

Week 6 Theory: Hypergraph Neural Networks

Presented by Xiaohang Yu

Outline

PhD Project

Research Background

Hypergraph Neural Networks (GNNs):

- Background
- Taxonomy
- Encoding design
- Training design
- Applications
- Conclusions

EPFL

PhD Project

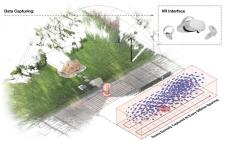
- I am a first-year PhD student at Mathis Laboratory of adaptive intelligence at EPFL, Switzerland. My advisor is Prof. Mackenzie Mathis.
- I got my Master's degree of Data Science from Tsinghua University, China. My master's thesis focused on large-scale scene reconstruction and rendering and the corresponding applications in VR to improve the sense of immersion.
- Now, I am focusing on 3D/4D reconstruction, particularly recovering shape and motion from partial observations like videos.
- For any inquiries, feel free to reach out to me via mail!

.

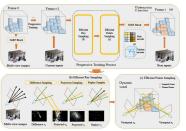
EPFL

Research Background: 2D/3D Vision and Beyond

3D – novel view synthesis Immersive light field reconstruction



Capture & render: Dataset and VR application

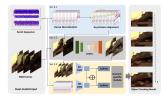


Representation: dynamic reconstruction

Render:
Detail generation

Representation: Large-scale scene reconstruction

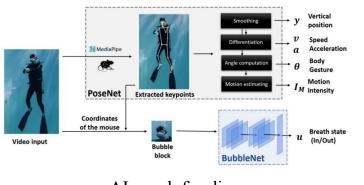
2D – object tracking & behavior recognition



Object tracking on drones

Behavior recognition for farmers

Vision-based agent training



AI coach for divers

ACM KDD 2024

A Survey on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

Sunwoo Kim* KAIST Seoul, Republic of Korea kswoo97@kaist.ac.kr

Alessia Antelmi
University of Turin
Turin, Italy
alessia.antelmi@unito.it

Soo Yong Lee* KAIST Seoul, Republic of Korea syleetolow@kaist.ac.kr

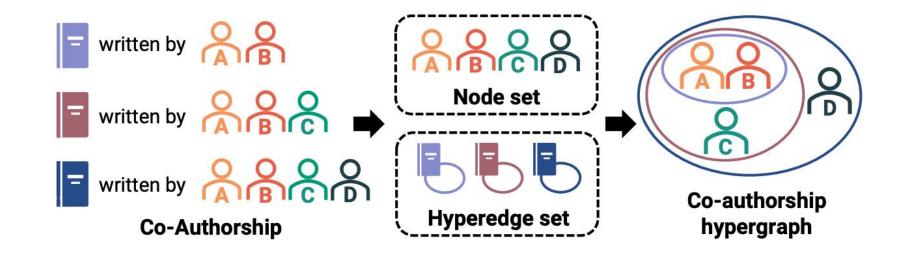
Mirko Polato
University of Turin
Turin, Italy
mirko.polato@unito.it

Yue Gao Tsinghua University Beijing, China gaoyue@tsinghua.edu.cn

Kijung Shin[†]
KAIST
Seoul, Republic of Korea
kijungs@kaist.ac.kr

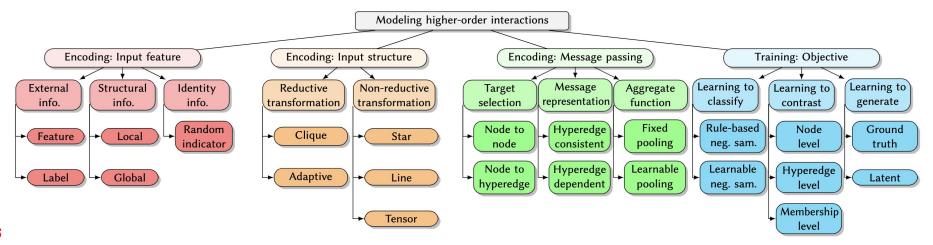
Background: Hypergraphs

- Higher-order interactions are commonly modeled as a hypergraph.
- A hypergraph consists of a node set and a hyperedge set.
- A hyperedge (i.e., a subset of nodes) models a higher-order interaction



