o s
SR S .-
. . -F

10 13 10 13
1 14 11 14
12 15 12 15
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What if the graph is not explicitly
given?

|t is usually constructed based on some feature/data similarity:
Compute a graph kernel matrix; usually an RBF kernel

o x; — 4|3
K(Z,])ZGXP(- H 202]“2)

Sparsify the kernel matrix to obtain a connectivity matrix
€ -nearest neighbor graph
- K-nearest neighbor graph

5 kNN graph, k=5 epsilon-graph, epsilon=0.3
ata points
1t o *,ﬂ 1 o *H
- Ll P s g* ™ ’f: H
* - 3
n * * _ 04 % s 3 ’% O* * *
Ox ifg i}& %*:H& K &k
i ol M **
-1+ %&;&k -1} "5( 11
ol ¥ ) T ¥ % DY ﬁx*i****‘ 2! *;# Hok
* ; * ' * * *
;3 * st : kg .
-3 * ;* *%*ﬁt{* -3t 7 € %’x**'}‘# -3} * i* ?’ﬁ;&f
. -~ . . - ¥ - ' - -
-1 0 . 2 -1 0 1 2 -1 0 1 2
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Applications of spectral graph theory

 How can we exploit the spectrum of the graph to design
algorithms that capture the underlying geometry?

 Some of the well-known applications:
Spectral embeddings
Spectral clustering
Graph neural networks (more in the following lectures)
- And many more...
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Node embedding - reminder

* Represent each node of the graph by a vector of low dimensions

Similarity in the embedding space takes intro account the complex graph
structure

V1 7«

* An important step for further learning tasks (e.g., classification,
clustering)
Discover relevant features
Data visualization and exploratory data analysis
Dimensionality reduction
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Node embedding - reminder

* Represent each node of the graph by a vector of low dimensions
Similarity in the embedding space takes intro account the complex graph

structure
P
R A\
Original network Embedding space

* An important step for further learning tasks (e.g., classification,
clustering)
Discover relevant features
Data visualization and exploratory data analysis
Dimensionality reduction
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A spectral approach to node

embedding

 Compute embeddings that minimize the expected square distance

between nodes that are connected

min > WyllY - Y5)1°

Centered embeddings
YeRN K TI=OTY =T
" (i.5)€E

Uncorrelated

embedding coordinates

min tr(YTLY)
YERN XK.y T1=0;YTY =1

|l  Lagrangian

u Graph smoothness

min tr(Y'LY — (Y'Y — Ig)D)

YeERNXEK . YT1=0
l} Gradient

LY =Yl =

w; = (X2(%), - XK +1(7))

Laplacian Eigenmaps: K first non-trivial eigenvectors of the Laplacian!
More details in [4]
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Spectral embedding in a nutshell

@@ /:>"=~":=' = [0 4%

SE— = /v’

Input data Graph construction Graph Laplacian First K-eigenvectors K-dim spectral embedding
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Example: Swiss roll

Swiss roll data Graph construction

Spectral embedding
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Example: 3D geometries

e Mapping a mesh/graph on the Fiedler vector of the normalized
Laplacian

X2
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Clustering

e Objective: Partition nodes of the graph into clusters
Points in the same cluster are similar to each other

 Requirement: Appropriate distance measure between nodes
Close relation to node embeddings
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Spectral clustering in a nutshell

Graph Spectral _ Clustered
- embedding - AL - graph

(given or designed from the data)

®_0 _0
U1 ¢—— oo ° ( ®
° ° . '. ° ° . ‘.
® ®
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Spectral clustering in a nutshell

Graph Spectral _ Clustered
- embedding - AL - graph

(given or designed from the data)
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° ° . '. O ° . ‘.
® ®
i = Network Machine Learning - EE452
= P = I Dr Dorina Thanou
B B Prof. Pascal Frossard



Spectral clustering in a nutshell

Graph Spectral _ Clustered
- embedding - AL - graph

(given or designed from the data)

®_0 ®_0
U1 ¢—— oo ° ( ®
° ° ". O ° . ‘.
® ®
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Spectral clustering: How to define
spectral embeddings?

