=L Whoaml?

= My name is Arthur Chevalley

= 1styear PhD student in Life Science at UNIL and HES-SO Valais
« EPFL bachelor in Micro-engineering and master in Robotics
» Background in computer vision and various control strategies tasks

= Working on geometric models for cardiac tasks
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3D Manifold/Mesh (Iattened polar map Clinical Heart model

3D PET Centerline
Reconstruction «segmentation»

= Doctor working here for variety of tasks

mmm) Predict Major adverse cardiac events, heart tissues viability, microvascular diseases, .. using

* Multi-modal data and «population level» graphs

= 2D graphs and topological models (Cell complexes, Combinatorial Combination,..)
= 3D meshes/manifolds and topological models

= All of the above with time dependencies..

B Graph representations for biology and medicine


https://www.linkedin.com/in/arthur-chevalley-a47632252/
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A quick intro of “Subgraph Neural Networks”

&

“GLASS: GNN with LAbeling trickS for
Subgraph representation learning”

Graph representations
for biology and
medicine
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B Graph representations for biology and medicine

Why Subgraphs ?

= Prediction concerning groups of node in a graph
= Need to consider topology inside and outside the subgraph

= Subgraphs have non-trivial internal structure, border connectivity, and

notions of neighborhood and position relative to the rest of the graph
= Might consider multi-level information of nodes, edges, whole graph,..

= Either predict a subgraph target value or discover subgraphs

Arthur Chevalley -
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B Graph representations for biology and medicine

L

Some Grammar

= With a graph G = (V. E, X) with a finite node set V = {1,2, ..., n},
and edge set E C V x V, and a feature matrix X.

= A subgraph is defined as S = (Vs,Es, Xs) with Vg CV
Es C (Vs xVs)NE and Xs the rows of X corresponding to the
subgraph nodes

» 3 subgraphs of 2 classes, 2 subgraphs with 1 CC and 1 subgraph with 2 CC

= Problem formulation: Given a graph G , its subgraphs S = {8, S,,...,S,.}
and their target properties T' = {ts,,ts,,...,ts, } ,the goalisto learn a
representation hg, that can be used to predict ¢g, of S;.

==

Arthur Chevalley »
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= Reference for subgraph GNN

= Relies of a complex message-passing network:
« Two components: Internal and Border
* Three channels: Position (P), Neighborhood & (N) Structure (S):

* Interal components » Border components
P = Distance between connected = Distance between S and the
' components of S rest of G
N: = |dentity of internal nodes = |dentity of border nodes
S: = [nternal connectivity = Border Connectivity

= Requires the selection of anchor sets/points for each subgraph

B Graph representations for biology and medicine

channel property patch sampler patch representation similarity
P g nodecutofs  nodeembedding 1/(d(S(), 4) +1)  Average shortes
N EI; no.gg(iis }\r.l-’i.(;zc)) node embedding 1/(d(5{01}1 A)+1) Averagl;oztshhortest
S EI; connected components ::i; 1 tSSFl"l:tI\\d/[ 1/(dtw(S©), A) + 1) wraDgSi?\rgiﬁq (tei;nsi .

w
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=PFL  SUbGNN - Detailed architecture

= Random sampling of anchor patches from G
« Channel wise, i.e. P, N &S st 5
« Multiple anchor sets oL
= Message computed channel wise per
subgraph components
MSGL ™% = 45 (809, Ay) - ax

Where 7Yxis a similarity function,AX the anchor set and ay the learned representation

Arthur Chevalley

= Message-passing ,
gX,c = AGGM({MSGf’(_)S\ ; VAX S AX}))
hX,c < O'(WX . [gx,c; hX,c])a

N
o

= Aggregate channel wise for a layer | and
component ¢

2\ = AGGe (b, 2}, 7y ))
= Subgraph embedding
hs = READOUT({z1, ..., 2zn.})

SUBGRAPH COMPONENT
READOUT

B Graph representations for biology and medicine

From original publication: https://arxiv.org/pdf/2006.10538
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= Achieves subgraph tasks without complex MPNN scheme
= Learns the same properties as subGNN using node message-passing
= Relies on the labelling trick S2

Arthur Chevalley o

S1
1 ifvevVg
D ifvég Vg

SR R

= Hard batch-training as input features = Longer training as message-passing
vector changes with different Is done |S| times, i.e. each subgraph
subgraphs handled separetly

= Easiest labelling is the zero—one!3! defined as follow:1{%) =

B Graph representations for biology and medicine
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B Graph representations for biology and medicine

GLASS 2!

