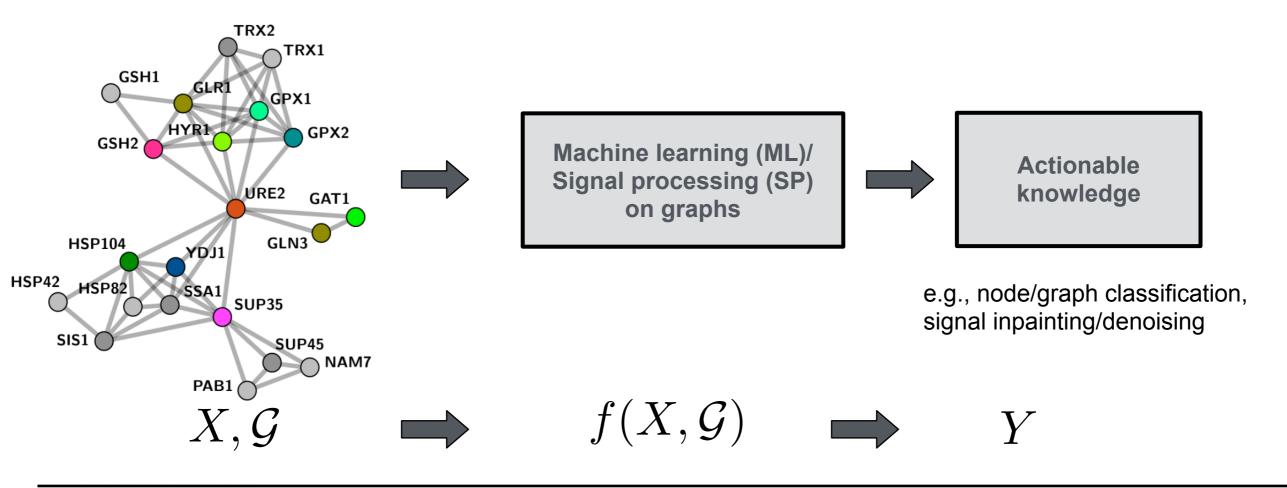
Machine learning on graphs - Introduction

Dr Dorina Thanou 27.03.2023

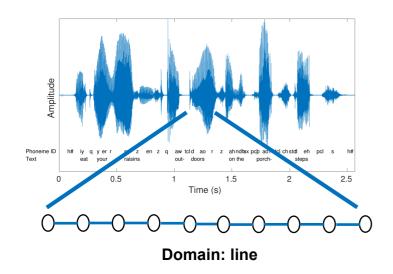
In the following lectures...

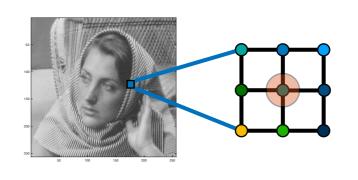
- How can we infer useful information from data that live on a graph?
 - Graphs could be weighted or unweighted
 - Nodes could have attributes

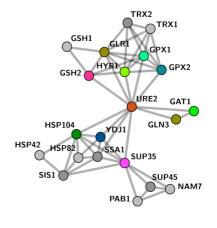


Why learning from graphs is hard?

- Contrary to traditional modalities:
 - Graphs capture complex and irregular connections
 - There is no explicit notion of ordering
 - Nodes can have multiple attributes





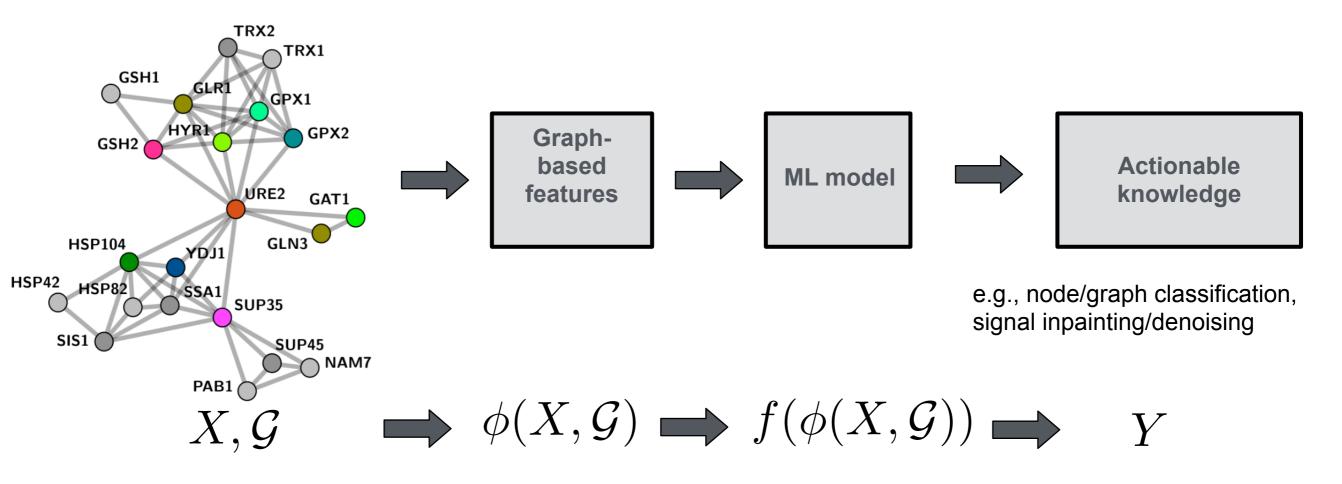


Domain: grid

Domain: irregular graph

Traditional ML pipeline on graphs

- How can we infer useful information from data that live on a graph?
 - Graphs could be weighted or unweighted
 - Nodes could have attributes



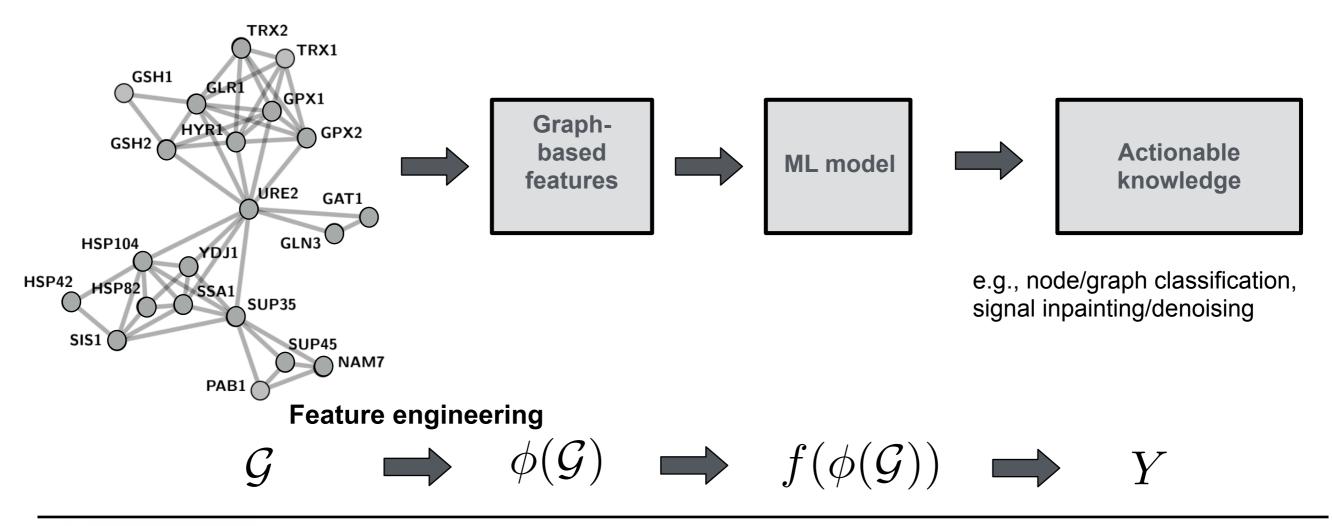
Graph-structured features/embeddings: A high level overview

- Hand-crafted features: Capture some structural properties of the graph, followed by some statistics (signatures)
- Graph kernel methods: Design similarity functions in an embedding space
- Spectral features: Capture the graph properties through spectral graph theory
 Model-driven
- Learned features: Learn graph features directly from data by designing models based on meaningful assumptions
 - **Unsupervised embeddings:** Learn features based on different ways of preserving information from the original graph (without node attributes)
 - **Graph neural network features:** Learn features from the data using a well-designed family of neural networks (with node attributes)

Data-driven

In this lecture

 How can we infer useful information only from the graph structure?