Spectral
embedding

* Define a representative connectivity matrix:
Combinatorial graph Laplacian L =D — W
Normalised graph Laplacian Ly, = I — D~Y/2WD~/?
Random walk Laplacian Lyw=1-D"'W

 Compute the eigenvectors associated to the K
smallest eigenvalues of that matrix

~

X = [X15X25 -y XK]

 Embed node : as follows:
it" row of the embedding matrix X

ST

Y (IR G ) ])

Normalization function

cPL

Network Machine Learning - EE452
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lllustrative example: Toy datasets in 2D

MiniBatchKMeang MeanShift SpectralClustering DBSCAN GaussianMixture

[Example from https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html]
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Shape segmentation

Spectral clustering on shapes lead to semantically meaningful clusters
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Why does it work?

e A graph partitioning viewpoint: Partition the graph such that:
Edges between clusters have a very low weight

Edges within a cluster have high weight
Recall that: W (S;, S;) :=

 Graph cut:

CU.t(Sl, ceny
 Ratio cut: Cut(S;, S
RatioCut(Sy, ..., S Z 4 |S|
1=1
* Normalized cut: .S,
NCut (S, ..., Sk) ::Z (1( ) ) NP hard!
1=1
I = Network Machir)e Learning - EE452
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Spectral clustering as an approximation

 The smallest non-null eigenvector of the normalized Laplacian
approximates the RatioCut minimization criterion

* The smallest non-null eigenvectors of the random-walk Laplacian
approximates the NCut criterion

* Another interpretation: A random walk viewpoint

Spectral clustering can be interpreted as trying to find a partition of the graph
such that the random walk stays long within the same cluster and seldom jumps
between clusters

Proof in [3]
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Google PageRank

* One of the most popular algorithms for Internet search

- Measures the most important web pages on the Internet that correspond to the user’s
search query

- Al € ot g ey o Sorumk'
oarp e Voo Whmast of Soghe (1994

Uy o Gonpaes
S i Wt T R s e

 PageRank consists of three steps:
- User inputs query
- Engine finds all relevant pages containing the query
- Pages are ranked

* Approach:
- Model the Web as a directed graph - ‘web graph’
- Nodes correspond to pages, and edges reflect directional links/recommendations

- Rank pages using the web graph link structure: a page is important if it has many
‘important’ links
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Google PageRank algorithm

» For a directed graphG = (V, £), the PageRank vector that we are
looking for is defined as:

1
p:(l_a)WT’wp_Fg]-a p]-T:]- Wfrw .]7 AN

’V’ @ Outdegree

* The solution p is the eigenvector corresponding to the eigenvalue 1 of
the matrix:

@7
1— )W, + —111

Proof based on the Perron-Frobenious theorem for non-negative matrices [5]

e A stationary distribution of a randomized process “random surfer”
- With probability 1 — a moves to a neighboring node
- With probability @ moves to a random node of the graph
- The probability that a surfer visits a node is its PageRank
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Example of PageRank

ﬂQ @"’“0

) 2

RO @

NI \
| b=t W=

N

O

N | =

@ Initial graph ﬁ PageRank scores
0 0 1/4 1/2] [0.219]
|13 0 1/4 0 0.15 ~10.175
Wow= 1173 172 14 12| = Q=015)Wr+ == = P= | asg
1/3 1/2 1/4 0 ﬁ 10.249 |

o . 1
~ 1, p]-T =1 Wrw(]az) —

= (1 — o)W,y )
p=(1—-a) p+|v| D
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Summary

e Spectral graph theory:

A useful mathematical framework that reveals properties of the graph or network

e Spectrum tells us a lot about:
connectivity, bottlenecks, diameter...

* Eigenvectors are useful for defining a notion of smoothness on the graph
First eigenvectors of the graph Laplacian are smooth functions

 Many applications in different areas
Established frameworks: spectral clustering, spectral embeddings, PageRank

Emerging research topics: graph signal processing, graph neural networks (more in the
following lectures...)
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