= Proposes a new labeling trick: max-zero-one
= Same idea as zero-one but gives a label 1 if at least one subgraph in the

batch contains this node

S1

S2

S3

= Might create conflits if a node is in mulitple subgraphs but:

Not if subgraphs are sparse

* Provides regularization

= Extract node features with a pretrained self-supervised GNN

S1

S2

D

Z2Z20

Prediction:
At node level:

—{Pooling]—{ MLP ]—> Akx

At edge level:

*  Graph link prediction

Arthur Chevalley
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B Graph representations for biology and medicine

GLASS 2!

= Node embeddings from the SS pretrained GNN

= Message-passing on the whole graph, pool individual node embedding to
produce multiple subgraphs.

= Computed embeddings are fed to a MLP for the task

= GLASS trained with a joint loss of subgraph structural properties
prediction (cut ratio, coreness and #CC) and subgraph target prediction

Sy

Arthur Chevalley ~

Prediction:
Pretrained Pooling *  Subgraph properties (SS)
GNN MPRN (based on [y) H MLP ]_' «  Subgraph target prediction

Max-zero-one labels [,



=PFL  Experiments

= Synthetic datasets:
» Density: Tests internal structure
« Cut ratio: Tests border structure
« Coreness: Tests border structure and position
« Components: Tests internal and external position

Arthur Chevalley o

» Real datasets:

* PPI-BP: Protein-Protein interaction network; biological processes are the
subgraphs and predict their collective cellular function

EM-USER: Workout history of users; each user workout history is a subgraph and
predict characteristics of that user

« HPO-METAB/-NEURO: Phenotype and genotype information of rare disease;
each subgraph is a rare disease and predict the metabolic or neurological disease

B Graph representations for biology and medicine

All datasets introduced in subGNN [1]
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L

Results - Synthetic dataset

= Compare four models:
* GLASS using node labeling trick and basic MPNN
 Classic sSubGNN

« Sub2Vec[4] which use RW to create subgraph features fed to an MLP (internal
and external topology has no impact)

* GNN-seg, a simpe MPNN for graph classification on each subgraph (external
topology has no impact)

Method density cut ratio coreness component
GLASS  0.930£0.009 0.935+0.006 0.840£0.009 1.000 £ 0.000
SubGNN  0.919+0.006  0.629+0.013  0.659 £0.031  0.958 4 0.032
Sub2Vec [0.459 +0.012 | [ 0.354+0.014  0.360 £ 0.019 J | 0.657 £0.017 |
GNN-seg 0.952+0.006 | 0.346+0.011  0.593 +0.012 | 1.000 £ 0.000

= For cut ratio and coreness external topology neeeded
= Topology information needed for density and component

Arthur Chevalley ©
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B Graph representations for biology and medicine

L Results - Real dataset

= |In addition to subGNN, Sub2Vec[4] and GNN-seg, two graph-agnostic
methods using simple pooling to provide subgraph features

y N\ N\ AN
Method ppi-bp hpo-metab hpo-neuro em-user
GLASS (0.6194+0.007 | 0.614 +£0.005 0.685+0.005| 0.888 +0.006
SubGNN | 0.599 4 0.008 0.537 4 0.008 0.644 £ 0.006 0.816 & 0.013
Sub2Vec | 0.388 £ 0.001 0.472 +£0.010 0.618 £ 0.003 0.779 £ 0.013
GNN-seg \0.361 +0.008 A 0.542 + 0.009 0.647 4+ 0.001 /\_0.725 £ 0.003/
MLP (0.445 + 0.003 0.386 & 0.011 0.404 £ 0.006 0.524 £ 0.019 |
GBDT  (0.446 + 0.000 0.404 4 0.000 0.513 £ 0.000 0.694 4 0.000 |

= Subgraph methods generally outperforms others

= Graph-agnostic methods are less good as graph structure is important

= Dense and localized graph require less external information

= Lower subgraph density gives clear benefits to subgraph methods

=
o

Arthur Chevalley
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B Graph representations for biology and medicine

Personal thoughts

= Not suited for subgraph discovery as subgraphs are given as an input

= Not entierly convinced how GLASS performs with an important number

of subgraphs in comparison to subGNN

= Interesting «easy to implement» idea to combine with other methods

[=Y
[y

Arthur Chevalley
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B Graph representations for biology and medicine

Conclusion

= GLASS outperforms other approaches on subgraph tasks
= Conceptually simpler and easier to implement than subGNN
= GLASS is faster to train than subGNN

= Taking into account graph and subgraph structure is important

=Y
N
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B Graph representations for biology and medicine

Thank you for your attention

Questions time!

