From Graphs to Graph Structured Data

Dr Dorina Thanou April 24, 2023

Recap from previous class

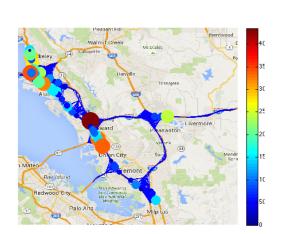
- Networks/graphs are either indicated by the application or constructed from the data
- Spectral graph theory reveals significant properties of the network
 - Spectrum tells us a lot about connectivity, bottlenecks, diameter
 - Eigenvalues provide a notion of frequency
 - Eigenvectors are smooth functions on the graph
- It has applications in network tasks, where preserving geometry is crucial

Going beyond graph structure

- Very often data comes with additional features
 - Not only graphs, but attributes on the nodes of the graph

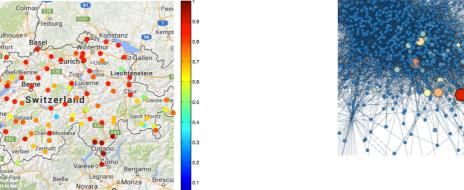
Key question: What is the interplay between graph structure and

node attributes?

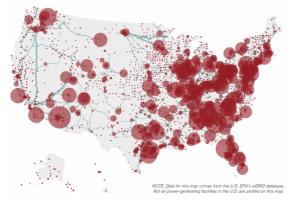


Transportation networks

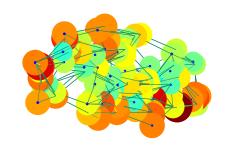
Weather networks



Social networks



Disease spreading networks

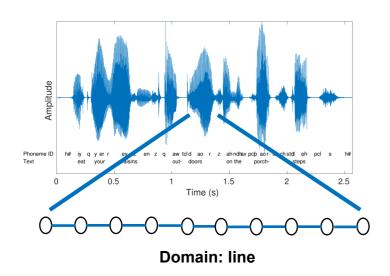


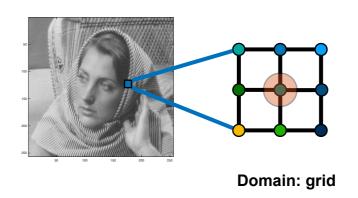
Biological networks

Electric grid networks

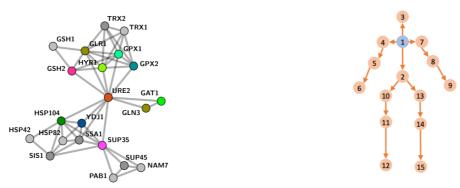
Graph structured data

In classical applications, data often lives on a regular domain



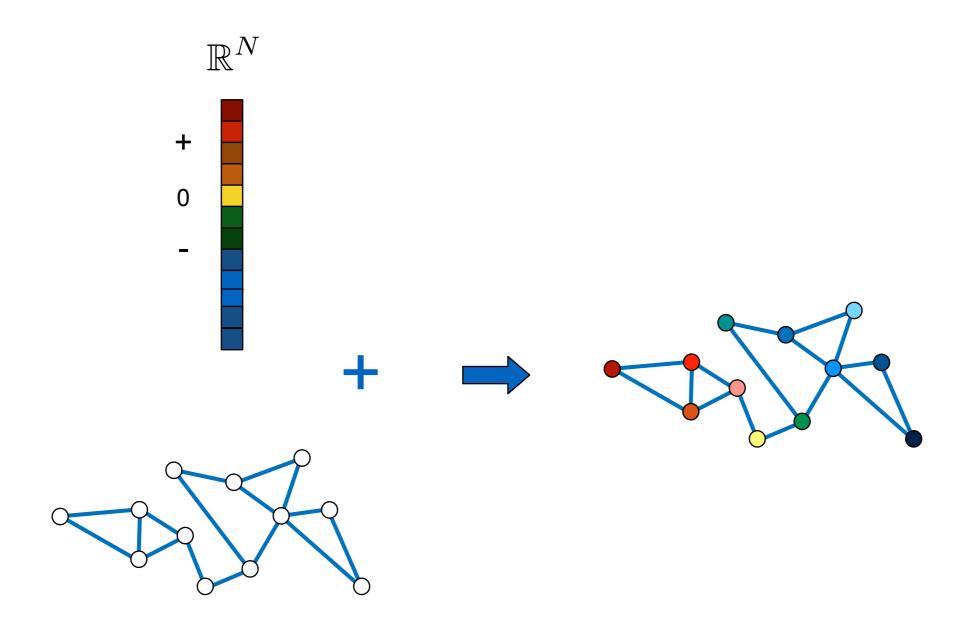


• Weighted graphs capture the geometric structure of complex, i.e., irregular, domains



Domain: irregular graph

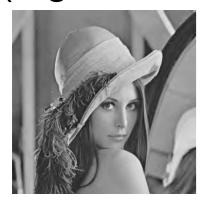
Processing graph structured data

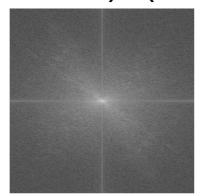


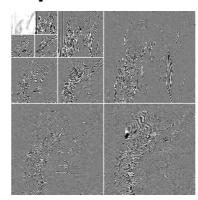
How can we extract useful information by taking into account both structure (edges) and data (values/features on vertices)?

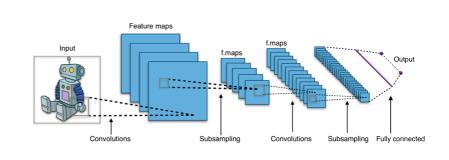
Representation of structured data

 Traditional approaches: Harmonic analysis on Euclidean domain (e.g., Fourier, wavelets), (deep) representation learning

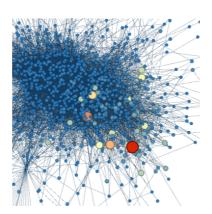


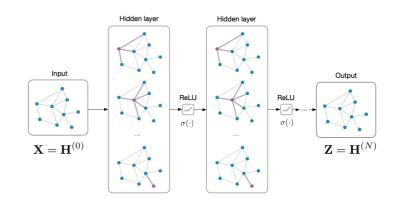






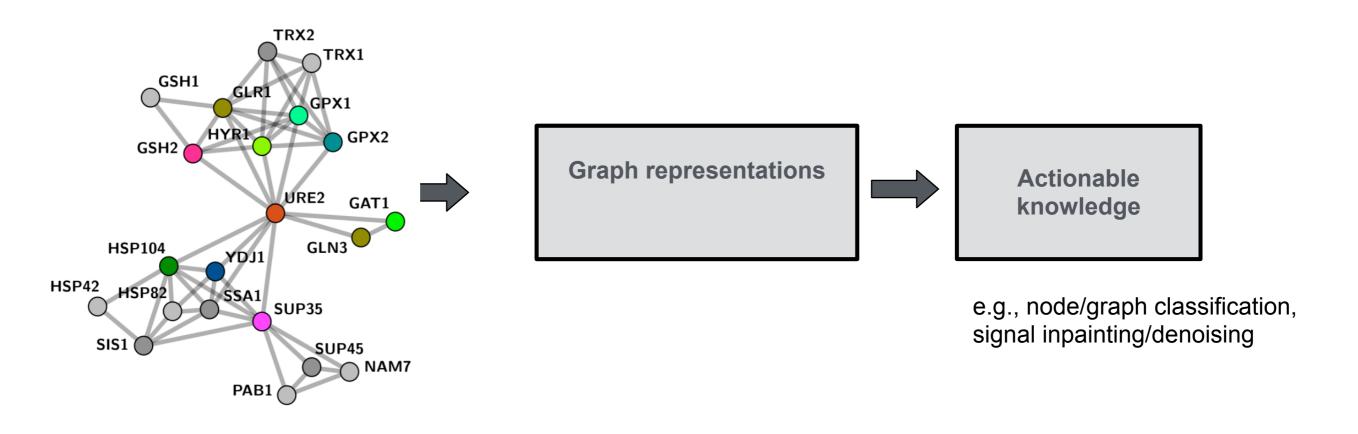
 Irregular structures: how do we generalize such notions to graph settings?