_

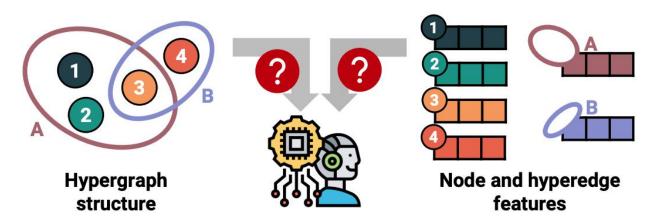
Taxonomy of HNNs



- Encoding: how do HNNs effectively capture HOIs
- Training: how to encode HOIs with training objectives, especially when external labels are scarce or absent

Encoding design - Overview

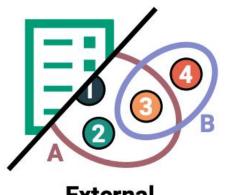
- Typical inputs of hypergraph neural networks (HNNs) are hypergraph structure and node (and/or hyperedge) feature vectors.
- The quality of the inputs can be critical for the effectiveness of HNNs
- Key questions regarding HNN inputs are:
- Q1. What input features can be used for nodes and hyperedges?
- Q2. How can hypergraph structures be represented?

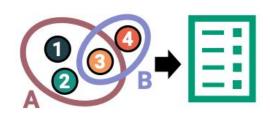


.

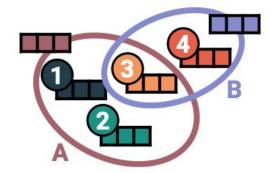
EPFL

Encoding design – Step1. Design Features to Reflect HOIS





Structural features



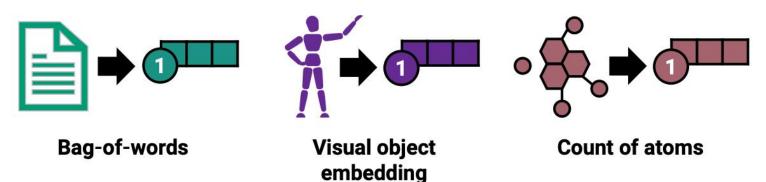
Identity features

EPFL

Encoding design – Step1. Design Features to Reflect HOIS

External features are additionally given information that is not directly derived from the input hypergraph structure.

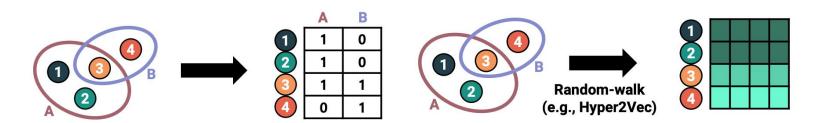
- They complement structural information reflected in hypergraphs.
- External node features in popular benchmark datasets include:
- 1) bag-of-words vectors for article nodes
- 2) visual object embeddings for image nodes
- 3) the counts of atoms for molecule nodes.



Encoding design – Step1. Design Features to Reflect HOIS

Structural features are derived from the input hypergraph structure.

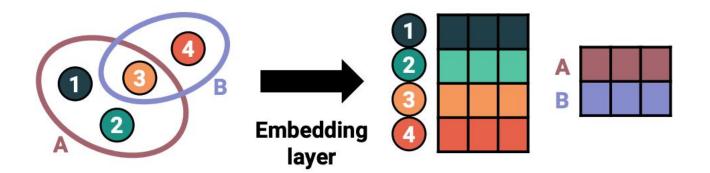
- They typically capture structural proximity or similarity among nodes.
- Structural features are either local or global.
- Local structural features capture node-hyperedge membership.
- leveraged the rows of the incidence matrix as part of their node features.
- Global structural features capture proximity or similarity among nodes beyond direct connections
- leveraged random walks to capture such proximity and similarity



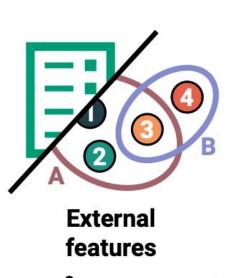
Encoding design – Step1. Design Features to Reflect HOIS

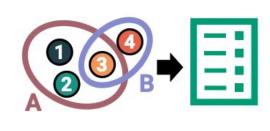
Identity features are uniquely assigned to each node and hyperedge.