Graph-structured features/embeddings: A high level overview

- Hand-crafted features: Capture some structural properties of the graph, followed by some statistics (signatures)
- Graph kernel methods: Design similarity functions in an embedding space
- Spectral features: Capture the graph properties through spectral graph theory

Following lectures

- Learned features: Learn graph features directly from data by designing models based on meaningful assumptions
 - Unsupervised embeddings: Learn features based on different ways of preserving information from the original graph
 - **Graph neural network features:** Learn features from the data using a well-designed family of neural networks

Data-driven

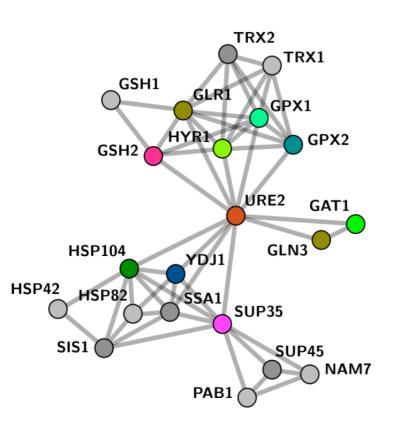
Outline

- Machine learning pipeline on graphs
- Traditional graph structural features
 - Node level tasks
 - Graph level tasks
 - Edge level tasks

Outline

- Machine learning pipeline on graphs
- Traditional graph structural features
 - Node level tasks
 - Graph level tasks
 - Edge level tasks

Traditional ML pipeline: Input



- Input:
 - Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
 - Graph with attributes: \mathcal{G}, X

 X, \mathcal{G}

Traditional ML pipeline: Features

- Should reveal important information regarding the graph structure
- Key to achieving good model performance

Graphbased features

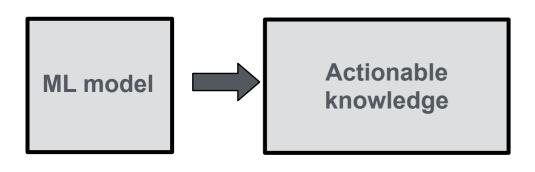
- Features can be defined at different scales
 - At a node, edge, sets of nodes, entire graph level

$$\phi(X,\mathcal{G})$$

- The choice of the features depends on
 - the end task
 - prior knowledge on the data

Traditional ML pipeline: Learning tasks

- The features are given as input to an ML model
 - Examples: logistic regression, SVM, neural networks, etc.

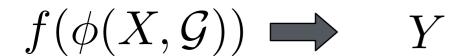


e.g., node/graph classification, signal inpainting/denoising

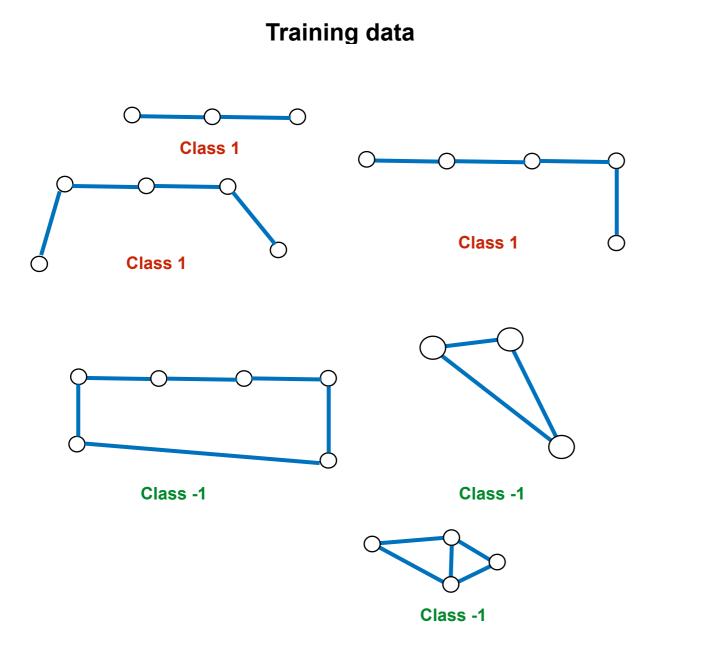
• Given a set of graph-based features, train a model f that predicts the correct Y

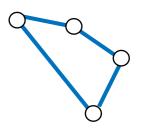
Testing phase:

 Given a new node/link/graph, compute its features, and give them as an input to f to make a prediction

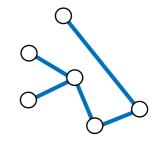


Illustrative example: Graph classification





Class?



Class?

What are the key features for classifying my graphs?

Illustrative example: Graph classification with SVM

Classical SVM setup:

- Given a set of M training graphs, across with their class labels $\mathcal{D} = \{(\mathcal{G}_i, y_i)\}_{i=1}^M$ learn a classifier that predicts the label of a new graph

$$\max_{\alpha} \sum_{i=1}^{M} \alpha_i - \frac{1}{4} \sum_{i,j=1}^{M} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathcal{G}_i), \phi(\mathcal{G}_j) \right\rangle$$
subject to
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

Graph features or embeddings

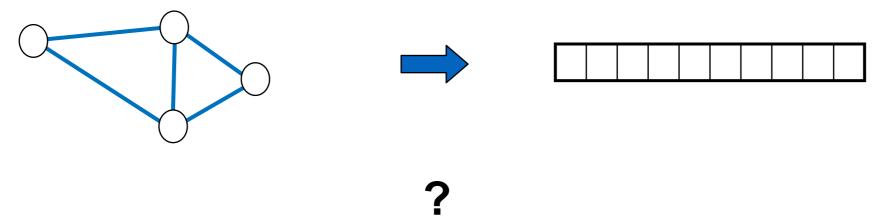
- Use the learned model to classify new graph instances

How do we compute graph features?

[Scholkopf et al., Learning with kernels, MIT Press, 2002]

Highly challenging for ML

- Features (often know as embeddings) should capture the intrinsic structure of the graph
- Most ML algorithms require features to be represented as a fixed length feature vector



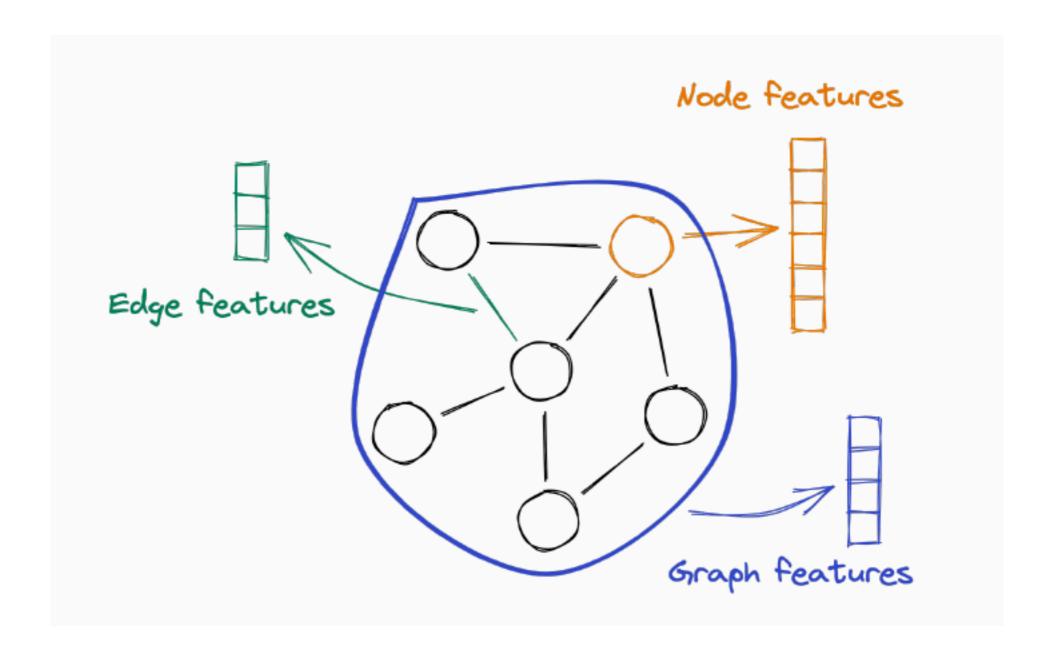
Todays' focus:

- Graphs without node attributes, i.e., inferring information **only from the graph structure** (graph structural features)
- Hand-designed features, i.e., features that are designed based on some priors (no learning involved!)

