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Recap from previous class

 Networks/graphs are either indicated by the application or
constructed from the data

e Spectral graph theory reveals significant properties of the network
Spectrum tells us a lot about connectivity, bottlenecks, diameter
Eigenvalues provide a notion of frequency
Eigenvectors are smooth functions on the graph

* |t has applications in network tasks, where preserving geometry is
crucial
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Going beyond graph structure

* Very often data comes with additional features
- Not only graphs, but attributes on the nodes of the graph

 Key question: What is the mterplay between graph structure and
node attrlbutes’?
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Graph structured data

* |n classical applications, data often lives on a regular domain

Domain: grid

Domain: line

* Weighted graphs capture the geometric structure of complex, i.e.,
iIrregular, domains

*****

Domain: irregular graph
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Processing graph structured data
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How can we extract useful information by taking into account both
structure (edges) and data (values/features on vertices)?
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Representation of structured data

* Traditional approaches: Harmonic analysis on Euclidean domain
(e.g., Fourier, wavelets), (deep) representation learning

s

* |rregular structures: how do we generalize such notions to graph
settings?
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In this lecture...

 How can we extract information from graph structured data, using
well-defined notions from signal processing?
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 How can we extract information from graph structured data, using
well-defined notions from signal processing?
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Outline

e Graphs and signals on graphs

 Graph Fourier transform

e Filtering on graphs

e Spectral graph convolution

e Applications
Regularization on graphs
Compression
Knowledge discovery

i i Network Machine Learning - EE452
= P l- I Dr Dorina Thanou

Prof. Pascal Frossard



Graphs and signals on graphs

* Irregular domain: connected, undirected, weighted graph of N
nodes P
G=W,EW) o . . 8-

* Neighborhood of node :

Ni={j:(,j) €&}
 Graph description:

© Degree matrix D: diagonal matrix with sum of weights of incident edges
o Laplacian matrix L: L=D—W, L=yxAyx!

Complete set of orthonormal eigenvectors  x = [x1, X2, ---, XN]
Real, non-negative eigenvalues 0= X < A2 < A3 < ... < Ay
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Signal on the graph or graph signal

A function f:V — RY that assigns real values to each vertex of
the graph

It is defined on the vertices of the graph G = (V,&, W)

Often represented as a vector f € R"  where f(i) is the signal
value at node 1

The ordering of the vector follows the ordering of the adjacency
matrix
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Graph Laplacian operator

 Combinatorial Laplacian: differential operator that computes the
pairwise difference between signal values in the neighborhood
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u:" » '.. .‘. :: ‘ .. ‘ ., o ._ .
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ff'Lif =0.15 fPLyf =18
Smooth signal Non-smooth signal

[t is helpful for defining global smoothness on the graph:

fELf=2 " Y Wamlf(n) = f(m))?

n€Y meN,
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The Fourier transform

* One of the most fundamental notions in signal processing/
analysis

A mathematical transform that decomposes functions depending
on space or time into functions depending on spatial or temporal
frequency

'''''

..................

How can we define the Graph Fourier transform for graph structured data?
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Recall that ...

 The Laplacian matrix is the graph analogue to the Laplace
operator on continuous functions!

 Example from previous lecture: Unweighted grid graph

—Lf(3)

(o + 1,90) — f(zo,%0)] — [f(zo,%0) — f(zo — 1,90)]
+ [f(wo, 90 + 1) — f(xo,y0)] — [f(zo,y0) — f(T0,yo — 1)

cPL
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A notion of frequency on the graph

 The Laplacian L admits the following eigendecomposition: Lx, = A¢xe

d?
one-dimensional Laplace operator: —— . graph Laplacian: L
! BRI |
eigenfunctions: e/“* " eigenvectors: X/

. N B

Crassical FT () =[[ ™) e | araph 71: /() = (v ) =[O0

f@) = 5 [ Fer o F) =3 F(Exali

FT: Fourier Transform
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Graph Fourier transform

 The eigenvectors of the Laplacian provide a harmonic analysis of
graph signals
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X1 Lxi = A X5 Lxz = Ao XNLXN = An
N
: r _ _ T _
Graph Fourier Transform: fe) =< f,xe >= E fn)x; (n), £=1,2,...N
n=1

e By exploiting the orthonormality of the eigenvectors, we obtain:

N
Inverse Graph Fourier Transform: f(n) — E f()\é)XE (n)7 Vn eV
/=1
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A special case: The path graph

O—0O0—"0——"0——0—"—0——0O—0O—C0—0

 The eigenvalues of the graph Laplacian of the unweighted path
graph are given by

¢
A =2 — QCOS(%), V0e1,2,....N

* The corresponding eigenvectors are

Basis vectors of Discrete Cosine Transform used in JPEG for example
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A special case: The ring graph

()l )
G v,
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* The eigenvalues of the graph Laplacian of the unweighted ring
graph are given by
271l

Ao = 2 — 2COS(W), vWel?2,....N

e Since the Laplacian is a circulant matrix, the corresponding
eigenvectors are

. T 27y
20 (N 1)5}

¢ 27
[1,w,w e , w=eN

2l

Xt =

Discrete Fourier Transform (DFT)
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Some other examples

* The regular grid graph
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A dual representation of the graph
signal

Reminder: .

N
f(>\€) =< fv Xe >= Z f(n)Xg(n)v {= 1727 7N
n=1

s
‘ ‘
- } . .
- v .
3 | s X
.-1 e 1 - ot \
I X A e
4 vy . .. “ S
S - e .
YU 7T | .
» . | | o
‘s ""1 .- 'b‘ hd + . -5
T . P
A AT oy
tem 1 - s
~‘ ._‘- R ) 3 —
R e W / -
. - + "‘: -
- t‘
¥ '
R et
M L
tof—t e il B
. . 2 1 bt
A s
B S 5
o BN A aa
e S -
'.‘v." e .
vy '- '
p o . S -
' o B 2 ., | !. "
i~ i -
’ ..sﬁ?.. A l :

Vertex domain Graph spectral domain

i i Network Machine Learning - EE452
== P l- I Dr Dorina Thanou

Prof. Pascal Frossard 19



Dual representation continued
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Vertex domain Graph spectral domain

 The spectral domain representation tells us a lot about the variation of
the signal in the vertex domain
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Classical frequency filtering

* |t is given by amplifying or attenuating the contributions of some
Fourier bases

- The FT is defined as f(w) = /(ejm)*f(:v)daz, f(x) = /f(w)eijdw
- Filtering a signal f with a transfer function g(-) is defined as follows

FT g(w) IFT

o oy | fw) | | @) | | xS
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Classical frequency filtering

* |t is given by amplifying or attenuating the contributions of some
Fourier bases

- The FTis definedas f(w) = /(ej“‘"”)*f(a:)da:, f(x) = /f(w)ewdw

- Filtering a signal f with a transfer function g(-) is defined as follows

e IFT
f flw) i) fw) | Wy | gxf
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Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal f with a spectral filter §(-) is performed in the graph
Fourier domain

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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Graph spectral filtering
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Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal f with a spectral filter §(-) is performed in the graph
Fourier domain

GFT

f ‘ X' f

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal f with a spectral filter §(-) is performed in the graph

Fourier domain

GFT

f ‘ X' f

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal f with a spectral filter §(-) is performed in the graph

Fourier domain

GFT IGFT

GANXTS | mmp | xa(AXTS

f ‘ X' f

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal f with a spectral filter §(-) is performed in the graph

GFT IGFT

Fourier domain

GANXTS | mmp | xa(AXTS

f ‘ X' f

Low-pass 14 High-pass J4 Band-pass  /

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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lllustrative example

* Apply a low filter to a graph signal
Keep only the first GFT coefficients

* Recover the filtered signal in the vertex domain
- The filtered signal is smoother on the graph
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Other graph transforms

e Other graph transforms and dictionaries can be designed by
filtering the eigenvalues of the graph Laplacian

 Example: By defining shifted and dilated bandpass filters, we
obtain a generalisation of wavelets on the graph

400

: 400 600\\\ g 400
P g0 S, 20

600 N < 400
800 vo/zoo

Hammond et al., “Wavelets on graphs via spectral graph theory”, ACHA, 2009
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Convolution on graphs

A mathematical operator that computes the “amount of overlap”
between two functions

e Convolution in the time domain is equivalent to multiplication in
the frequency domain

Classical convolution Convolution on graphs

Time domain ~ (f * g)(t) = /_oo f(t—m7)g(r)dr

 More in the following lectures
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Convolution on graphs