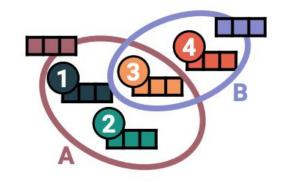
- They encourage HNNs to distinguish different nodes and hyperedges.
- some work "learned" identity features using an embedding layer.
- Each node and hyperedge has a feature vector that is learned during training



Encoding design – Step1. Input: Design Features to Reflect HOIS

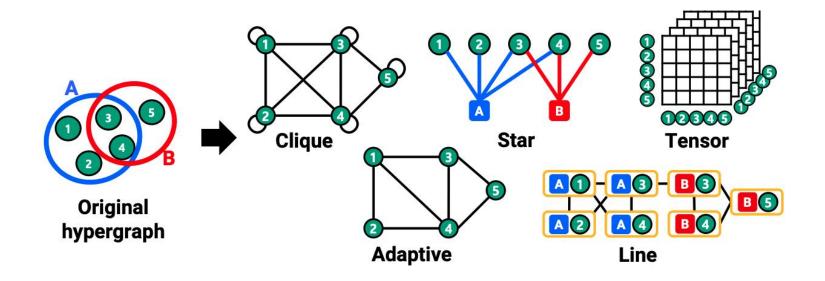






Structural features

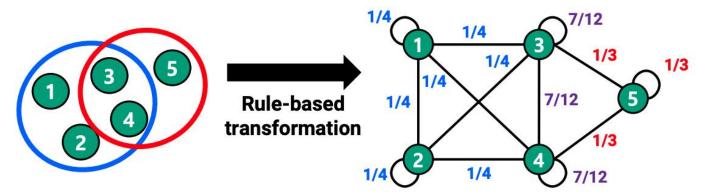
Identity features



• 14

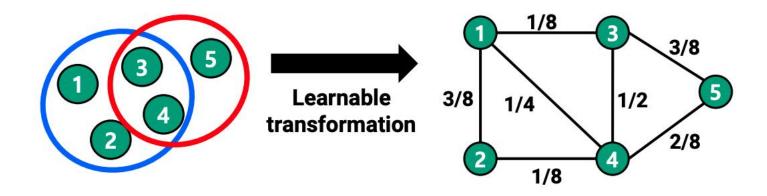
Clique expansion of a hypergraph is a homogeneous, pairwise graph.

- Each hyperedge is converted into a clique of its member nodes.
- Optionally, self-loops can be added.
- Often, edges are weighted by the (normalized) count of hyperedges Normalization considers the size of each hyperedge.
- Some work further weighed edges with learnable parameters



Adaptive expansion of a hypergraph is a homogeneous, pairwise graph.

- Each hyperedge is converted into pairwise edge(s) via learnable rules.
- some work created and weighed edges based on node features.

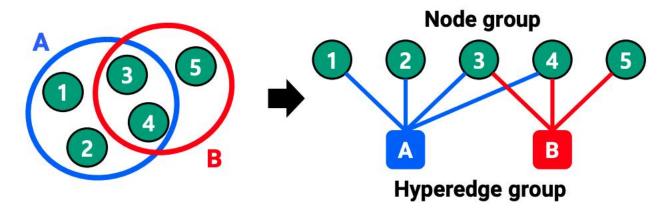


EPFL

Encoding design – Step 2. Express Hypergraphs to Reflect HOIs

Star expansion of a hypergraph is a bipartite, pairwise graph.