Outline

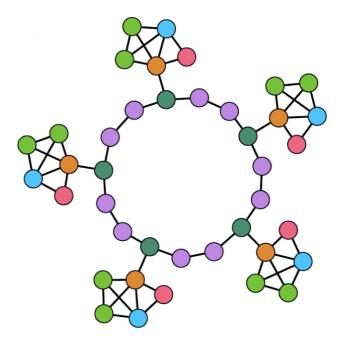
- Machine learning pipeline on graphs
- Traditional graph structural features
 - Node level tasks
 - Graph level tasks
 - Edge level tasks

Extracting structural information at different levels



Node level features

Typically useful for node classification/clustering tasks



Color reflects the degree!

 Aim at characterizing the structure and position of a node in the network

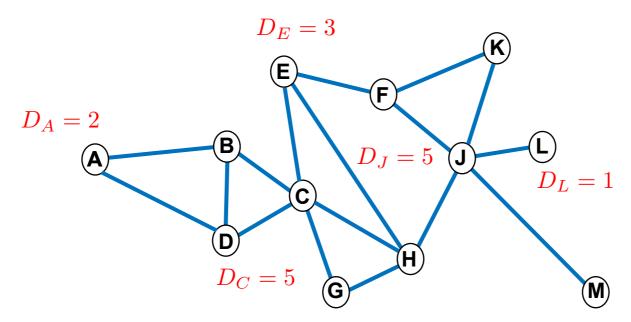
Common node level features

- Node degree
- Node centrality
- Clustering coefficient
- Graphlets

Node degree

• The degree D_u of node u is the number of edges (neighboring nodes) the node has

$$D_u = \sum_{v \in \mathcal{N}_u} W_{vu}$$



- Usually normalized with the maximum number of nodes $\tilde{D}_u = \frac{D_u}{|\mathcal{V}|}$
- The node degree feature treats all nodes equally

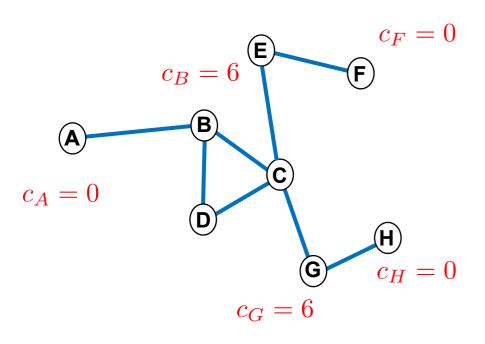
Node centrality

- Node centrality takes the node importance in a graph into account
- Various ways to model importance
 - Betweenness centrality
 - Closeness centrality
 - Eigenvector centrality

Betweenness centrality

 A node is important if it lies on many shortest paths between other nodes

$$c_u = \sum_{v \neq u \neq z} \frac{\#(\text{shortest paths between } v \text{ and } z \text{ that contains } u)}{\#(\text{shortest paths between } v \text{ and } z)}$$

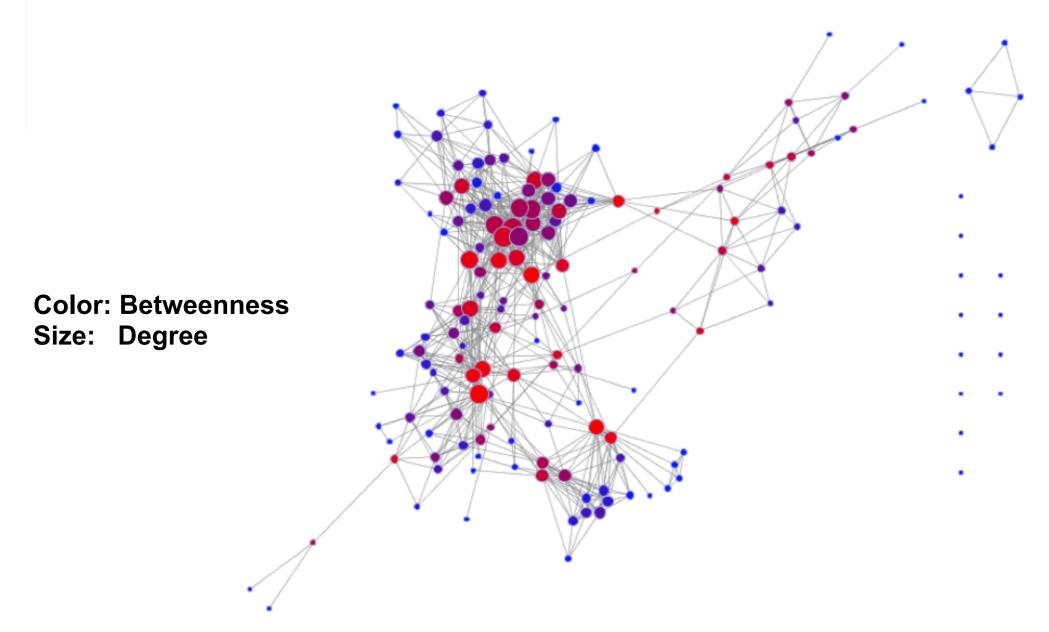


Example:

$$c_B = 6$$

 $(ABD, ABC, ABCE, ABCEF, ABCG, ABCGH)$

Comparison between degree and betweenness centrality

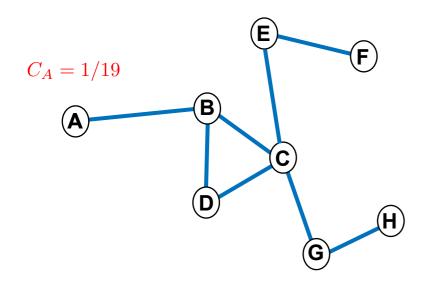


Degree is high if a node has many direct connections (e.g., friends) Betweenness is high if a node is 'between' other nodes

Closeness centrality

 A node is important if it has small shortest path lengths to all other nodes

$$c_u = \frac{1}{\sum_{v \neq u} \text{ shortest path length between } v \text{ and } u}$$

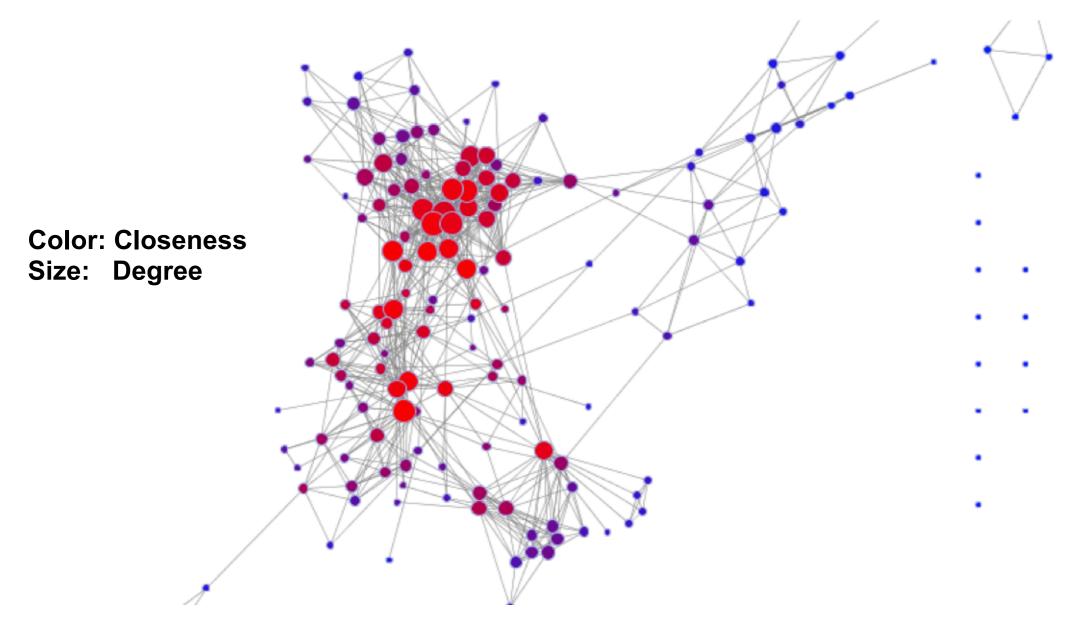


Example:

$$c_A = 1/(1+2+2+3+4+3+4) = 1/19$$

(AB, ABC, ABD, ABCE, ABCEF, ABCG, ABCGH)

Comparison between degree and closeness centrality



Degree is high if a node has many direct connections (e.g., friends)

Closeness is high if a node is in the 'middle' of things

Eigenvector centrality

ullet A node u is important if it is surrounded by important neighbors

$$c_u = \frac{1}{\lambda} \sum_{v \in \mathcal{N}_u} W_{uv} c_v$$

It can be written as the eigenvector equation

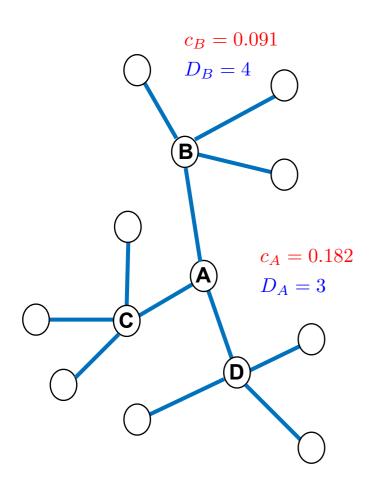
$$\lambda c = Wc$$

- Centrality measure: (dominant) eigenvector corresponding to the largest eigenvalue
- Can be computed using power iteration

$$c^{t+1} = Wc^t$$

Contains the number of length t+1 paths arriving at each node!

