
Week 8: Learning in Low Data Regime with 
Self-Supervised Learning on Graphs

Icare Sakr
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Self-supervised learning

The big _____ fox _____ over the _____ dog

The big brown fox leaped over the lazy dog.

The big agile fox bounded over the playful dog.

The big sly fox vaulted over the curious dog.
Time or Space



Self-supervisedlearningofbrainsignals



Input features Latent featuresb.

a. 8-states upper limb task

Self-supervisedlearningofbrainsignals



Learning in low data regime
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• Despite the success of classical supervised learning methodologies they are limited by the 
availability of carefully annotated (labeled) datasets. 

• The acquisition of these labels can be labor-intensive and time-consuming, especially in 
areas dealing with large-scale datasets (e.g. social networks), or that demand extensive 
domain knowledge (e.g. chemistry, medicine, neuroscience, …).

• Moreover, labels are often compressed (low-informative) descriptions of the data, as a 
result, machine learning models often lack generality and fail to cope with novel conditions, 
especially when training data is scarce.



Self-Supervised Learning (SSL)
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• Self-supervised learning leverages readily available unlabeled data without the need of 
human-annotated labels.

• SSL learns informative and generic data representations that are useful across a variety 
of downstream tasks.

• Accumulates background knowledge or “common sense” about the data structure in a 
non task-specific manner

• SSL is behind the remarkable success of natural language processing models such as 
ChatGPT.



Self-Supervised Learning (SSL) – pretext task
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• Works by solving of a prior knowledge task (pretext task), in which the supervision signal 
is derived from the data itself, often leveraging the underlying structure of the data.

• Through this pretext task, the machine learning model learns meaningful data 
representations that are useful across a range of downstream tasks (e.g. text 
summarization, image classification)

The big _____ fox _____ over the _____ dog

The big brown fox leaped over the lazy dog.

The big agile fox bounded over the playful dog.

The big sly fox vaulted over the curious dog.



G
ra

ph
 R

ep
re

se
nt

at
io

ns
 fo

r B
io

lo
gy

 a
nd

 M
ed

ic
in

e

Ic
ar

e 
Sa

kr

10

Transfer learning

Self-Supervised Learning (SSL) – training schemes

Representation learning 

DA A TA

DB TBA’ B

Generic networkGeneric dataset Pretext task

Downstream 
task

Pretrained
(tunable)

TrainableSpecific dataset

A’



How can we apply SSL concepts to graphs
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Challenges with graph structured data

• Graphs have highly irregular structures in non-Euclidean spaces (unlike images or text)

Ø Need for methods that capture these irregular structures and relationships between 

nodes and edges

• Data samples (e.g. nodes) can be naturally linked with the topological structure of the 

graph

Goal: leverage the graph’s inherent structure to learn node-level or graph-level 
representations, that are useful for downstream tasks (e.g. clustering, anomaly 
detection, classification,…)

Social graphregular-grid



Graph Self-Supervised Learning: A Survey
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Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, 

Philip S. Yu, Life Fellow, IEEE

May 2022



Categorization of graph SSL methods
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Graph Self-
supervised 

learning

Generative 
methods

Auxiliary-
property

prediction 
methods 

Contrastive 
methods 



Generative (reconstructive) SSL objective
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• Aim to reconstruct parts of the input data using 
the data itself or a perturbed version of it.

• Full graphs or subgraphs are used as input and 
a machine learning model learns by feature 
generation and/or structure generation.



Generative (reconstructive) SSL objective
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1.   Feature generation

• Recover feature information from the original 
or perturbed graph.

• Node features, edge features, low 
dimensional feature matrix.

• Example: masked feature regression

Graph Completion

masked-autoencoders in computer vision 



Generative (reconstructive) SSL objective
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2.  Structure generation

• Learn by predicting the structural (topological) 
information of graphs

• Typically, the objective is to reconstruct the 
adjacency matrix

• Capture more pair-level information since the 
structure generation focuses on edge generation

• Examples: Graph Autoencoder (GAE), Denoising 
link reconstruction



Auxiliary-properties prediction SSL objective
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• Predict node, edge or graph level auxiliary 
properties (e.g. node degrees, path lengths, 
centrality, clustering index …) 

• Enforces the model to learn representations that 
preserve the auxiliary variables information.