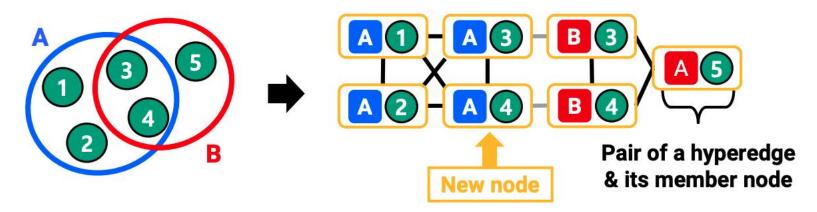
- Each hyperedge is converted into a new node.
- Each hyperedge (i.e., new node) and each of its member nodes are joined by a pairwise edge.



• 17

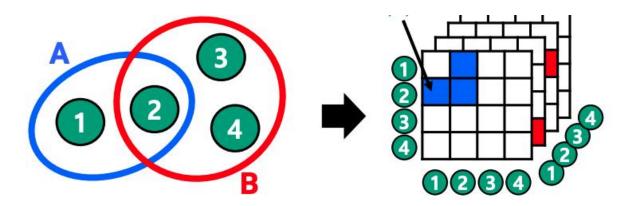
Line expansion of a hypergraph is a homogeneous, pairwise graph.

- Each pair of a hyperedge and its node is converted into a new node.
- Two new nodes are joined by a pairwise edge if they share a hyperedge or a node.



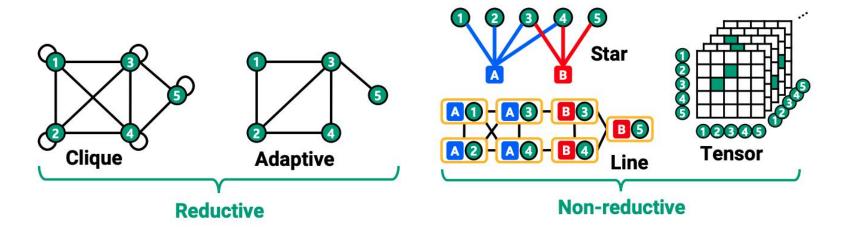
A hypergraph can be represented as a tensor

- The order of the tensor equals the maximum hyperedge size
- The dimensionality of each mode equals the node count.
- Each tensor entry is non-zero if there exists a hyperedge containing all its mode indices.



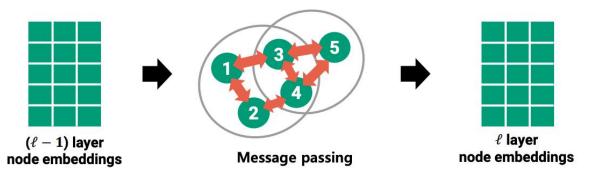
These methods are either reductive or non-reductive.

- Reductive methods may incur information loss after transformation
- However, they provide simple and straightforward graph structures.
- Non-reductive methods incur no information loss.
- However, they are often more complex and, thus, difficult to handle.



Encoding design – Step 3. Pass Message to Reflect HOIs - Overview

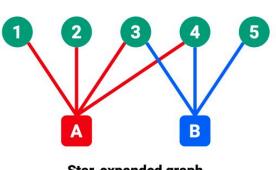
- HNNs learn node (and hyperedge) embeddings by aggregating information from other nodes (and hyperedges).
- This process is called message passing.
- In HNNs' message passing, some of the key issues involve:
- Q1) Whose messages to aggregate
- Q2) What messages to aggregate
- Q3) How to aggregate messages

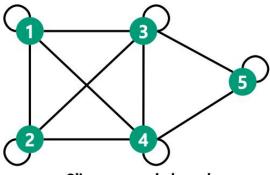


Encoding design – Step 3. Pass Message to Reflect HOIs

Target Selection can be determined by how the input hypergraph is expressed.

- The star-expansion transforms a hypergraph into a bipartite graph.
 - Two groups of nodes: Node group and Hyperedge group with two-stage passing
 - From the node group to the hyperedge group
 - From the hyperedge group to the node group
- Clique-expansion transforms a hypergraph into a weighted graph.
 - Akin typical GNNs, it perform message passing between nodes.