Feel free to contact me if you have any questions or
suggestions about my project :

arthur.chevalley@unil.ch / LinkedIn

=
r

Arthur Chevalley
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Applications of Subgraph GNN
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About me

« Robot Learning and Interaction Group @ ldiap; 3" year PhD at EDEE

« Research topic: Robot long-horizon manipulation planning

Table Rearrangement [1] Kitchen Activities [2]

Long-horizon manipulation tasks in logistics and kitchen

1.  https://www.ocadogroup.com/
2. https://youtu.be/N3MpT3geEGY



https://www.ocadogroup.com/
https://youtu.be/N3MpT3qeEGY
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About me
» Robot Learning and Interaction Group @ ldiap; 3" year PhD at EDEE

* Research topic: How to build a robot chef
Given the name of my expect dish, it cooks autonomously
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[Dong et al. Soft fixtures, 2023]
E Board
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Subgraph-Aware Graph Kernel Neural Network for Link Prediction
in Biological Networks
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Research areas of this paper

Biological network link prediction

1.

Microbe-disease association (MDA)

O Identify which microbes are associated with specific diseases;

Drug-target interaction (DTI)

O Understand how drugs interact with their biological target for effective therapies;
miRNA-disease association

O Understand how microRNAs are involved in the regulation of diseases;
Drug-drug associations (DDAs)

O Discover novel functions of available drugs by the identification of DDAs;
Protein-protein interactions (PPIs)

L Discover disease biomarkers through the identification of PPIs;
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Methods

1. Subgraph GNN:

1. each node may play a distinct role in different links of a network;

2. SOTAs often ignore shared information among subgraphs, which are associated with biological functions.

2. Graph Filters and Kernels:

1. calculate graph similarity by decomposing input graphs into atomic substructures;

2. Therefore, can be used to capture shared information among subgraphs
3. Diversity regularization:

1.  Maximize the difference between graph filters
4. Node embedding as auxiliary information

1.  Help to differentiate node pairs that share the same subgraph
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Methods- Subgraph Generation

(a) Subgraph Extraction

Subgraph

Each subgraph S, ,, corresponds to the topology of the h-hop neighborhood
of two nodes u and v .

N"(u,v) = {e|min (dis(e,u), dis(e,v)) < h}
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Methods- Subgraph Aware Representation Learning

(b) Subgraph-aware Representatlon Learning . . .
Graph Filters This block captures share information among subgraphs

u’v : ZSu,v
Hdk Q @ /@ .—>ITI— of node pairs:
; % 5 @ 5 1. Trainable Graph Filter with Difference Maximization;

le’ference Max1mlzat10n 2. Graph Kernel function (random walk) to pool node

> H1§ % HdeO embeddings with different graph filters.

« Jointly trained while doing link prediction;

Graph filter

« With Difference Maximization to enforce the fixed set of Graph Filters to capture different perspectives of
shared information;

* Done by penalizes graph filters that are close to each other with L2 distance
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Methods- Auxiliary Information

(¢) Graph-based Representation Learning
GCN

X(L)

Z;,
— 0 (W) X(L)}blll —

GCN with original graph structure to update node embedding.