Example of eigenvector centrality



Degree is high if a node has many direct neighbors Centrality is high if a node has well-connected neighbors

Clustering coefficient

- The clustering coefficient characterizes the subgraph containing the neighbors of a node, and all edges between nodes in its neighborhood
- It measures how tightly clustered a node's neighborhood is

$$cc_u = \frac{|(v_1, v_2) \in \mathcal{E} : v_1, v_2 \in \mathcal{N}_u|}{\binom{D_u}{2}}$$

- It is computed as the proportion of closed triangles in a node's local neighborhood
 - It represents the probability that two neighbors of a node are linked to each other (see previous lecture on graph theory basics)

Clustering coefficient

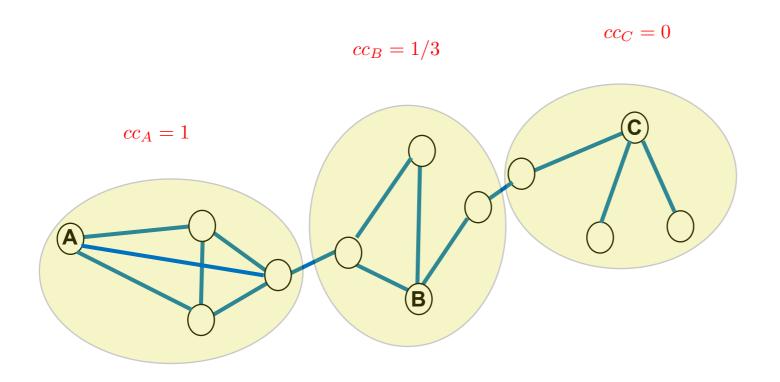
- The clustering coefficient characterizes the subgraph containing the neighbors of a node, and all edges between nodes in its neighborhood
- It measures how tightly clustered a node's neighborhood is

$$cc_u = \underbrace{\frac{|(v_1,v_2) \in \mathcal{E}: v_1, v_2 \in \mathcal{N}_u|}{(\binom{D_u}{2})}}^{\text{\# edges among neighboring nodes}}$$

$$+ \text{mode pairs among neighboring nodes}$$

- It is computed as the proportion of closed triangles in a node's local neighborhood
 - It represents the probability that two neighbors of a node are linked to each other (see previous lecture on graph theory basics)

Example of clustering coefficient

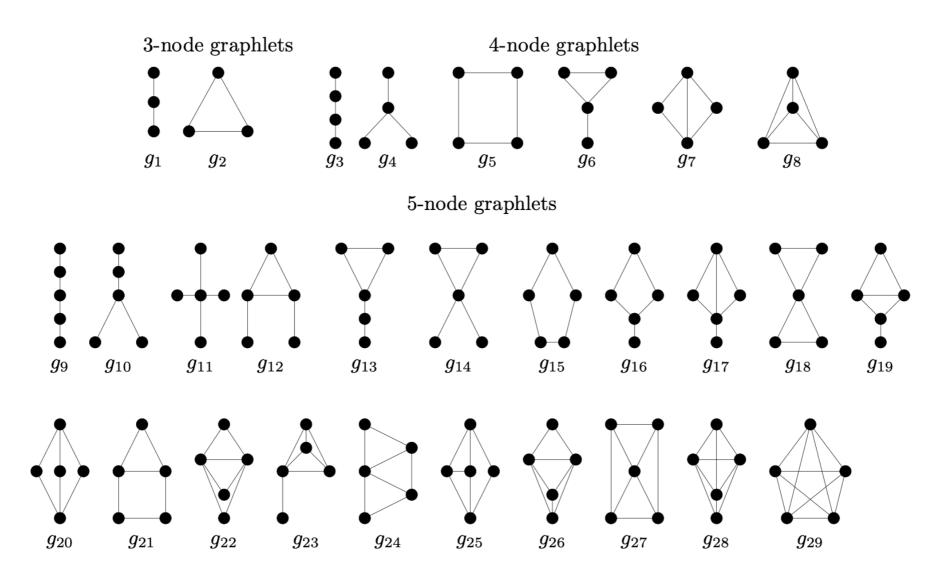


Well-connected neighborhood

Sparsely connected neighborhood

Graphlets

Small subgraphs that describe the structure of node network neighbourhood

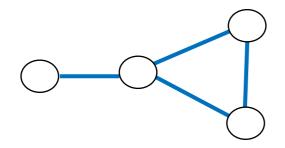


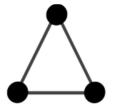
These topological structures can be used to define a frequency histogram

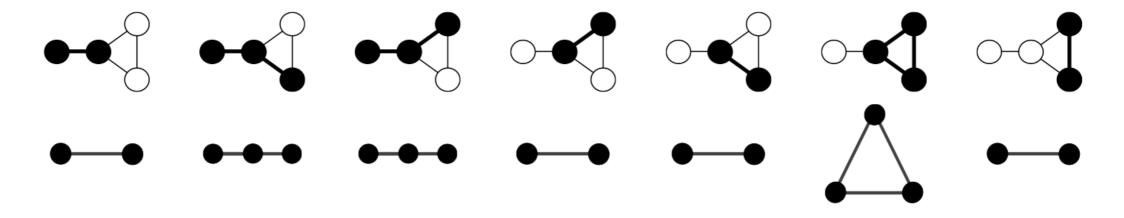
Example of graphlets

 Graphlet Degree Vectors (GDV): counts the number of graphlets that a node belongs to

Possible graphlets:



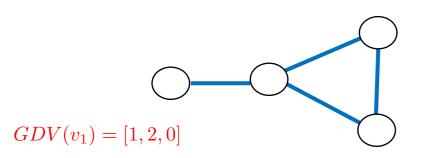




Example of graphlets

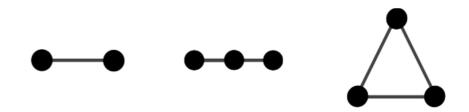
 Graphlet Degree Vectors (GDV): counts the number of graphlets that a node belongs to

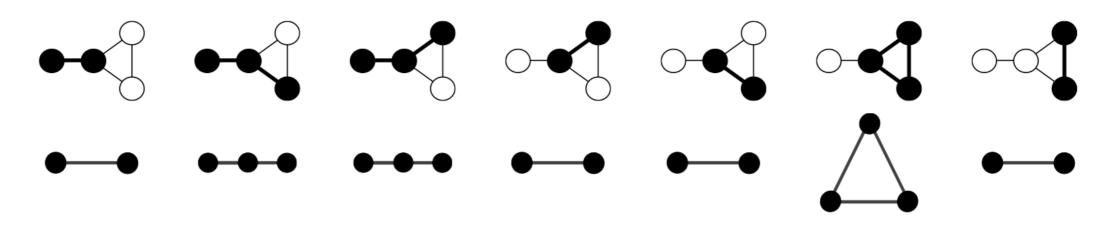
 $GDV(v_3) = [2, 1, 1]$



$$GDV(v_2) = [3, 2, 1]$$
 $GDV(v_4) = [2, 1, 1]$

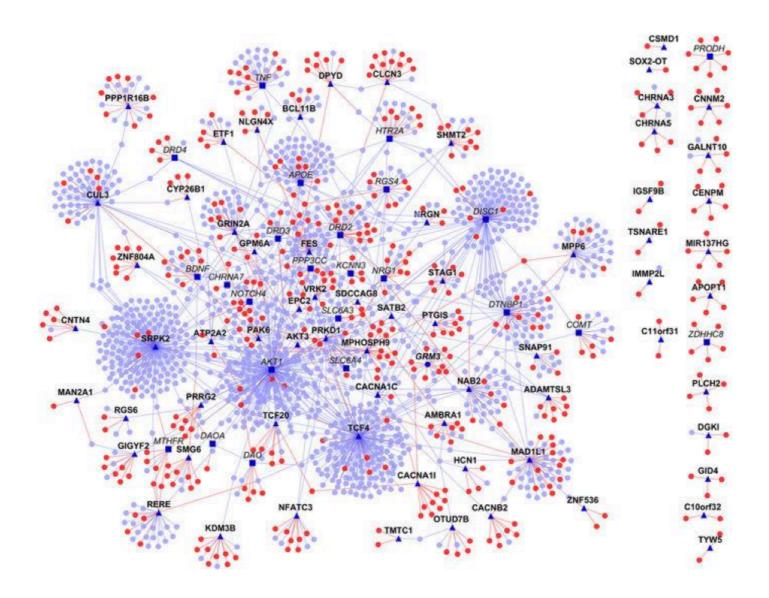
Possible graphlets:





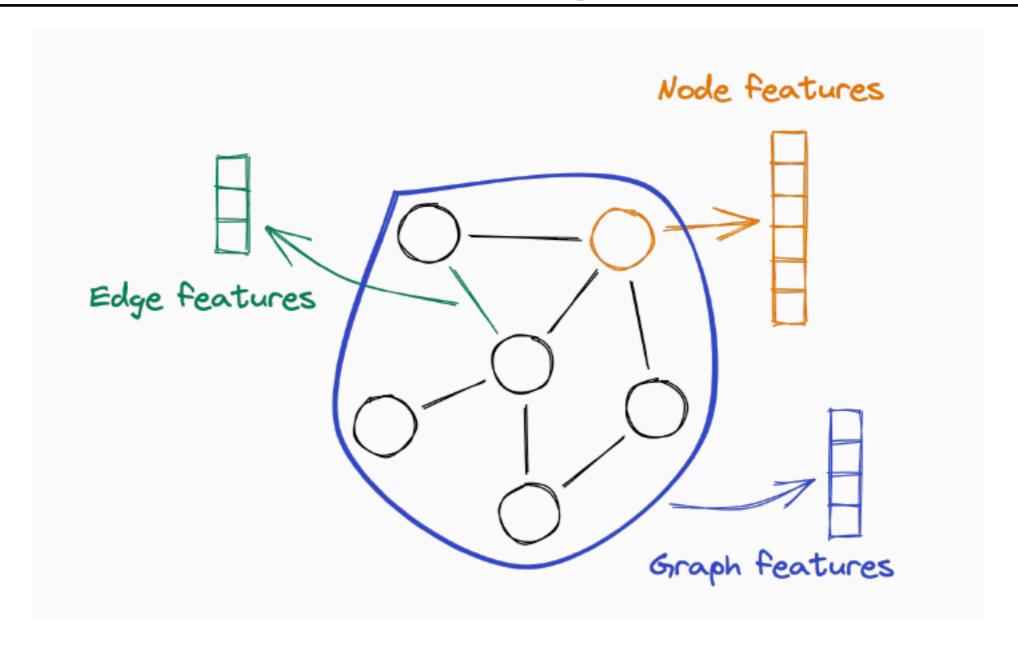
Graphlets for protein-protein interactions

Often used in classifying function of proteins in the interactome



[Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel protein-protein interactions. Nature]

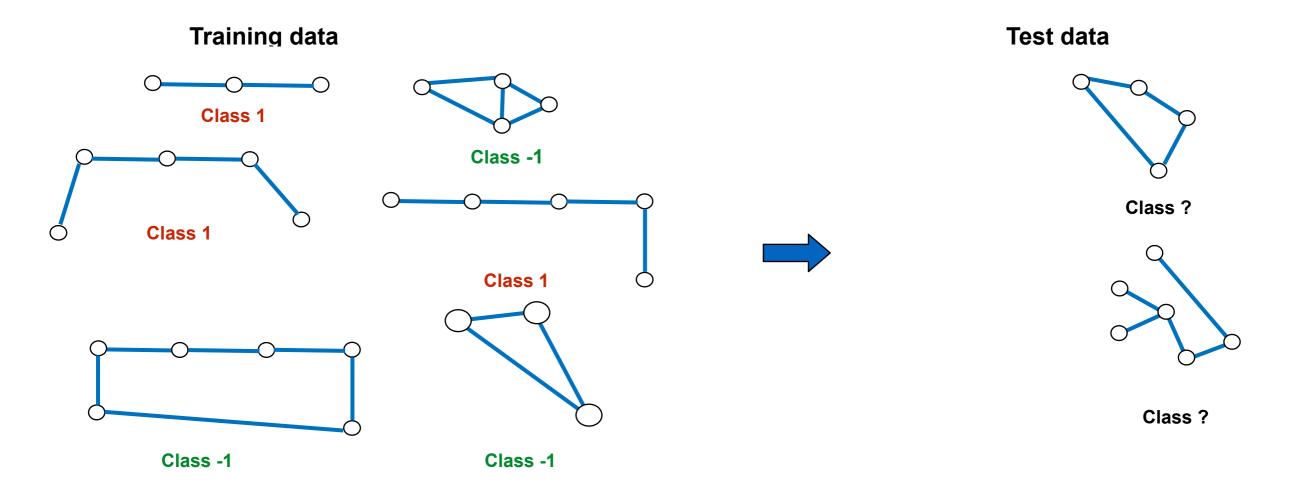
From node level to graph level task



How can we design features that characterize the structure of the entire graph?

Illustrative example: Graph classification

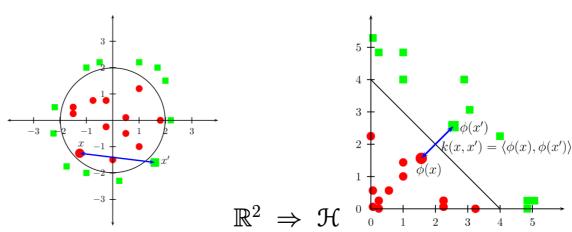
Common assumption: Graphs with similar structure have similar label



What is a good similarity metric between graphs?

Kernels in a nutshell

- Intuition: Move the learning task to a feature space where the task is easier
- Usually a two steps approach:
 - Map objects x and x' via mapping ϕ to ${\mathcal H}$
 - Measure the similarity in the feature space $\langle \phi(x), \phi(x') \rangle$



• Kernel trick: compute the inner product in \mathcal{H} as kernel in the input space

 $K(x, x') = \langle \phi(x), \phi(x') \rangle$

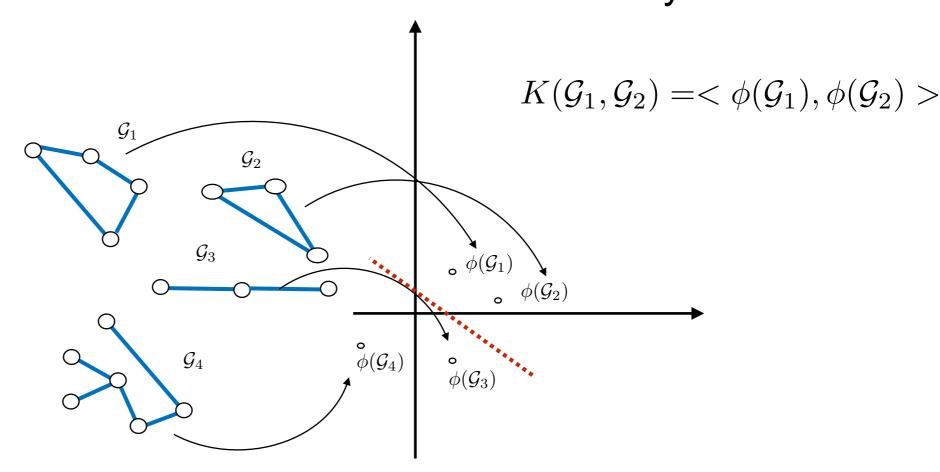
K is a measure of similarity

Graph kernel methods

• Let $\phi(\mathcal{G}_1), \phi(\mathcal{G}_2)$ be feature representations of graphs $\mathcal{G}_1, \mathcal{G}_2$ in a very high dimensional feature space

Define functions/kernels which measure the similarity between

graphs



Provide kernels as an input to a classifier: e.g., SVM

Illustrative example: Graph classification with Kernel SVM

Classical SVM setup:

- Given a set of M training graphs, across with their class labels $\mathcal{D} = \{(\mathcal{G}_i, y_i)\}_{i=1}^M$ learn a classifier that predicts the labels of a new graph

$$\max_{\alpha} \sum_{i=1}^{M} \alpha_i - \frac{1}{4} \sum_{i,j=1}^{M} \alpha_i \alpha_j y_i y_j K(\mathcal{G}_i, \mathcal{G}_j) \qquad \text{Graph kernel}$$

subject to
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

Use the learned model to classify new graph instances

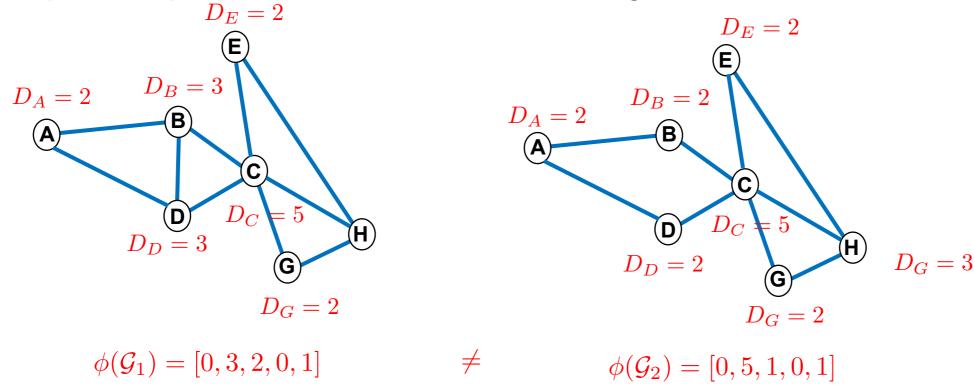
How do we compute graph features/kernels?

Graph level features

- Bag of nodes
- Graphlet kernel
- The Weisfeiler-Lehman kernel

Bag of nodes

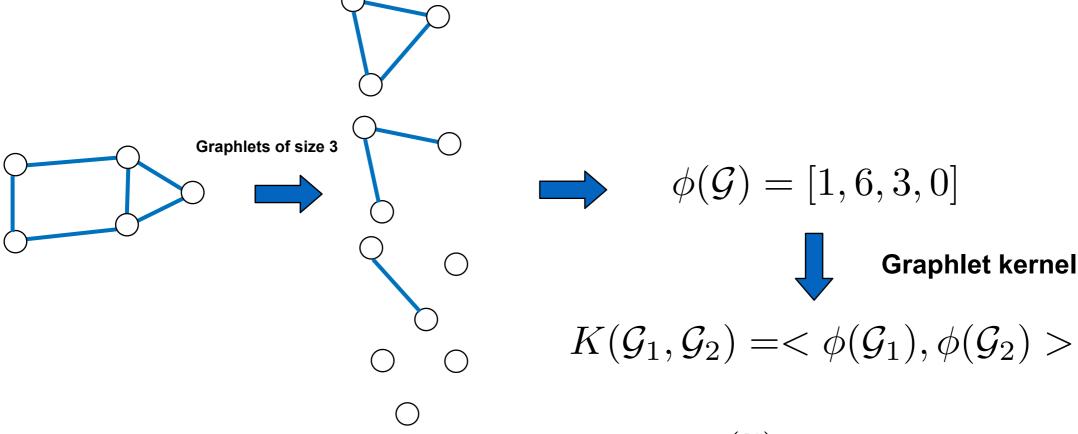
- Use node features to compute histograms or other summary statistics to define a graph level representation, i.e., graph features
- Example: Graph features based on node degrees



• Limitation: It can miss global properties of the graph

Graphlet kernel

- A subgraph-based kernel based on graphlets
 - Nodes do not need to be connected
- It counts the occurrence of graphlets in a graph



• Limitation: High complexity; there are $\binom{N}{K}$ graphlets of K nodes

[Shervashidze et al., Efficient graphite kernels for large graph comparison. AISTATS, 2009]

Weisfeiler-Lehman kernel

 Iteratively aggregate information from node's neighbourhoods wider than the 1-hop neighborhood

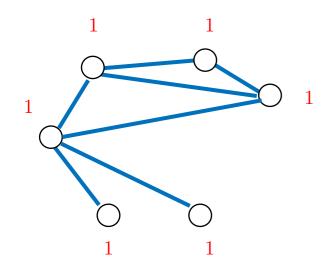
Color refinement algorithm:

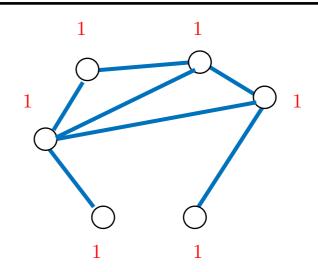
- **Input**: a graph \mathcal{G}
- Assign an initial color $c^{(0)}(u)$ (e.g., node degree) to each node u of $\mathcal G$
- For each iteration k+1 refine node colors as

$$c^{(k+1)}(u) = \text{HASH}\left(\left\{c^{(k)}(u), \left\{c^{(k)}(v)\right\}_{v \in \mathcal{N}_v}\right\}\right)$$

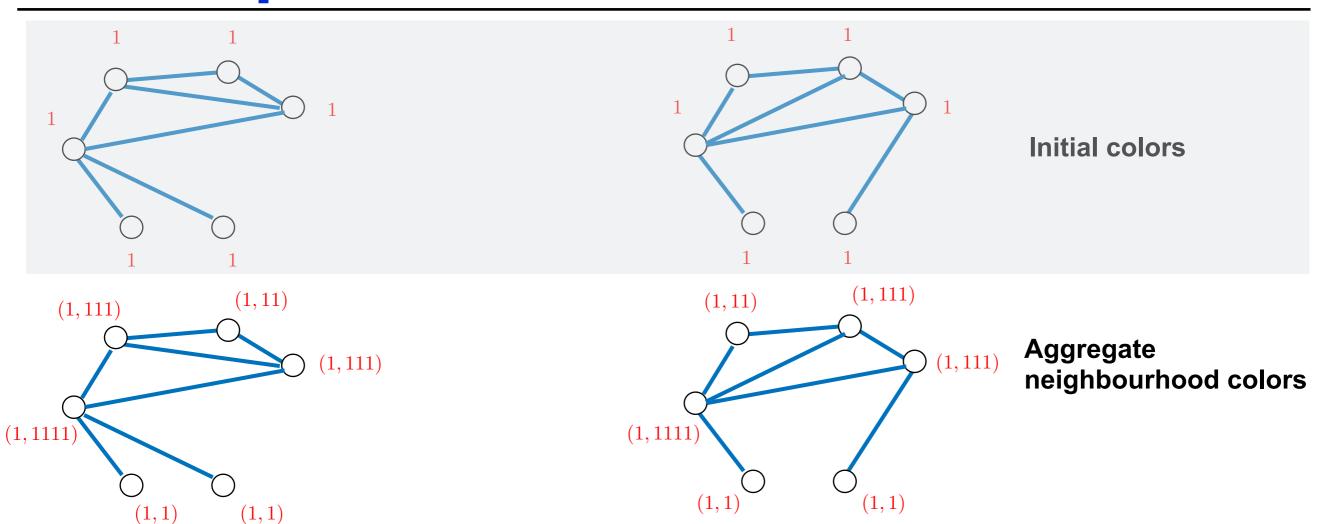
- Output: The node color $c^{(K)}(u)$ after K iterations
- It provides a description of the K-hop neighborhood with an efficient algorithm