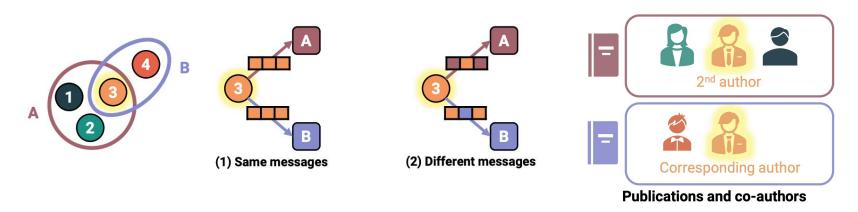


Clique-expanded graph

Encoding design – Step 3. Pass Message to Reflect HOIs

What messages to aggregate. Possible message representations:

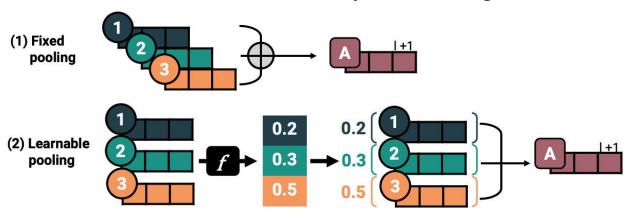
- Hyperedge-consistent messages:
 - the node representation remains the same across all aggregations.
- Hyperedge-dependent messages:
 - The role of a node may vary based on the hyperedges it is involved in

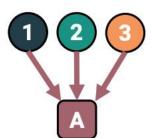


Encoding design – Step 3. Pass Message to Reflect HOIs

Aggregate Function

- Fixed pooling function
 - Notable examples are summation or average.
- Learnable pooling function
 - adaptively aggregate node/hyperedge messages
 - attention mechanism is widely used to assign different weights to message

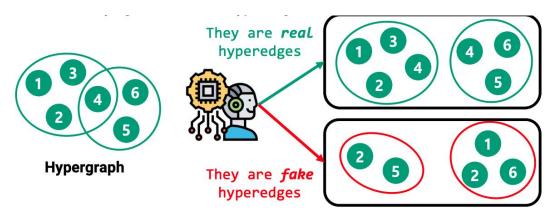




Encoding design – Learning to Classify

Hyperedge prediction (a.k.a. Link Prediction) is a task that predicts future or unobserved hyperedges

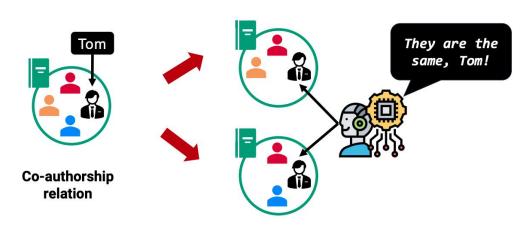
- Classifying real and fake hyperedges
- Representative fake hyperedges are crucial
 - heuristic fake hyperedge generation
 - learnable fake hyperedge generation



Training design – Learning to contrast

Contrastive learning (CL) aims to contrast multiple views of a hypergraph.

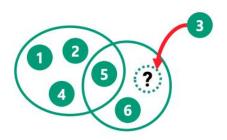
- View generation and encoding
- Construct contrastive loss:
 - maximize the embedding similarity of identical nodes/edges
 - minimize the embedding similarity of different ones
 - Node-level (node node) contrastive losses
 - Hyperedge-level (hyperedge hyperedge) contrastive losses



Training design – Learning to Generate

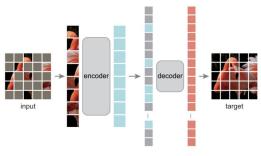
Trains the network to generate hyperedges that reflect the characteristics of the input data.