In this lecture...

 How can we extract information from graph structured data, using well-defined notions from signal processing?



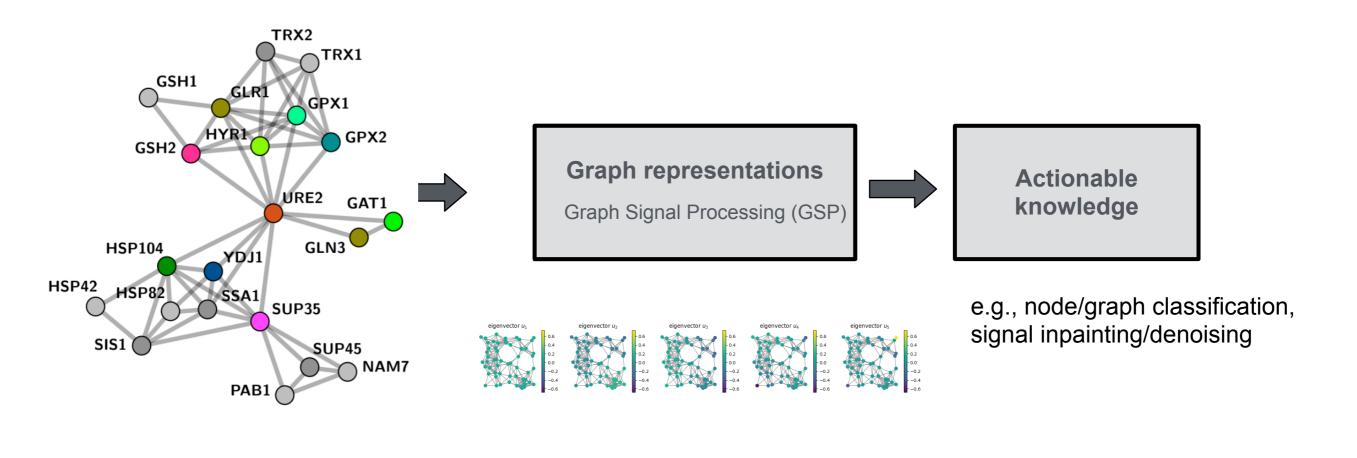
$$X, \mathcal{G}$$

 $f(X,\mathcal{G})$

Y

In this lecture...

 How can we extract information from graph structured data, using well-defined notions from signal processing?



$$X, \mathcal{G}$$

 $f(X,\mathcal{G})$

Y

Outline

- Graphs and signals on graphs
- Graph Fourier transform
- Filtering on graphs
- Spectral graph convolution
- Applications
 - Regularization on graphs
 - Compression
 - Knowledge discovery

Graphs and signals on graphs

• Irregular domain: connected, undirected, weighted graph of N nodes

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

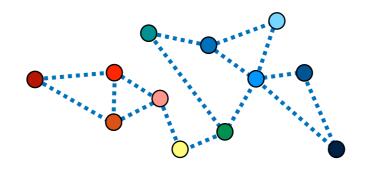
Neighborhood of node i:

$$\mathcal{N}_i = \{j : (i,j) \in \mathcal{E}\}$$

- Graph description:
 - ullet Degree matrix D: diagonal matrix with sum of weights of incident edges
 - Laplacian matrix L: L = D W, $L = \chi \Lambda \chi^T$
 - Complete set of orthonormal eigenvectors $\chi = [\chi_1, \chi_2, ..., \chi_N]$
 - Real, non-negative eigenvalues $0 = \lambda_1 < \lambda_2 \le \lambda_3 \le ... \le \lambda_N$

Signal on the graph or graph signal

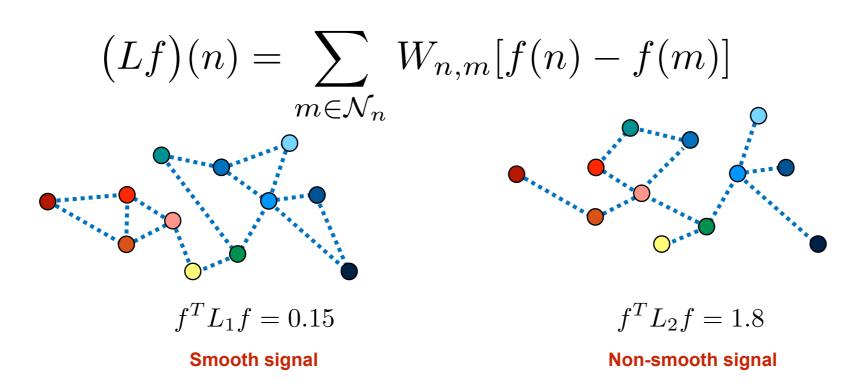
- A function $f: \mathcal{V} \to \mathbb{R}^N$ that assigns real values to each vertex of the graph
- It is defined on the vertices of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$



- Often represented as a vector $f \in \mathbb{R}^N$, where f(i) is the signal value at node i
- The ordering of the vector follows the ordering of the adjacency matrix

Graph Laplacian operator

 Combinatorial Laplacian: differential operator that computes the pairwise difference between signal values in the neighborhood

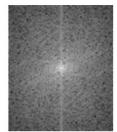


It is helpful for defining global smoothness on the graph:

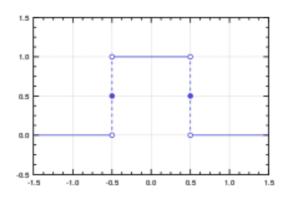
$$f^{T}Lf = \sum_{n \in \mathcal{V}} \sum_{m \in \mathcal{N}_n} W_{n,m} [f(n) - f(m)]^2$$

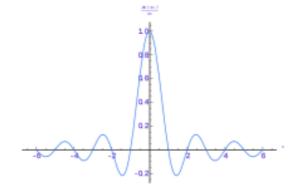
The Fourier transform

 One of the most fundamental notions in signal processing/ analysis



 A mathematical transform that decomposes functions depending on space or time into functions depending on spatial or temporal frequency

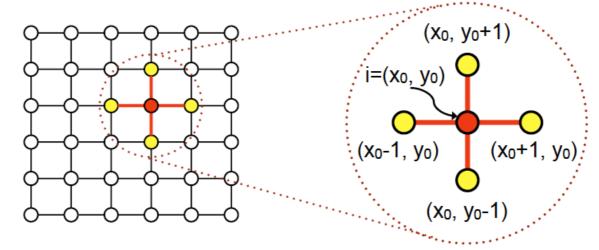




How can we define the Graph Fourier transform for graph structured data?