A mathematical operator that computes the “amount of overlap”
between two functions

e Convolution in the time domain is equivalent to multiplication in
the frequency domain

Classical convolution Convolution on graphs

Time domain ~ (f * g)(t) = /_oo f(t—m7)g(r)dr

Frequency domain (f % g)(w) = f(w) - §(w)

 More in the following lectures

i i Network Machine Learning - EE452
= P l- I Dr Dorina Thanou

Prof. Pascal Frossard 25



Convolution on graphs

A mathematical operator that computes the “amount of overlap”
between two functions

e Convolution in the time domain is equivalent to multiplication in
the frequency domain

Classical convolution Convolution on graphs

Time domain ~ (f * g)(t) = /_oo f(t—m7)g(r)dr

Frequency domain (f % g)(w) = f(w) - §(w) (f*xg)(N) = ((XTf) o §) (M) Frequency/spectral domain
* More in the following lectures
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Convolution on graphs

A mathematical operator that computes the “amount of overlap”
between two functions

e Convolution in the time domain is equivalent to multiplication in
the frequency domain

Classical convolution Convolution on graphs

Time domain ~ (f * g)(t) = / f(t—71)g(r)dr E f*xg= Xf}(A)XTf =g(L)f Vertex domain
Frequency domain (f/Q) (W) = f(w) - §(w) E (m)()\) = ((XTf) o §) (M) Frequency/spectral domain
* More in the following lectures
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Outline

e Graphs and signals on graphs

 Graph Fourier transform

e Filtering on graphs

e Spectral graph convolution

 Applications
Regularization on graphs
Compression
Knowledge discovery
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Some typical processing tasks

Original Noisy Denoised

9
R ke :
? oy 85" 8
DL \
=" B s
i ” i
? B
Denoising Semi-supervised learning

B Flexible Regions (AAL-90) G Flexible Regions (Power-264) i
I Specialzed Regions (AAL-90) @ Specialized Regions (Power-264)
Analysis/Knowledge discovery Compression/Visualization

Network Machine Learning - EE452
E P F I Dr Dorina Thanou 27

Prof. Pascal Frossard



Inverse problems on graphs

Original

Noisy Denoised

Example: Denoising Example: Semi-supervised learning

» The latent graph signal f generates observed graph signal output y: f — y

e The goal of the inverse problem is to find a mapping such that: ¥ — f

e An inverse problem is inherently underdetermined; Usually regularized by
imposing some prior knowledge about that data
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Regularization on graphs

 Example: Linear inverse problems on graphs

f — arg;nin”y — Mf”% + ’YR(fa G)
/ .

Fitting term Regularization term

* Fitting term: Can we recover a graph signal / given some
observations y and operator M ?

 Regularization term: What properties do we expect f to have on
the graph?
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The graph smoothness prior

* |In many applications, we expect signals to be smooth on the
graph

 \We recall that:
fELf=2 " > Wamlf(n) = f(m)?
neY meN,,

- The smaller this quantity, the smoother the signal on that graph
It is zero iff the signal is constant on the graph
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Application: Graph signal denoising

 We observe a noisy graph signal y=f+¢, ¢~ N(0,0)
 The observation matrix is

1 0 - 0]
0o 1 ---

_O g ... 1_

* We wish to recover f by enforcing that it is smooth with respect to
the graph

f= argmin|[f = yllz + /" Lf

* Also known as graph Tikhonov regularization
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Application: Image denoising

e Construct a graph that encodes pixel similarity
* Denoise the image by assuming smoothness on the graph

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph Filtered

T
e

Original Image Noisy Image
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A filtering viewpoint

e Graph regularization can be interpreted as filtering on the graph

f= arg;ninllf —yll3+vf"Lf

ll First order gradient

U Eigendecomposition of the Laplacian
r_ —1U.T
f=x{I+vA)" X"y
g(L) Remove noise by lowpass filtering

in the graph spectral domain!

cPL
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Other graph filters

Graph filter spectral response

1.0 -

0.8 -

0.4 1

~

g(A): filter response

0.2 1

Tikhonov-like (low pass)

high pass

2 4 6 8 10
A: laplacian's eigenvalues / graph frequencies
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Application: Semi-supervised learning