• Typically, multiple auxiliary variables can be used 
to enhance generality of the representations
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1.   Auxiliary property classification

• Predict discrete auxiliary properties

• Examples:
• Node Clustering (predict the cluster of 

each node with predefined clusters)
• Pair relation properties (e.g. closeness, 

centrality difference between two nodes) 

Auxiliary-properties prediction SSL objective
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2.   Auxiliary property regression

• Predict continuous auxiliary properties

• Examples:
• Node-level properties (degree, local 

clustering coefficient)
• Distance to all cluster centers (cluster 

center can be node with highest degree)

Auxiliary-properties prediction SSL objective



Contrastive SSL objective
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• Maximize Mutual Information (MI) between instances 
with similar semantic information (positive samples) 

• Minimize the MI between those with different semantic 
information (negative samples)

• How to define positive and negative samples?

attract

repel

Positive samples

Negative samples



Contrastive SSL objective
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You et. al. , Graph Contrastive Learning with 
Augmentations (GraphCL), 2021

• Contrasts the representations on a graph level

• Positive samples: two augmented versions of the 
same input graph

• Negative samples: two different graphs from the 
dataset

• The task of the model is to maximize the cosine 
similarity between positive samples, while minimizing 
the cosine similarity between negative samples



Contrastive SSL objective
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Augmentations on graphs

source: medium.com



Contrastive SSL objective
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Sun et. al., InfoGraph: Unsupervised and Semi-
Supervised Graph-Level Representation Learning via 
Mutual Information Maximization, ICLR 2020

• Contrasts the between the representations of 
entire graphs and those of substructures (e.g. 
nodes)

• Positive samples: any graph with any of its nodes

• Negative samples: any graph with any of other 
graph’s nodes

• The task of the model is to predict if the node 
embedding and the graph embedding originate 
from the same graph



Contrastive SSL objective
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• With contrastive approaches, defining
positive/negative sampling strategies can be
challenging and sub-optimal.

• Example: slightly changing the structure of
molecular graphs (e.g. removing an atom or a
bond) would still lead to similar graph
representations but might result in completely
different behaviors



Some empirical results
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• Some SSL methods such as GraphCL have already shown state-of-the-art performance 
especially when number of available labeled data is limited.

• The learned representations generalize well to unseen tasks and are more robust to 
noise and/or adversarial attacks.     



Outlook
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• SSL in graphs has still not seen similar success compared to other fields such as natural 
language processing or computer vision (complicated to define good SSL learning 

schemes to infer meaningful semantic representations on graphs)

• Promising trends:
• Hybrid SSL approaches combining multiple pretext tasks are emerging.

• Domain-specific augmentations and scalable architectures are being developed.

• SSL is increasingly adopted in real-world graph applications such as drug discovery 
and recommender systems.



Interesting references
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• Graph Contrastive Learning with Augmentations - https://arxiv.org/pdf/2010.13902.pdf

• A Cookbook of Self-Supervised Learning - https://arxiv.org/pdf/2304.12210

• Graph Self-Supervised Learning: A Survey - https://arxiv.org/abs/2103.00111

• InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning 
via Mutual Information Maximization - https://openreview.net/forum?id=r1lfF2NYvH

https://arxiv.org/pdf/2010.13902.pdf
https://arxiv.org/pdf/2304.12210
https://arxiv.org/abs/2103.00111
https://openreview.net/forum?id=r1lfF2NYvH


Graph Self-
supervised 
Learning

Applications Thereof

Emanuel Vasquez
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§ Personal Background
§ EEG Emotion Recognition
§ Spatial Transcriptomics



Personal Background
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Somitogenesis Oates 
Lab
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Oates Lab, Bio 221, somitogenesis movie



• Emanuel Vasquez 1st Year PhD
• Current models do not explain how the 

PSM retains memory of heat shock
• Multimodal approaches for mechanistic 

explanation of defect formation
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5Periodic Defect Formation 
following Heat Shock in 
Zebrafish Embryos

Live Imaging In Situ labeling Transcriptomics



Biological Context
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Loureiro, Cristina, Olivier F. Venzin, and Andrew C. Oates. "Generation of patterns in the paraxial 
mesoderm." Current topics in developmental biology 159 (2023): 372-405.



GMSS: Graph-Based Multi-
Task Self-Supervised Learning 
for EEG Emotion Recognition 

Li, Yang, et al.
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§ Three different self-
supervised pretext tasks

• Two graph-based jigsaw 
puzzle tasks

• One contrastive learning 
task

Emotion Classification
from EEG
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§ Traditional ML
• Handcrafted features
• Expert input

§ Current challenges
• Generalization to new data
• Use full EEG data for finer 

discrimination
• Emotional label noise



§ Spatial Jigsaw puzzle
• Important electrodes to place as 

neighbors

§ Frequency Jigsaw puzzle
• Important frequency bands

§ Contrastive Learning

Setup
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V: EEG channels
E: Physical proximity

n: channel number
d: frequency band
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Spatial Jigsaw Puzzle
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§ 10 blocks corresponding to 
brain regions

§ Which spatial permutation 
corresponds to original data

Maximize 
Hamming 
Distance

Cross-Entropy

Classification Head



Frequency Jigsaw Puzzle
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§ 5 frequency bands are 
chosen

§ Energy features extracted 
from EEG data

§ Which permutation 
corresponds to original data

Cross-Entropy

Classification Head

Maximize 
Hamming 
Distance



Contrastive Learning
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§ Both spatially and frequency 
permuted data