Recall that ...

- The Laplacian matrix is the graph analogue to the Laplace operator on continuous functions!
- Example from previous lecture: Unweighted grid graph



$$-Lf(i) = [f(x_0 + 1, y_0) - f(x_0, y_0)] - [f(x_0, y_0) - f(x_0 - 1, y_0)]$$

$$+ [f(x_0, y_0 + 1) - f(x_0, y_0)] - [f(x_0, y_0) - f(x_0, y_0 - 1)]$$

$$\sim \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = (\Delta f)(x_0, y_0)$$

A notion of frequency on the graph

• The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $\frac{d^2}{dx^2}$ graph Laplacian: L

eigenfunctions: $e^{\jmath\omega x}$

$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$

eigenvectors: χ_ℓ

$$f: \mathcal{V} \to \mathbb{R}^N$$

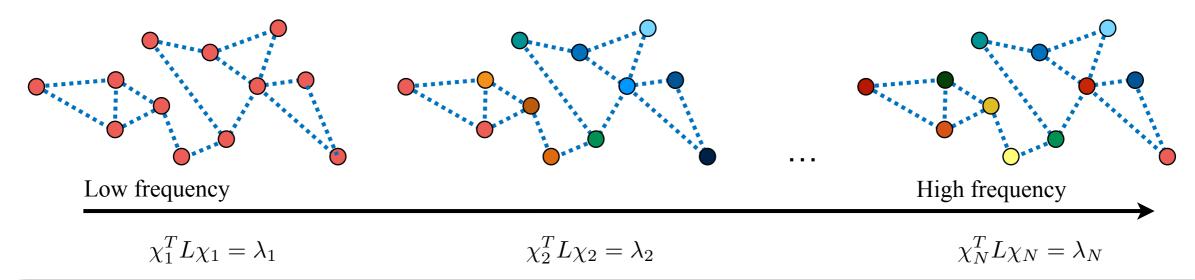
 $f: \mathcal{V} \to \mathbb{R}^N$ Classical FT $\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$ Graph FT: $\hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i)$

$$f(i) = \sum_{\ell=1}^{N} \hat{f}(\ell) \chi_{\ell}(i)$$

FT: Fourier Transform

Graph Fourier transform

 The eigenvectors of the Laplacian provide a harmonic analysis of graph signals



Graph Fourier Transform:

$$\hat{f}(\lambda_{\ell}) = \langle f, \chi_{\ell} \rangle = \sum_{n=1}^{N} f(n) \chi_{\ell}^{T}(n), \quad \ell = 1, 2, ..., N$$

By exploiting the orthonormality of the eigenvectors, we obtain:

Inverse Graph Fourier Transform:

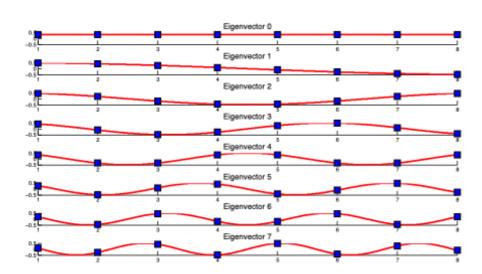
$$f(n) = \sum_{\ell=1}^{N} \hat{f}(\lambda_{\ell}) \chi_{\ell}(n), \quad \forall n \in \mathcal{V}$$

A special case: The path graph

 The eigenvalues of the graph Laplacian of the unweighted path graph are given by

$$\lambda_{\ell} = 2 - 2\cos(\frac{\pi\ell}{N}), \quad \forall \ell \in 1, 2, ..., N$$

The corresponding eigenvectors are



$$\chi_1(n) = \frac{1}{\sqrt{N}}, \quad \forall \quad n = 1, 2, ..., N$$

$$\chi_{\ell}(n) = \sqrt{\frac{2}{N}} \cos(\frac{\pi \ell (n - 0.5)}{N}), \quad \forall \quad \ell = 2, 3, ..., N$$

Basis vectors of Discrete Cosine Transform used in JPEG for example

A special case: The ring graph

 The eigenvalues of the graph Laplacian of the unweighted ring graph are given by

$$\lambda_{\ell} = 2 - 2\cos(\frac{2\pi\ell}{N}), \quad \forall \ell \in 1, 2, ..., N$$

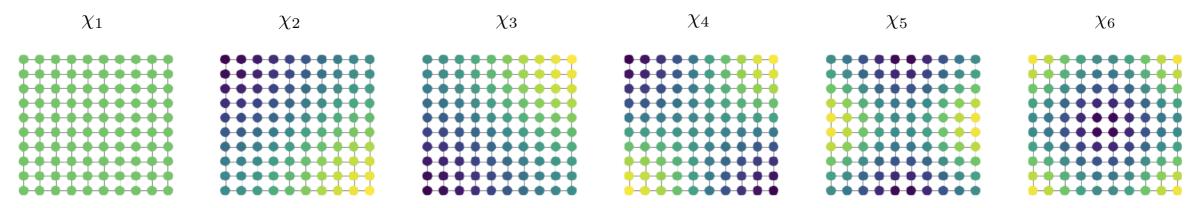
 Since the Laplacian is a circulant matrix, the corresponding eigenvectors are

$$\chi_{\ell} = \frac{1}{\sqrt{N}} \left[1, \omega^{\ell}, \omega^{2\ell}, ..., \omega^{(N-1)\ell} \right]^{T}, \quad \omega = e^{\frac{2\pi j}{N}}$$

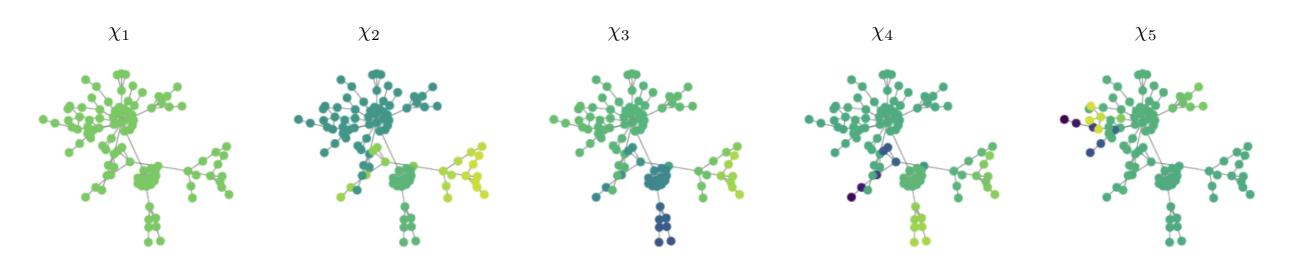
Discrete Fourier Transform (DFT)