* Find missing labels by using information from both labelled and

unlabelled data

* Treat labels as a signal on the graph

e Similar nodes on high density regions of the graph should have

similar labels

~

n,MM

Zhou et al., “Learning with Local and Global Consistency”, NIPS, 2003

| 1
f= argj{nm!lf —yl3+7 ) Woml5— 7

nn

(a) Toy Data (Two Moons)

(b) SVM (RBF Kernel)
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Other regularizers

f= arg}{ninlly — Mf|5+~R(f,G)

e Discrete p-Dirichlet form:

Ry(£.G) = = S IVaflf = 3 [ 32 Wanlf(n) - fm)P]

ney ne€Y meN,

e Total variation (TV):

Promote piecewise smooth signals: p = 1

e Sparsity in the graph Fourier basis:
Promote a graph signal with only a few non-zero GFT coefficients

R(f,G) = Iflll, M=x

b
2
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Difference between Tikhonov and TV

sensor sensor
G.N=256 nodes, G.Ne=1308 edges G.N=256 nodes, G.Ne=1308 edges
10 100
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Denoised signal - Tikhonov

https://pygsp.readthedocs.io/en/stable/tutorials/optimization.html

10

Denoised signal - TV

cPL
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Application: Compression

e Desirable: Capture a large part of the signal with a few
coefficients

e Typically performed by projecting the data in a domaln/transfrm
where the signal is compressible or sparse

3
Sorted indices

Original image Most significant coefficients Reconstructed image
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Application: Image compression

* The graph Fourier transform has been used to compress smooth

signals on the graph
Intuition: Main energy is concentrated in the first GFT coefficients

 Example: image compression

Construct a graph that encodes pixel similarity

The graph Fourier transform has been used as an alternative to classical
transforms

magnitude of GFT coefficients
=) =) o =) o
o © L 2 v © w © & °
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Application: 3D point clouds
compression

e Graphs provide a way to represent point clouds

 The graph Fourier transform has been used to capture large parts of the
cooler attributes with a few coefficients

Zhang et al., “Point cloud attribute compression with graph transforms”, ICIP, 2014
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Knowledge discovery: Neuroscience

e Graph based transforms have been successful in domain specific knowledge
discovery

e |n neuroscience, GSP tools have been used to improve our understanding of
the biological mechanisms underlying human cognition and brain disorders

’D BOLD Functional data
g //W\J WW\/W
o~
2
o
- \ 8 MWJ\AWWVW\«/MW\ . . \
A Structural connectivity . C Graph Fourier transform
' time J Iow-frequencymodes
A
Spectral d ....'...’. e
ectra oma .
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e @B L/ e @ oy
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Time

[Fig. from Huang’18]

* Analysis in the spectral domain reveals the variation of signals on the
anatomical network
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Graph spectral analysis for understanding
cognitive flexibility

e Cognitive flexibility describes the human ability to switch between
modes of mental function

* Integrating brain network structure, function, and cognitive
measures Is key

 GFT allows to decompose each BOLD signal into two
components

Aligned: Component of the signal that is aligned with the anatomical network
Liberal: Component of the signal that does not align with the anatomical network

Aligned Liberal
AN N
&« f’ S\"‘"V
\\\ / \'\ /
[

Medaglia et al., “Functional Alignment with Anatomical Networks is Associated with Cognitive Flexibility”, Nat.
Hum. Behav., 2018
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BOLD signal alignment across the brain

* Functional alignment with anatomical networks facilitates
cognitive flexibility (lower switch costs)

Liberal signals are concentrated in subcortical regions and cingulate cortices

Aligned signals are concentrated in subcortical, default mode, fronto-parietal,
and cingulo-opercular systems

Aligned Liberal

P @&

White matter Decomposition of the signals into aligned
network and liberal using GFT
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Summary

* Graphs are natural tools to capture the data domain

* Going beyond graph structure implies understanding the interplay
between that domain and the data:

Jointly consider domain (i.e., graph) and data (i.e., graph signals) that live in that domain

e Some key concepts can be directly generalized from regular grids to
graphs
Tranforms on graph
Filtering on graph
Convolution on graph (more in the following lectures...)

 Many applications including network analysis, denoising, compression
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* Toolbox: https://pygsp.readthedocs.io/en/stable/index.html
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