§ Maximize self-similarity
§ Decrease cross-similarity

Projection Head

EEG data

Augmented Data

Mean positive 
pair similarity
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Supervised 
Mode

Unsupervised 
Mode

Labeled data training

Linear classifier
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Activation function

Learning parameters

Chebyshev polynomial
K = 2

Scaled Laplacian



Performance Unsupervised
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Three datasets

Subjects 15 15 30

Sessions 3 3 1

Emotions 3 6 4

Dependent: Within subject
Independent: Across subjects (Leave one subject out)

Classification Accuracy (mean/std)
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Dependent: Within subject
Independent: Across subjects (Leave one subject out)

Classification Accuracy (mean/std)

Su
pe

rv
is

ed



Confusion Matrix Unsupervised
EE

62
6 

/ E
m

an
ue

l V
as

qu
ez

18



Confusion Matrix
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SupervisedUnsupervised



Ablation Study
EE

62
6 

/ E
m

an
ue

l V
as

qu
ez

20



§ Hybrid graph SSL
• Multiple explicit pretext decoders

§ Generation-based graph SSL
• Data features and topology are permuted

§ Contrast-based graph SSL
• Pairwise data in contrastive learning

Self-supervised 
Learning
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ResST: A graph self-supervised 
residual learning framework 
for domain identification and 
data integration of spatial 
transcriptomics 
Huang, Jinjin, et al.
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§ Graph Neural Network
• Non linear spatial relationships

§ Marginal Disparity Discrepancy
• Align latent embedding
• Correcting batch effects

Spatial 
Transcriptomics
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§ Methods borrowed from single cell 
data

• No spatial localization
§ Other methods do not consider 

biological effects
• Cell properties
• Surrounding cells
• Tissue microenvironment

§ Methods integrate multiple data sets 
• Do not correct for batch effect
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Fig. 1
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Fig. 1



§ Gene expression
• Filtered / reduced PCA

§ Morphological similarity
• CNN on segmented histological 

image + PCA

§ Spatial correlation
• Euclidian distance

Data Enhancement
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GE’

§ Log scaled

§ Normalized
• Unit Variance
• Zero mean



§ K nearest neighbor
• Euclidian distance ranked
• K = 12

• V: Cells or spots
• A: Adjacency matrix
• D: Degree matrix

G = ( V, A)

Graph Construction
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Fig. 1
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§ VGAE: Variational Graph Autoencoder

Dimension Reduction
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A

X Encoder Z Decoder

𝝈(zzT) = Â
𝒩(0,1)

𝜎2

𝜇



§ VGAE: Variational Graph Autoencoder

Dimension Reduction
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A

X Encoder Z Decoder

𝝈(zzT) = Â
𝒩(0,1)

𝜎2

𝜇

Kullback–Leibler divergence 



§ VGAE: Variational Graph Autoencoder

Dimension Reduction
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A

X Encoder Z Decoder

𝝈(zzT) = Â
𝒩(0,1)

𝜎2

𝜇

First layer: W0𝜎 = W0𝜇 Dim. reduction

Second layer: W1𝜎 ≠ W1𝜇



§ X: Gene expression vector
• n: number of spots
• Top 200 principal components

§ Multi layer fully connected encoder
• He: 20

Dimension Reduction
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§ Two layer GNN
• Hg: 8

Residual: Z ∈ Rn x (H_e + H_g)
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Fig. 1
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§ Vertical integration
• Same samples, different analytes
• Align based on H&E images
• Construct G

§ Horizontal integration
• Same analyte, different samples
• MDD

§ Batch effect
• MDD

§ MDD
• Loss function for dissimilarity
• Domain classifier attempts to differentiate 

between samples (yi)

Integration of Data 
Types
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§ Pre-Training
• X is augmented with Noise

§ Training
• Iterative loss minimization

§ Reconstruction error
§ KL divergence
§ MDD : Adversarial loss

• K means clustering on 
embeddings

• Calinski-Halabasz Index
§ Measure of cluster separation

• CH score used to select 
resolution

Training

Binary 
Cross-entropy



§ Captures finer details
§ Integrates multiple datasets / sections
§ Corrects for batch effect

Claims
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Fig. 2

Adjusted Rand Index
Folkes-Mallows Index

Human 
dorsolateral 
prefrontal cortex



Finer details
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Identification of subcluster



MDD
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§ Captures finer details
• Relative to manual annotation
• Blind spot of expert perception of data
• Limited by ST technique

§ Lower resolution may perform similar to other methods

§ Integrates multiple datasets / sections
§ Corrects for batch effect

• MDD effect not quantitatively shown

Claims
EE

62
6 

/ E
m

an
ue

l V
as

qu
ez

39



§ Hybrid-graph SSL
• MDD is used for data integration
• Three loss functions are used when training

§ Generation-based graph SSL
• Noisy data (X) is used in pre-training
• Perturbation of features

Self-supervised 
Learning
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