This block is designed to capture addition information that subgraph-aware GNN filtered out.
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Pipeline

(a) Subgraph Extraction = (b) Subgraph-aware Representatlon Learning

Graph Filters ] 5u,v Zs

.’*oICJIBD

(d) Link Prediction

Subgraph Hdk @ R - P ;-»-:- —&—> EEEEEE
3?5 i % : e © | [@ !

leferenc;-lﬁ;il;n.lz.a-tl-o;l ------ MLP
= \?/—\y R0
> ]—]1 Hdk —_ @
(¢) Graph-based Representation Learning Pred:tion
v
x @ 1

Eetp) ———

L=Lar+1iLpg+hoLs+ AL«



=PFL ZeI0I130

Comparison with baselines o

AUC SCORES OF SUBKNET AND BASELINES ON THE CROSS-VALIDATION SETS

Categories Methods MDA LuoDTI ZhangMDA ZhangDDA PPI
NinimHMDA 0.895+0.018 - ; - ;
MVGAEW 0.7514-0.042 . - . .
[IFDTI - 0.8904-0.009 = = =
GeNNius - 0.91540.010 ; . .
SFGAE . - 0.8984-0.006 . .
Task-dependent methods CGHCN ] ] 0.912-40.005 ] ]
DRWBNCF . . - 0.8334-0.007 .
RSML-GCN . . - 0.81740.005 -
RAPPPID - . ; - 0.88740.010
HNSPPI . . - . 0.91440.007
SiGraC 0.8664-0.024 0.70440.013 0.78740.010 0.6694-0.008 0.5644-0.009
Taskoindenendent methods MVGCN 0.90740.013 0.89740.014 0.9154-0.004 0.8454-0.004 -
ask-independent methods LR-GNN 0.893+0.021 0.89940.017 0.90440.007 0.79640.021 0.81040.008
CGCN 0.89140.011 0.86540.024 0.87340.007 0.8014-0.005 0.89540.010
SEAL 0.88840.017 0.90340.013 0.920+0.003 0.82740.004 0.869+0.008
Suberanh-based method LGLP 0.89140.016 0.9044-0.012 0.9184-0.004 0.80740.006 0.8794-0.009
ubgraph-based methods NNESF 0.856+0.017 0.83940.017 0.753+0.013 0.6944-0.004 0.87740.009
GCN-PS2 0.81840.021 0.85540.026 0.8984-0.009 0.83740.005 0.876+0.019
SubKNet 0.936+-0.008 0.91840.012 0.9204-0.003 0.8424-0.007 0.9814-0.005

Note: The bold in each column represents the highest score and the underlined denotes the second-best score. The standard deviation (&) is computed
from 5-fold cross-validation results.

SubKNet exhibits superior performance on four out of five datasets, compare to task-
dependent methods, task-independent methods, and subgraph-based methods

10
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Ablation Study

MDA LuoDTI
0.936 0936 0920 0918
0934 0.934 0.934 |_| 0915 0913

s 0.930 s 0.909
<0.925 i < 0,900/ 0.901 [
0.900
0.875 0.869 0.850 ) g34
g 4 P % 2 B S
%é,o & & &
& & & 9
& & &

SubKNet-GRL: no auxiliary information

SubKNet-SRL: no subgraph-aware

SubKNet-GK: vanilla SubGNN

SubKNet-Lh: no diversity regularization

ZhangMDA 0.843 ZhangDDA PPI 0.981
0.920  0.920 0.980 0.979
0.920
0,840 0-842 0.842
0.917,0.917 0.975 0.973  0.973
o ©0.841 o )
<0.915] 0915 3 0.834 0.829 3 0.9417
A 0.820 0.940 0220
0.907 0.804
: L1 0 800 . o 939 N
<& Y <& <
& e@‘ S F e“‘ @* & & s*
5 & & 9 v‘k' 9 @ SO
S & & %o & S

1. SubKNet VS (SubKNet-GRL & SubKNet-SRL): subgraph-aware and
auxiliary information are important;

2. SubKNet VS SubKNet-GK: Graph Kernel and Filters;

3. SubKNet VS SubKNet-Lh: diversity regularization.

11
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Conclusion & Limitation

» Subgraph-aware graph kernel NN (SubKNet), task-independent method, improves the link predication
performance for biological networks;
« The main contributions are:
1. Trainable subgraph-filters to capture shared information of nodes among subgraphs;
2. Diversity regularization ensure graph filters capture different perspectives of shared information;

3. Node embedding with original graph network as auxiliary information helps

13
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Personal Questions
(a) Subgraph Extraction | (b) Subgraph-aware Representatlon_ Learning (d) Link Prediction
Graph Filters ' Sup | 7

Subgraph o : Su.v

e § % Hdk —'Q R - S :—»l:l —5— ENEEEN
_____ W | & Mle
leference Ma)umlzatlon
Ty e TNy

R Hl;g i; Hg, _,@

(¢) Graph-based Representation Learning Pred:tion
v

¢ . Zg. |
— O @ \(g) NO) IEI— Lep

Subgraph-aware -> shared information; Graph-aware -> other information

Wouldn’t the Graph-based NN works well ?
- How to define the subgraph structure ?