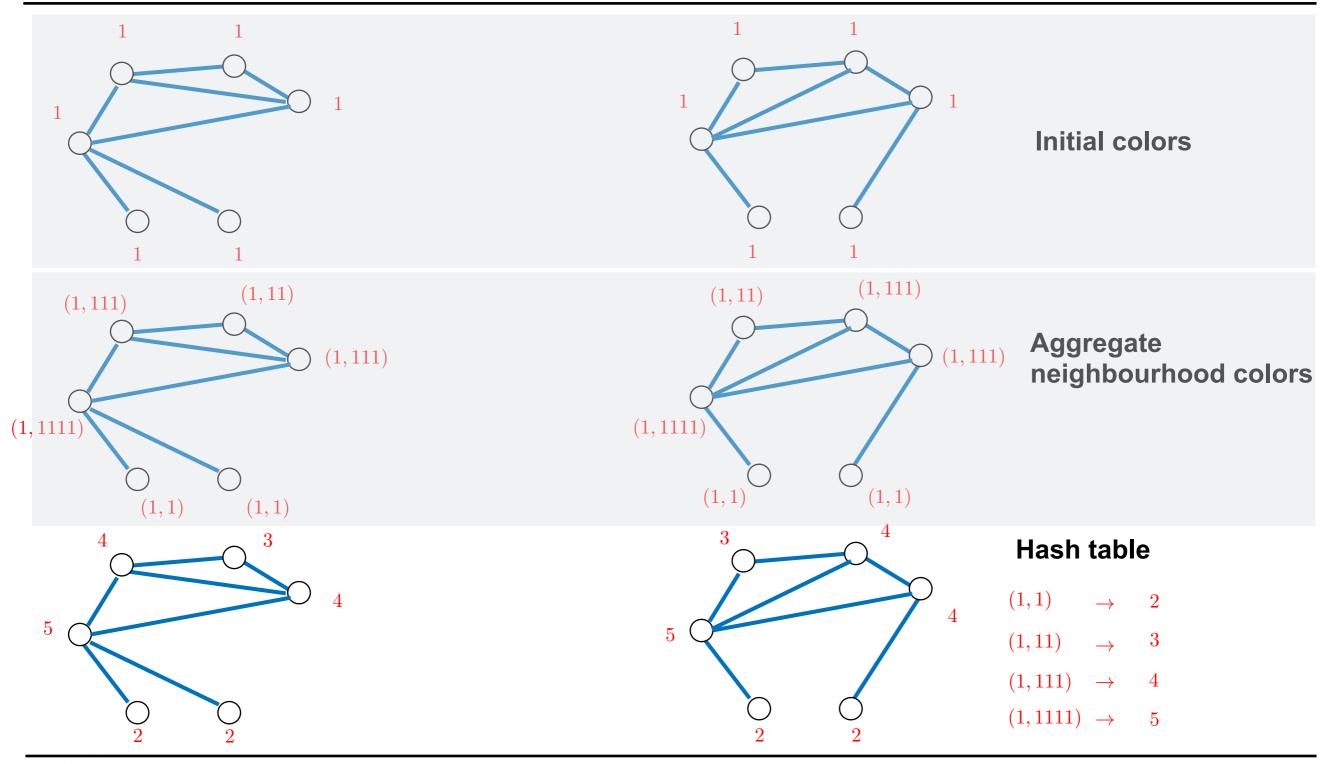
[Shervashidze et al., Weisfeiler-Lehman graph kernels, JMLR, 2011]

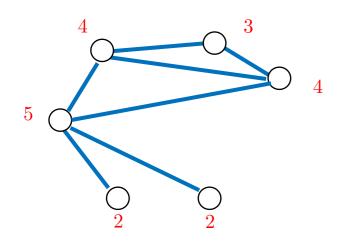


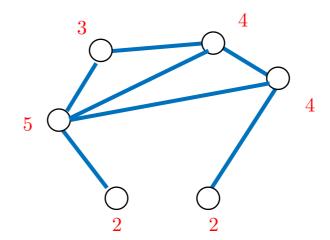


Initial colors



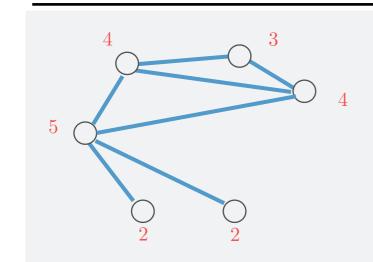


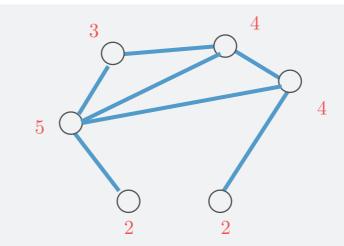




Hash table

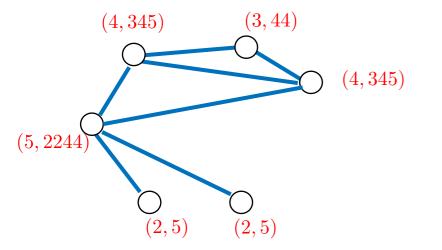
- $(1,1) \longrightarrow$
- $(1,11) \rightarrow 3$
- $(1,111) \rightarrow 4$
- $(1,1111) \rightarrow \xi$

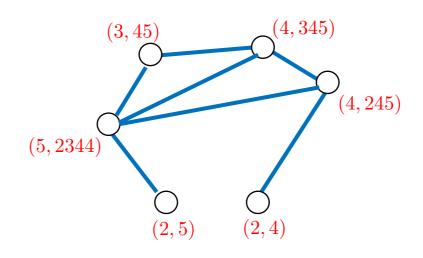




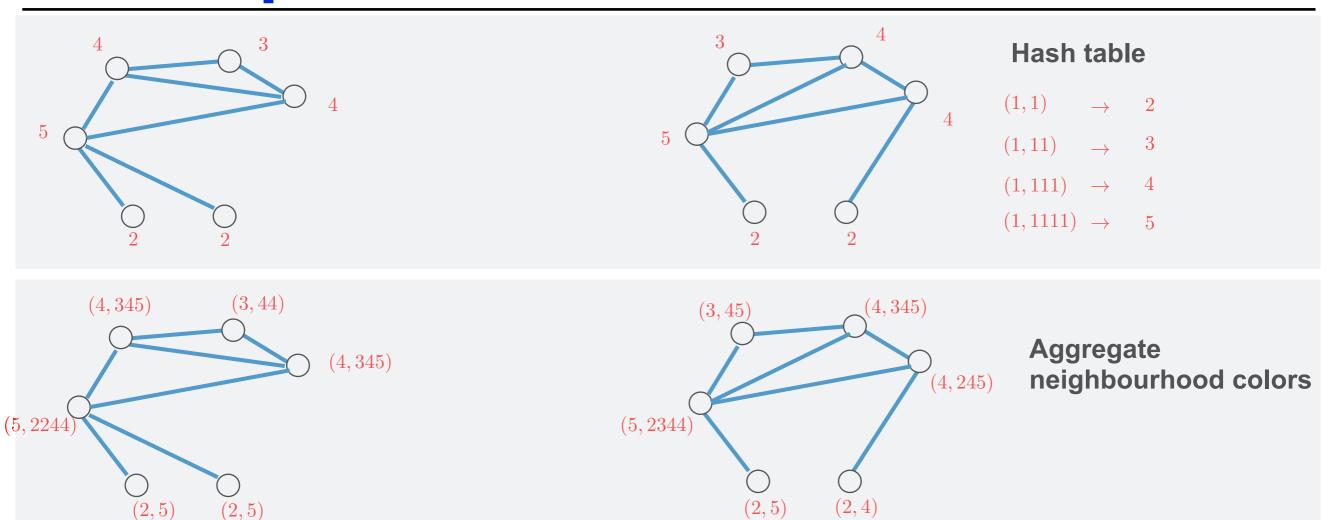
Hash table

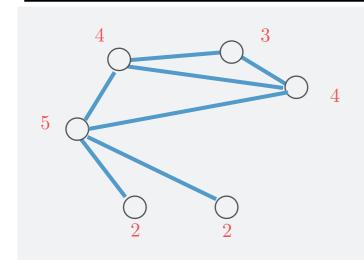
- $(1,1) \longrightarrow 2$
- $(1,11) \rightarrow 3$
- $(1,111) \rightarrow 4$
- $(1,1111) \rightarrow 5$