Some other examples

The regular grid graph



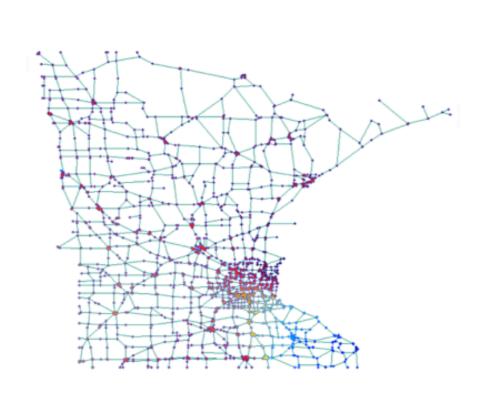
Barabasi-Albert scale-free network

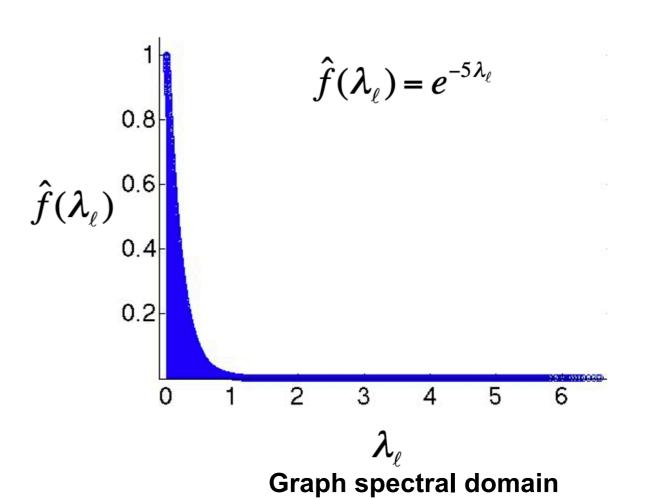


A dual representation of the graph signal

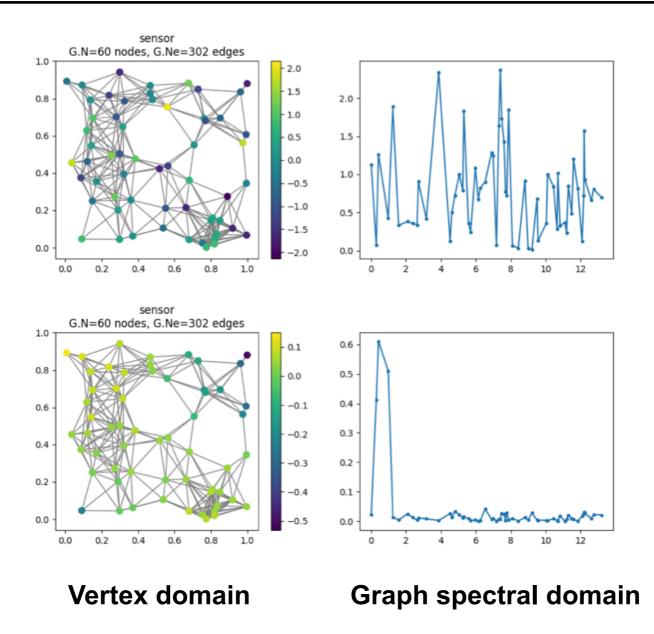
Reminder:
$$\hat{f}(\lambda_\ell) = < f, \chi_\ell > = \sum_{n=1}^N f(n) \chi_\ell^T(n), \quad \ell = 1, 2, ..., N$$

$$f(n) = \sum_{\ell=1}^N \hat{f}(\lambda_\ell) \chi_\ell(n), \quad \forall n \in \mathcal{V}$$





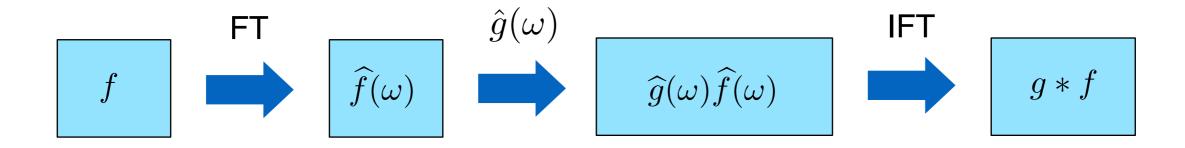
Dual representation continued



 The spectral domain representation tells us a lot about the variation of the signal in the vertex domain

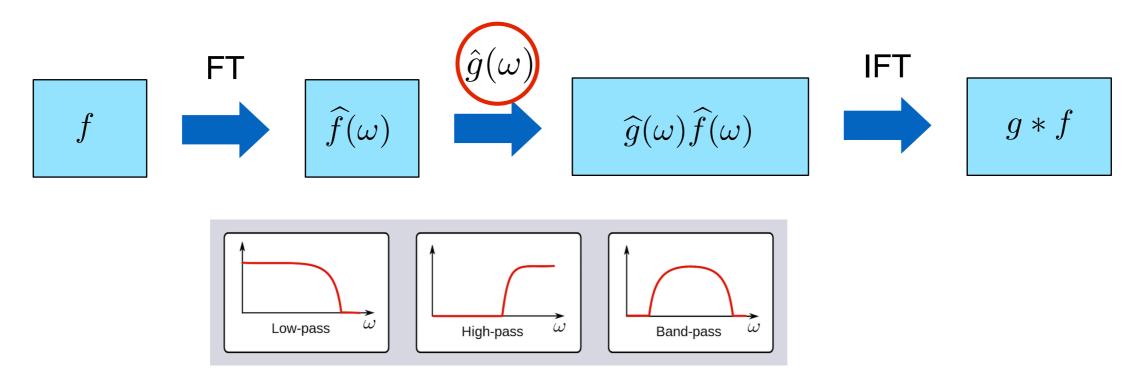
Classical frequency filtering

- It is given by amplifying or attenuating the contributions of some Fourier bases
 - The FT is defined as $\widehat{f}(\omega)=\int (e^{j\omega x})^*f(x)dx, \quad f(x)=\int \widehat{f}(\omega)e^{j\omega x}d\omega$
 - Filtering a signal f with a transfer function $\hat{g}(\cdot)$ is defined as follows



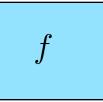
Classical frequency filtering

- It is given by amplifying or attenuating the contributions of some Fourier bases
 - The FT is defined as $\widehat{f}(\omega)=\int (e^{j\omega x})^*f(x)dx, \quad f(x)=\int \widehat{f}(\omega)e^{j\omega x}d\omega$
 - Filtering a signal f with a transfer function $\hat{g}(\cdot)$ is defined as follows

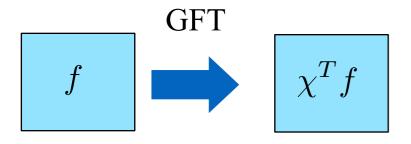


- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal f with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain

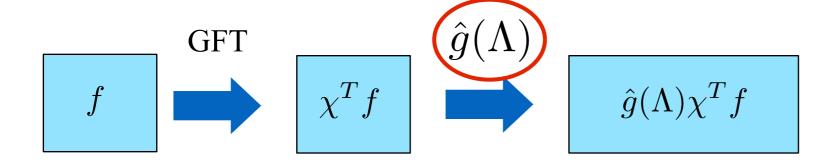
- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal f with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain



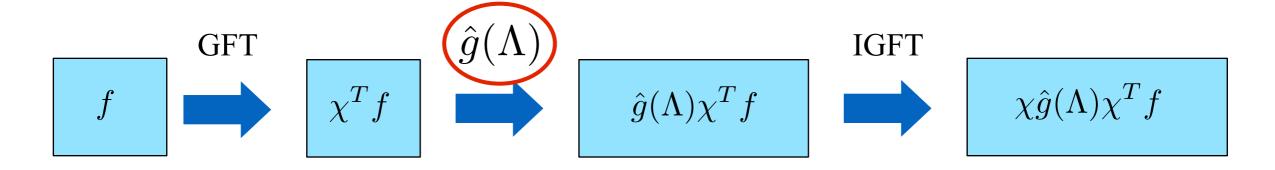
- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal f with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain



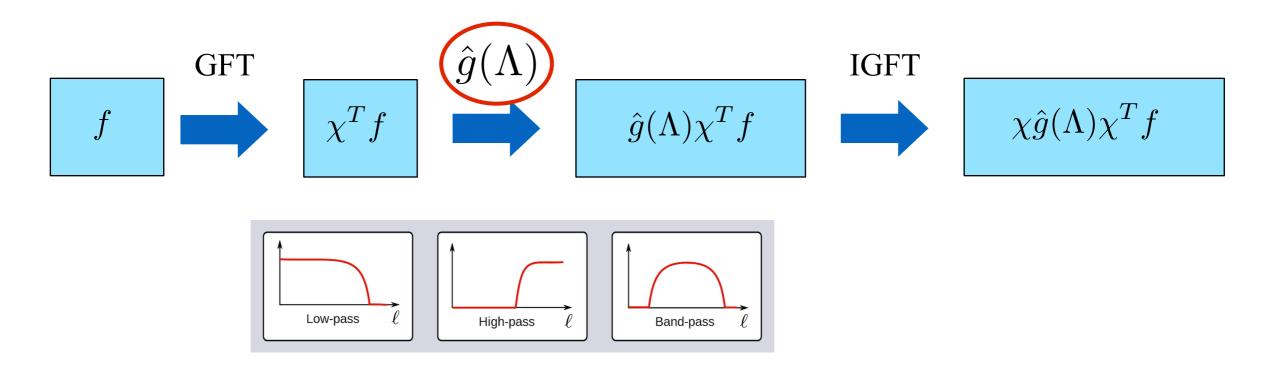
- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal f with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain



- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal f with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain

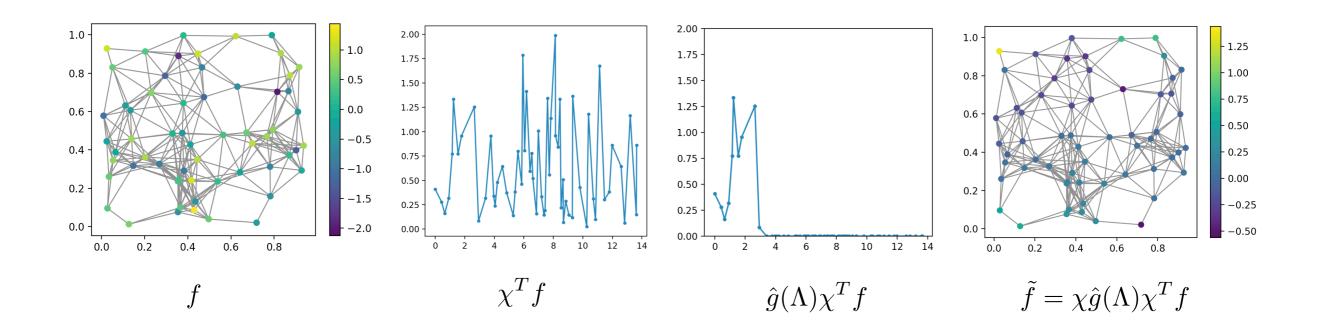


- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal f with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain



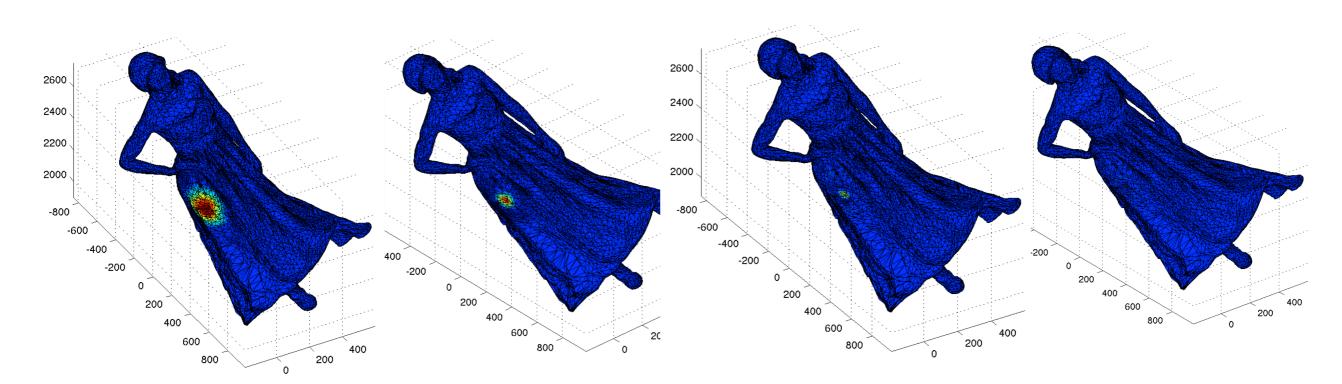
Illustrative example

- Apply a low filter to a graph signal
 - Keep only the first GFT coefficients
- Recover the filtered signal in the vertex domain
 - The filtered signal is smoother on the graph



Other graph transforms

- Other graph transforms and dictionaries can be designed by filtering the eigenvalues of the graph Laplacian
- Example: By defining shifted and dilated bandpass filters, we obtain a generalisation of wavelets on the graph



Hammond et al., "Wavelets on graphs via spectral graph theory", ACHA, 2009

- A mathematical operator that computes the "amount of overlap" between two functions
- Convolution in the time domain is equivalent to multiplication in the frequency domain

Classical convolution

Time domain
$$(f*g)(t) = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$

Convolution on graphs

- A mathematical operator that computes the "amount of overlap" between two functions
- Convolution in the time domain is equivalent to multiplication in the frequency domain

Classical convolution

Convolution on graphs

- A mathematical operator that computes the "amount of overlap" between two functions
- Convolution in the time domain is equivalent to multiplication in the frequency domain

Classical convolution

Time domain
$$(f*g)(t) = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$

Frequency domain

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$

Convolution on graphs

$$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$

Frequency/spectral domain

- A mathematical operator that computes the "amount of overlap" between two functions
- Convolution in the time domain is equivalent to multiplication in the frequency domain

Classical convolution

Time domain $(f*g)(t) = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$

Frequency domain

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$

Convolution on graphs

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

Vertex domain

$$(\widehat{f} * \widehat{g})(\lambda) = ((\chi^T f) \circ \widehat{g})(\lambda)$$

Frequency/spectral domain

Outline

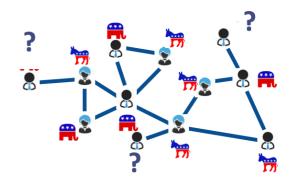
- Graphs and signals on graphs
- Graph Fourier transform
- Filtering on graphs
- Spectral graph convolution
- Applications
 - Regularization on graphs
 - Compression
 - Knowledge discovery