14
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Personal Questions

MDA G LuoDTI ZhangMDA 0.843 ZhangDDA PPI 0.981
. 0.920 !
0.936 0918 929 0.920  0.920 04 0342 o84p 0980 0.979
0934 0.934 0.934 0.915 AGE 091710917 |_| 0.975 0973 0.973
s 0.930 s 7 0.909 S gosit 0.834 S .
<0.925 = < 0.900/ 0.901 - <0915 0.915 = b 0.829 20941
0.900 A6 0.820 0.940 0.940
0.850 0.907 0.804

@ @e} i (;\>‘ . @ 0800 T ,ﬁ,‘\ : @é 0939 @“\
e & EAF & &‘ S S & &9
%Q& %é& s %Q %é& s so‘ﬁ %& & %\, %é,% s %\)@ &

» SubKNet VS SubKNet-SRL (without subgraph-aware) actually shows not bad performance.

« The figures are actually tricky

15
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Knowledge Distillation Guided Interpretable Brain Subgraph
Neural Networks for Brain Disorder Exploration
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Research areas of this paper

Brain Disorder Exploration

Patient

Jealthy

3
S ®
=

Parkinson’s Disease (PD)

Patient

Healthy

Attention-deficit/hyperactivity disorder(ADHD)

18
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Methods

1.

2,

Subgraph GNN:

1. The occurrence of a brain disorder involves not only damage to the corresponding functional brain, but also
abnormal functional connections between these regions;

2.  SOTAs do not consider abnormal functional connection;

Knowledge Distillation (KD) as guidance

1. Experiment data is small

2. No enough clinical neuroimaging data + the storage, preprocessing, and brain graph modeling is expensive

19
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Methods - Brain Graph Modeling based on fMRI data
(a)

Input fMRI Format Start data Slice timing Head motion b : Temporal
data conversion removal correction correction Normalization Smoothing filtering
Defining ROIs Extracting BOLD Calculating pearson : Adjacency matrix Brain graph
as nodes signal series correlation coefficients construction generation

(b)

Pairwise
. w e
correlations

DYA'\ ]'5 5':1 l‘\ lDrl'l I;H l\vn ”" ICVO‘
T . . . o -
fMRI of one subject BOLD signal series Functional connection matrix Brain graph

All brain graphs have the same number of nodes but they have different graph structures due to the
unified brain region division G=(V, E, W, y)

W -> initial weighted functional connectivity matrix describing the connection strengths
W;; > Arepresents a connection between nodes

20
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ZolOIDN
Methods - Pretrained teacher module

o _ - ‘.:
q

Pretraining { ( 5 ]
@ . ) |
fMRI dataset '

Graph-level representations

utilizing two-layer GCN model to pretrain teacher model on experimental brain graph data.

The output brain graph representations can be used as a prior knowledge to distill important
subgraphs and are as global graph information to enhance graph-level representations

21
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Methods Subgraph distillation module

‘6-" | - Pt — -
‘/sé(}' w 5 « e ol B B 1 = \
R Suming i | - Rt |l |

* ! O pooling 2 ;
Brain graphs E‘ * M D C] | l . o
: ¢ e = Graph-level

Subgraph-level

’
I

et T Subgraph node representations representations representations
* One-layer GCN for subgraph node representation learning
exp(q’) - -
J— l 7 J _ ’ —
Zsub W T = 5 ; H.: = s’ Zsub Emse = f mse (y » Y )
> exp(g)) 2,

Top-k discriminative subgraphs are selected
k t
Lxp = KL(p’, p') L = Lo + B1Lmse + B2LkD

Such loss is designed to capture both local and global graph information to enhance prediction performance

22
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Pipeline

GCN 1 Node represematlons
a e ] i Graph-level representations
~ _ 1T g/~  reccsco=os=c
Pretraining * ( e
.
.
.