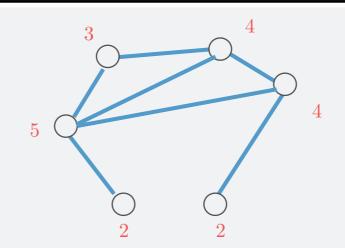




Aggregate neighbourhood colors





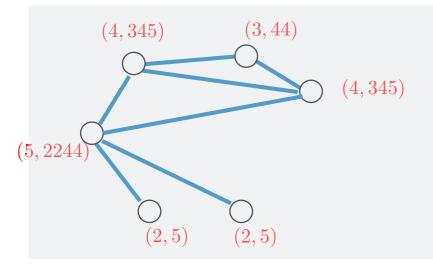


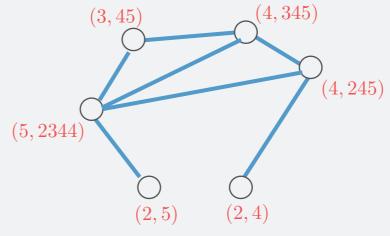
Hash table

$$(1,11) \longrightarrow 3$$

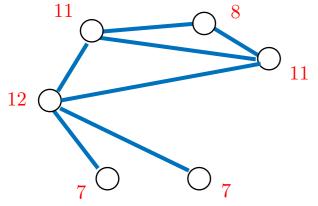
$$(1,111) \rightarrow 4$$

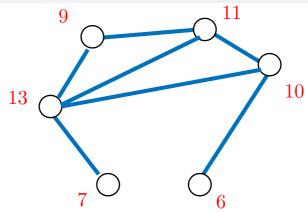
$$(1,1111) \rightarrow 5$$





Aggregate neighbourhood colors

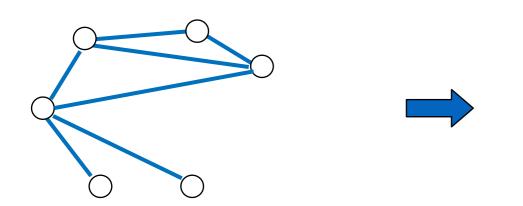




Hash table

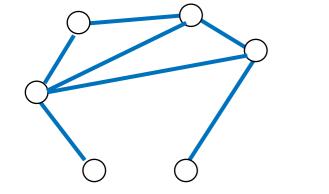
riasii tabic		
(2, 4)	\rightarrow	6
(2, 5)	\rightarrow	7
(3, 44)	\rightarrow	8
(3, 45)	\rightarrow	9
(4, 245)	\rightarrow	10
(4, 345)	\rightarrow	11
(5, 2244)	\rightarrow	12
(5, 2344)	\rightarrow	13

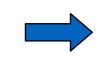
After K iterations, the WL kernel computes the histogram of colors



$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13$$

$$\phi(\mathcal{G}_1) = [6, 2, 1, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0]$$





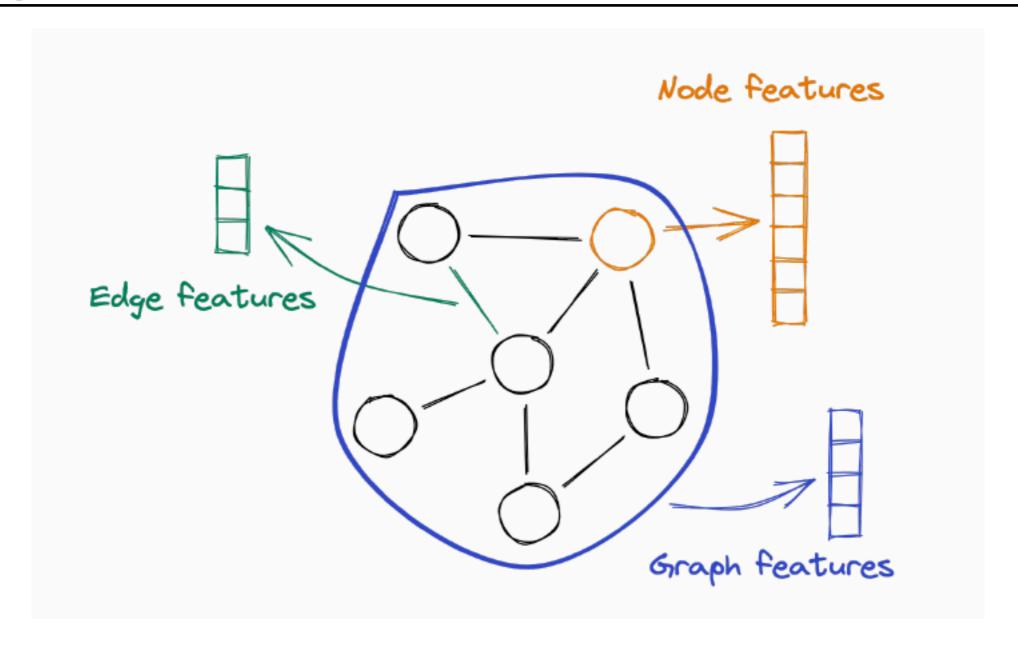
$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13$$

$$\phi(\mathcal{G}_2) = [6, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1]$$

WL kernel

$$K(\mathcal{G}_1,\mathcal{G}_2) = \langle \phi(\mathcal{G}_1), \phi(\mathcal{G}_2) \rangle$$

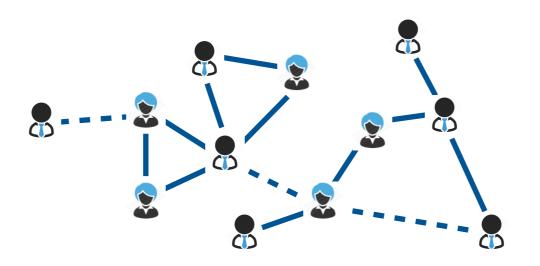
Edge level features



How can we capture relationships between neighboring nodes?

Illustrative example: Link prediction

- Goal: Predict the existence of an edge between two nodes given some already existing edges
- Intuition: Design features about pairs of nodes that measure the overlap between their neighborhoods



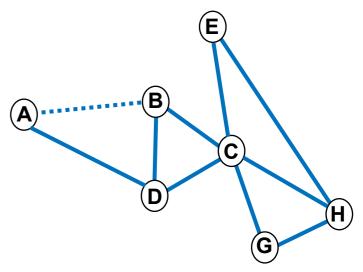
Link prediction in one slide

- For each pair of nodes (u, v) compute score(u, v)
- Sort pairs by decreasing score
- Predict top k pairs as a link
- Common ways to compute $score(\cdot,\cdot)$:
 - Local neighborhood overlap: quantify the similarity of the neighborhood between two nodes
 - Global neighborhood overlap: quantify if two nodes belong to the same community in the graph

Local neighborhood overlap

- Compute score(u, v) as the number of common neighboring nodes i.e., **overlap** between (u, v)
- Common neighbors:

$$score(A, B) = |\mathcal{N}_A \cap \mathcal{N}_B| = |\{D\}| = 1$$



Jaccard's coefficient:

$$score(A, B) = \frac{|\mathcal{N}_A \cap \mathcal{N}_B|}{|\mathcal{N}_A \cup \mathcal{N}_B|} = \frac{|\{D\}|}{|\{D, C\}|} = \frac{1}{2}$$

• Limitation: A link between (A, E) cannot be created. Why?

Global neighborhood overlap

- Compute score(u, v) by taking into consideration the entire graph, i.e., global overlap
- Katz index: Count the number of walks of all lengths between a given pair of nodes
 - Use powers of the adjacency/weight matrix

$$score(A,B) = \sum_{w^0}^{\infty} \beta^i W_{AB}^i = [(I-\beta W)^{-1} - I]_{AB}$$

$$v^0 \qquad v^i = 1 \qquad v^2 \qquad v^3 \qquad v^4$$

$$v^0 \qquad v^i = 1 \qquad v^2 \qquad v^3 \qquad v^4$$

$$v^0 \qquad v^i = 1 \qquad v^2 \qquad v^3 \qquad v^4$$

$$v^0 \qquad v^i = 1 \qquad v^2 \qquad v^3 \qquad v^4$$

$$v^0 \qquad v^i = 1 \qquad v^2 \qquad v^3 \qquad v^4$$

$$v^0 \qquad v^0 \qquad v^0 \qquad v^0 = 1015 \ 20 \qquad v^0 \qquad v^$$

Summary

- Traditional graph analysis/inference pipeline decouples the data representation and learning process
 - Hand-crafted features + ML/statistics
- The type of features depends on the task:
 - Node level: generate features for each individual node
 - Node degree, centrality, clustering coefficients, graphlets
 - Graph level: generate features for the whole graph
 - Bag of nodes, graphlet kernels, WL kernels
 - Link level: generate features that measure a common neighborhood between two nodes
 - Local/global neighborhood overlap
- Careful design of graph features can be useful in applications where data is limited

Limitations

- Hand-engineered features are defined a priori: no adaptation to the data
- Designing graph features can very often be a time consuming and expensive process
- Not easy to incorporate additional features on the nodes
- More flexibility can be achieved with an end-to-end learning pipeline: next lectures!

References

- 1. Graph representation learning (chap 2), William Hamilton
- 2. Metrics for graph comparison: A practitioner's guide, Wills, PLOS ONE, 2020
 - https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228728
- 3. Graph Kernels State-of-the-Art and Future Challenges, Borgwardt et al,
 - https://arxiv.org/pdf/2011.03854.pdf