Some typical processing tasks

Original

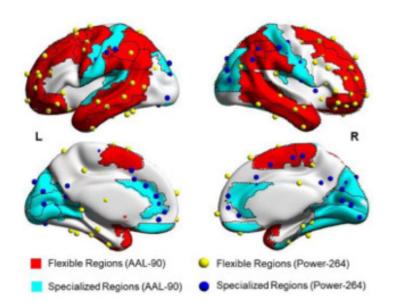
Noisy

Denoised

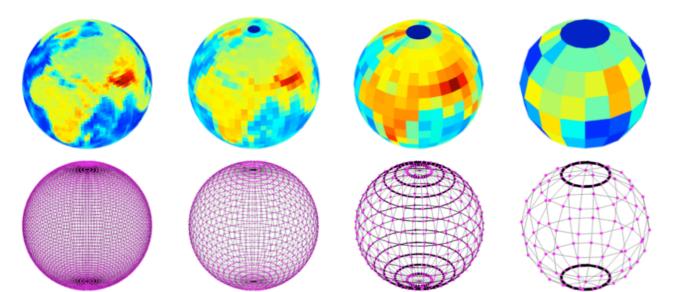


Denoising

Semi-supervised learning



Analysis/Knowledge discovery



Compression/Visualization

Inverse problems on graphs

Original Noisy Denoised

| Image: Semi-supervised learning | Image: Semi-supervised | Imag

- The latent graph signal f generates observed graph signal output y: f o y
- ullet The goal of the inverse problem is to find a mapping such that: y o f
- An inverse problem is inherently underdetermined; Usually regularized by imposing some prior knowledge about that data

Regularization on graphs

Example: Linear inverse problems on graphs

$$\tilde{f} = \underset{f}{\operatorname{argmin}} \|y - Mf\|_{2}^{2} + \gamma R(f, G)$$

Fitting term

Regularization term

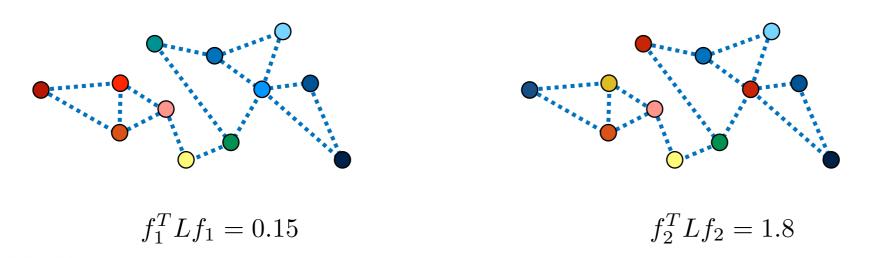
- Fitting term: Can we recover a graph signal f given some observations y and operator M?
- Regularization term: What properties do we expect f to have on the graph?

The graph smoothness prior

- In many applications, we expect signals to be smooth on the graph
- We recall that:

$$f^{T}Lf = \sum_{n \in \mathcal{V}} \sum_{m \in \mathcal{N}_n} W_{n,m} [f(n) - f(m)]^2$$

- The smaller this quantity, the smoother the signal on that graph
- It is zero iff the signal is constant on the graph



Application: Graph signal denoising

- We observe a noisy graph signal $y = f + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$
- The observation matrix is

$$M = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

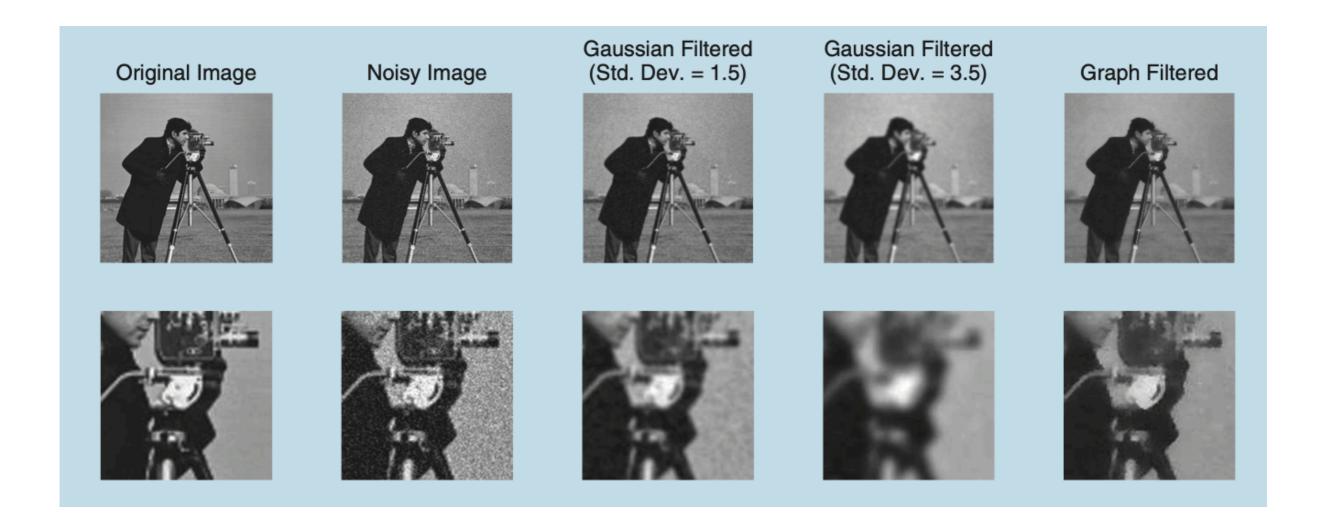
 We wish to recover f by enforcing that it is smooth with respect to the graph

$$\tilde{f} = \underset{f}{\operatorname{argmin}} \|f - y\|_2^2 + \gamma f^T L f$$

Also known as graph Tikhonov regularization

Application: Image denoising

- Construct a graph that encodes pixel similarity
- Denoise the image by assuming smoothness on the graph



A filtering viewpoint

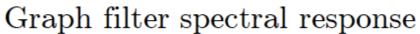
Graph regularization can be interpreted as filtering on the graph

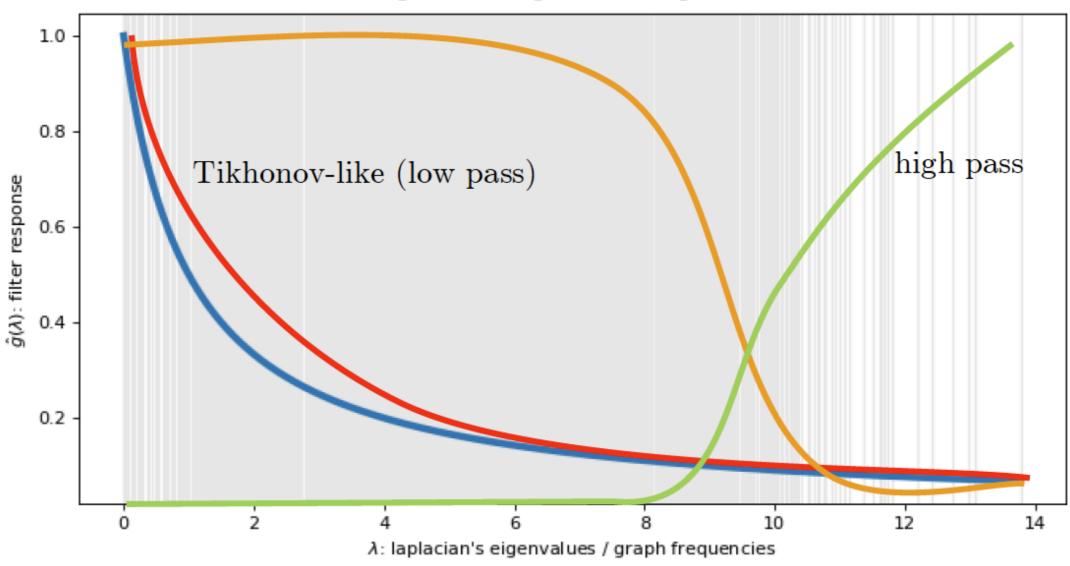
$$\begin{split} \tilde{f} &= \underset{f}{\operatorname{argmin}} \|f - y\|_2^2 + \gamma f^T L f \\ & \quad \quad \quad \quad \quad \quad \\ & \quad \quad \\$$

Remove noise by lowpass filtering

in the graph spectral domain!