Disorder analysis Interpretable subgraphs

= S II a_
fMRI dataset NI (B . !

f o @ — Wm0,
! ' . 0" . Attention | '
3 3 : . = k e° | :
1 Moyl ® i l pooling 2 1 : ;
| | : i - : L) .
Brain graphq ;E' . w 8 [j , | N e—"
: * “ N P Graph-level
R g _ Subgraph-lovel o
Brain subgraphs GCN 2 Subgraph node representations representations

Two-layer GCN learn a teach graph-level representation beforehand
For loop: 1) One-layer GCN learn a subgraph-level representation;
2) top-k subgraphs fused;
3) enrich pretrained teacher model (minimizing the KL loss);
4) back propagation.

23
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Experiments
TABLE I
BRIAN GRAPH CLASSIFICATION RESULTS ABOUT THE MEAN £ STANDARD DEVIATION (%) ON TWO DATASETS
Methods Pb ADHD
Accuracy AUC F1-score Accuracy AUC Fl-score
GCN 62.78+4.06  65.22+14.51 38.53£1.57  71.66x7.94  76.03x8.77  71.37£7.93
GAT 62.78+4.06  58.89+14.72  38.53%1.57  70.94+£3.50  75.41+1.52  70.63+3.55
GIN 62.78+4.06  62.78+13.43  40.17+3.61 70.32+6.97  72.86£5.91 70.00+6.88
SortPool 65.28+6.33 65.67+8.14  45.50+14.00 70.97+7.71 76.91+7.18  70.30+8.54
SIB 65.28+46.33  59.56+17.74  47.03£10.65  69.52+6.77  70.88+8.41 69.08+6.95
BrainGNN  65.00+7.32  64.33+12.63  49.17+13.93  64.9243.52  78.36+4.92  63.62+4.26
IBGNN 63.06+£7.33  61.00£19.68  44.48+11.26  72.25+£7.07  73.31+£5.33  72.20+7.12
GCN-ours  65.2846.33  66.44+15.84 44.17+11.36  75.75£5.50  80.35+£6.73  75.36+5.60
GAT-ours  67.2248.98  65.89+16.02 49.67+14.88 72.21+6.99  80.78+5.64  72.10+7.15
GIN-ours 62.78+4.06  62.89+8.21 41.38+4.36 7225933  69.73+x11.29  72.16£9.29

Proposed methods work best compare with baselines

25
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Experiments

With trained model, they can select the

PD discriminative subgraphs for each patient subject
based on attention scores, and visualize the
- subgraphs for disorder analysis
atient
LD % ol
ADHD | D @ :

i - /
Healthy Patiet === YNecemeeceemeceecsessseeececseeeeeee——-- i

It shows similar correct results with classical methods: fALFF + DPARSF tool

26
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Conclusion & Limitation

Contributions:

1. acomplete process from brain graph modeling to brain disorder prediction and pathogenic analysis;
2. thefirst to introduce brain subgrpah view for disorder analysis.

3. propose KD guided brain subgraph neural networks to extract discriminative brain subgraphs under

limited brain graph data.

27
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Personal Discussions

(b) Subgraph-aware Representatlon Learmng (d) Link Prediction . . . .
Use subgraph to improve link prediction

Graph Filters ~ 18S,, 0 0

Hdk /@ é—»l?ﬁ—é‘—»IIIlIII performance
@ | Neighborhood of node-pair as subgraph

Dlﬁ‘erenc;_]ﬁ;x];;lz_a»n_a; ______
Ty e Ny
:§: %: o @

(a) Subgraph Extraction

Subgraph

Subgraph structure improves prediction performance

Input Graph (©) Grzg)g]\l;ased Representation Learning Pre .C ion
§ 2 D g X Zg,, 1

© @ ) O = —> 0) ” X(L)}vlll— &ap
@ O @ @

= i Find important subgraphs for diagnosis

Pretraining 1 _ — ‘ ) | | e
o - & | 8.1 ..

MRI dataset — ® & > Neighborhood of each node as subgraph

Disorder analysis Interpretable subgraphs

Brain subgraph distillation

- - .
. - — Tl
« q & . m Graph Attention
H : ces :
= i \pooling 2 |) '

i = | i
‘ - Subgraph-level Epii]
Subgraph node representations representations representations
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