Other graph filters

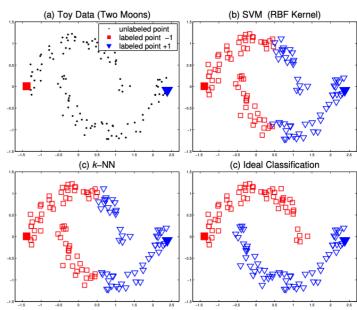




Application: Semi-supervised learning

- Find missing labels by using information from both labelled and unlabelled data
- Treat labels as a signal on the graph
- Similar nodes on high density regions of the graph should have similar labels

$$\tilde{f} = \underset{f}{\operatorname{argmin}} \|f - y\|_{2}^{2} + \gamma \sum_{n,m} W_{n,m} \|\frac{1}{D_{nn}} f_{n} - \frac{1}{D_{mm}} f_{m} \|_{2}^{2}$$



Zhou et al., "Learning with Local and Global Consistency", NIPS, 2003

Other regularizers

$$\tilde{f} = \underset{f}{\operatorname{argmin}} \|y - Mf\|_{2}^{2} + \gamma R(f, G)$$

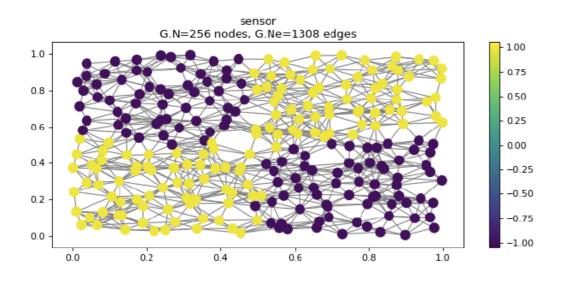
Discrete p-Dirichlet form:

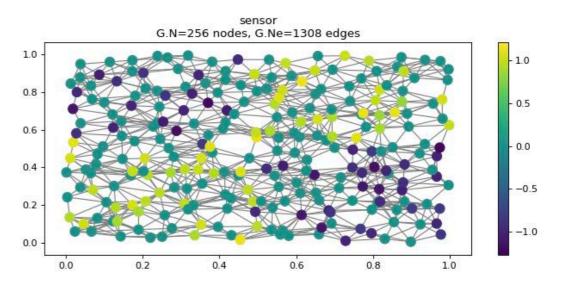
$$R_p(f,G) = \frac{1}{p} \sum_{n \in \mathcal{V}} \|\nabla_n f\|_2^p = \frac{1}{p} \sum_{n \in \mathcal{V}} \left[\sum_{m \in \mathcal{N}_n} W_{n,m} [f(n) - f(m)]^2 \right]^{\frac{p}{2}}$$

- Total variation (TV):
 - Promote piecewise smooth signals: p=1
- Sparsity in the graph Fourier basis:
 - Promote a graph signal with only a few non-zero GFT coefficients

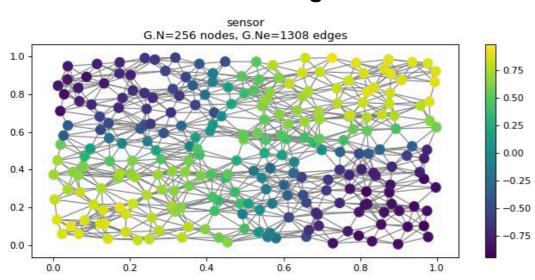
$$R(f,G) = ||f||_1, \quad M = \chi$$

Difference between Tikhonov and TV

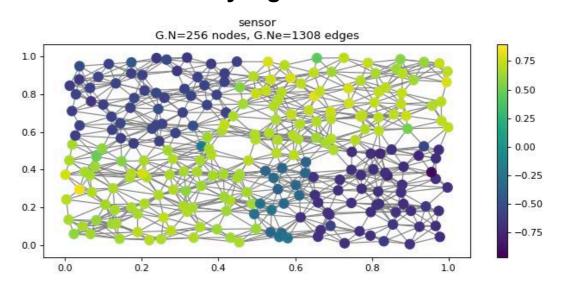




Ground-truth signal



Noisy signal



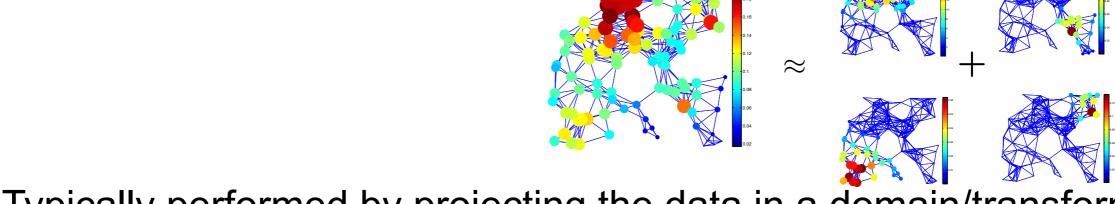
Denoised signal - Tikhonov

Denoised signal - TV

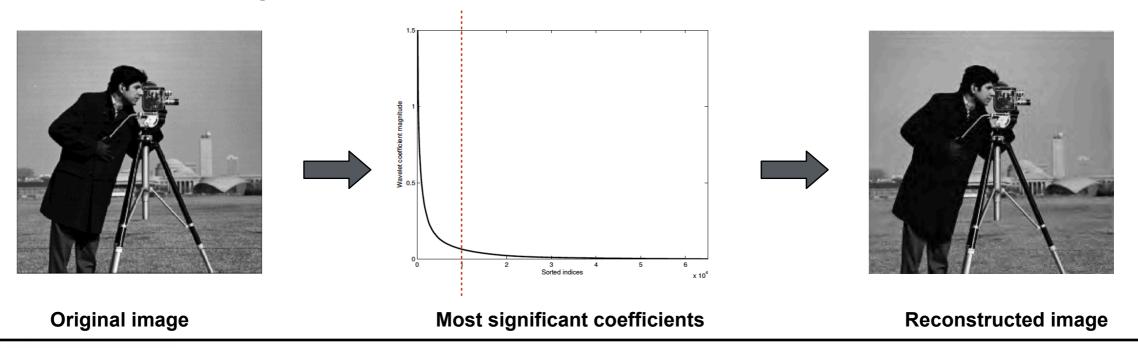
https://pygsp.readthedocs.io/en/stable/tutorials/optimization.html

Application: Compression

Desirable: Capture a large part of the signal with a few coefficients

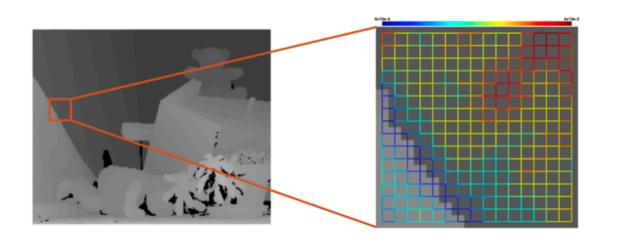


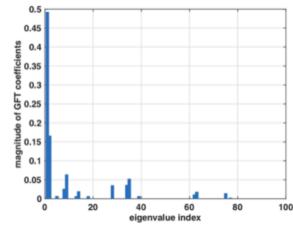
 Typically performed by projecting the data in a domain/transform where the signal is compressible or sparse



Application: Image compression

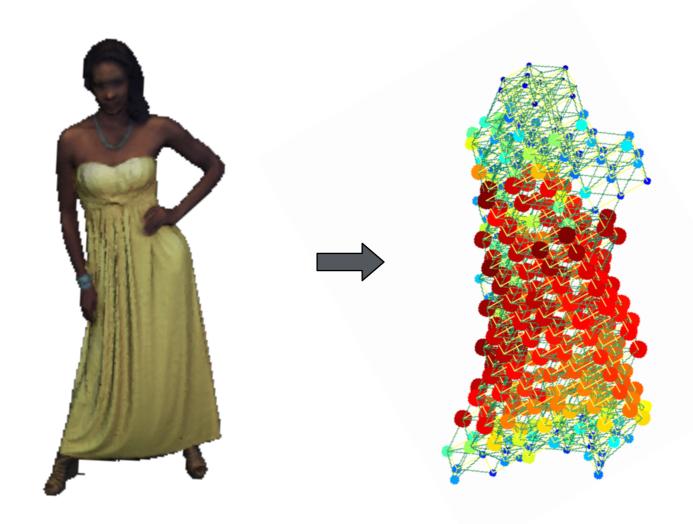
- The graph Fourier transform has been used to compress smooth signals on the graph
 - Intuition: Main energy is concentrated in the first GFT coefficients
- Example: image compression
 - Construct a graph that encodes pixel similarity
 - The graph Fourier transform has been used as an alternative to classical transforms





Application: 3D point clouds compression

Graphs provide a way to represent point clouds

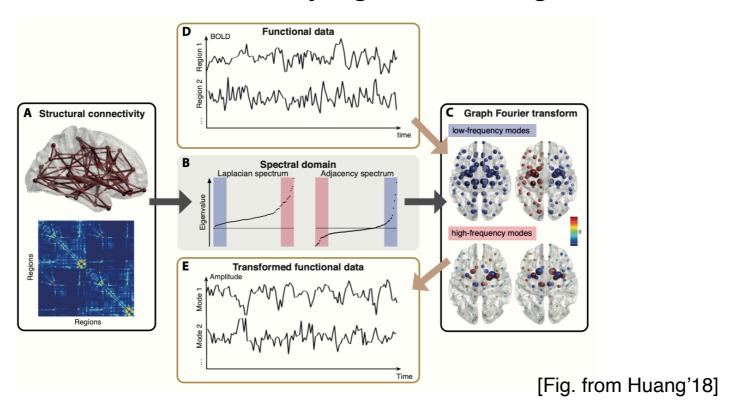


 The graph Fourier transform has been used to capture large parts of the cooler attributes with a few coefficients

Zhang et al., "Point cloud attribute compression with graph transforms", ICIP, 2014

Knowledge discovery: Neuroscience

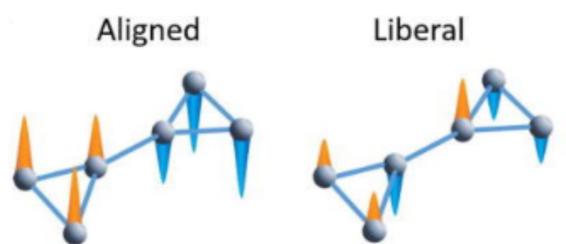
- Graph based transforms have been successful in domain specific knowledge discovery
- In neuroscience, GSP tools have been used to improve our understanding of the biological mechanisms underlying human cognition and brain disorders



 Analysis in the spectral domain reveals the variation of signals on the anatomical network

Graph spectral analysis for understanding cognitive flexibility

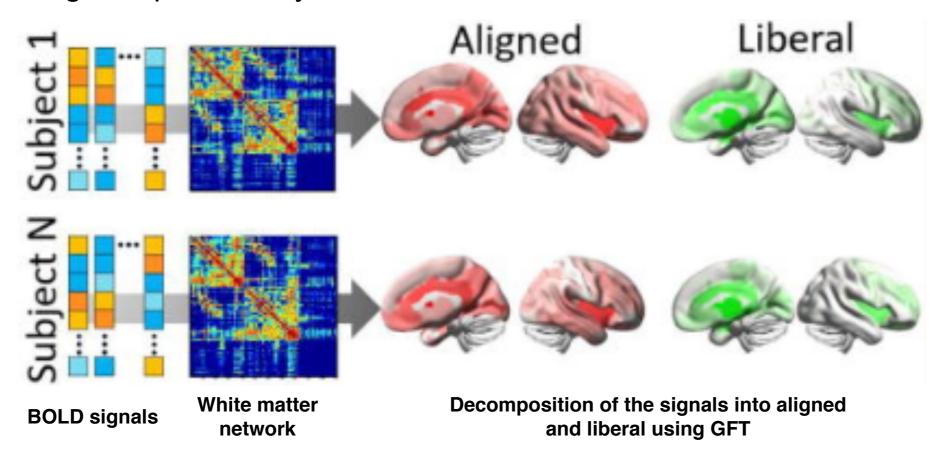
- Cognitive flexibility describes the human ability to switch between modes of mental function
- Integrating brain network structure, function, and cognitive measures is key
- GFT allows to decompose each BOLD signal into two components
 - Aligned: Component of the signal that is aligned with the anatomical network
 - Liberal: Component of the signal that does not align with the anatomical network



Medaglia et al., "Functional Alignment with Anatomical Networks is Associated with Cognitive Flexibility", Nat. Hum. Behav., 2018

BOLD signal alignment across the brain

- Functional alignment with anatomical networks facilitates cognitive flexibility (lower switch costs)
 - Liberal signals are concentrated in subcortical regions and cingulate cortices
 - Aligned signals are concentrated in subcortical, default mode, fronto-parietal, and cingulo-opercular systems



Summary

- Graphs are natural tools to capture the data domain
- Going beyond graph structure implies understanding the interplay between that domain and the data:
 - Jointly consider domain (i.e., graph) and data (i.e., graph signals) that live in that domain
- Some key concepts can be directly generalized from regular grids to graphs
 - Tranforms on graph
 - Filtering on graph
 - Convolution on graph (more in the following lectures...)
- Many applications including network analysis, denoising, compression

References

- The Emerging Field of Signal Processing on Graphs, Shuman et al., 2013
- Graph Signal Processing, Ortega et al., 2018
- Toolbox: https://pygsp.readthedocs.io/en/stable/index.html