- Generation is an effective SSL strategy for neural networks.
- GPT [OpenAI, 2023] and MAE [He et al., 2022] are notable examples.
- In generative SSL, two major aspects should be focused on:
- Q1) What to generate: Generative task
- Q2) How to generate: Generative method



Generative SSL

GPT in NLP



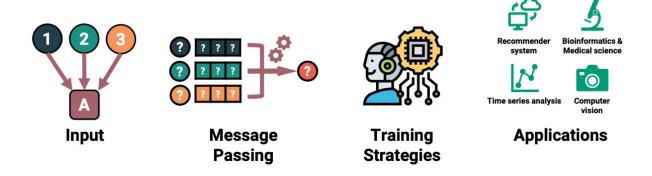
MAE in Computer Vision

Application of HNNs

- Recommendation systems: recommend products to customers based on their past purchases and preferences
- Bioinformatics and medical science: predict the structure of proteins and other biological molecules
- Time series analysis: forecast taxi demands, gas pressures, vehicle speeds, traffic, electricity consumptions, meteorological measures, stocks, and crimes.
- Computer vision: recognize objects in images

Take Homes

- HNNs are a type of neural network that's specifically designed to work with hypergraphs.
- They're able to learn from the structure of the graph and make predictions about the relationships between the different nodes.
- They're being used in a lot of different applications, including recommendation systems, bioinformatics, and computer vision.



.

Week 6:

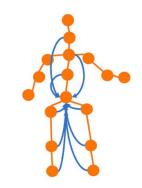
Hypergraph Neural Networks: Application

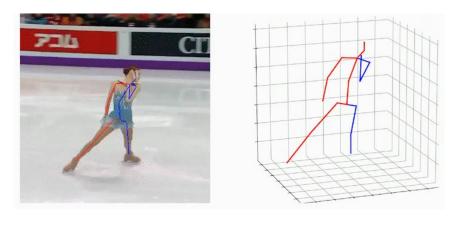
Presented by Ti Wang

Previous Research as a Master's Student

3D Human Pose and Shape Estimation:

- Transformer-based Methods
- Graph-based Methods





- https://github.com/Vegetebird/MHFormer/tree/main
- https://github.com/kasvii/PMCE/tree/main

Current Research as a PhD Student in EDEE

- Focusing on 2D/3D animal pose estimation
- Foundation Model for Animal

Hypergraph factorization for multi-tissue gene expression imputation

Ramon Viñas, Chaitanya K. Joshi, Dobrik Georgiev, Phillip Lin, Bianca Dumitrascu, Eric R. Gamazon, Pietro Liò——Nature Machine Intelligence, 2023

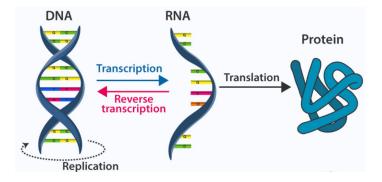
Background

What is Gene Expression?

- Gene expression is how cells use information from genes to create proteins.
- Every tissue (like the brain or liver) uses different genes to perform its specific functions.

Why It Matters

• Studying gene expression across tissues helps us understand diseases and develop treatments.



Background

The Problem: Missing Data

- It's hard to collect gene expression data from all tissues, especially difficult ones like brain tissue.
 - This leaves gaps in understanding how different tissues work together.
- Genotype data is not always available due to privacy concerns.
- Tissues collected for different individuals vary, leading to gaps in data.

Traditional Methods

- Traditional ways to fill these gaps depend on genetic data, which may not always be available for privacy or technical reasons.
- Existing methods cannot capture complex, non-linear relationships between tissues.

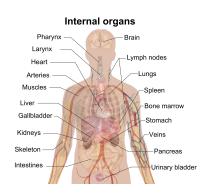
Task Overview

What is the Task?

- predict gene expression in tissues where data is missing or difficult to collect (e.g., brain, heart).
- fill in these gaps using data from tissues that are easier to collect (e.g., blood, skin).

Challenges

- Gene expression varies across tissues
 - Each tissue has a unique **gene expression pattern** based on its function. Understanding this helps us study how tissues work together and how diseases progress.
- Limited access to some tissues:
 - Certain tissues are hard or invasive to sample (like brain tissue), leaving gaps in our understanding of these critical tissues.
- **Nonlinear and Complex Relationships**: Gene expression across tissues isn't a simple 1-to-1 relationship. The relationships between different tissues are complex and nonlinear.



Motivation

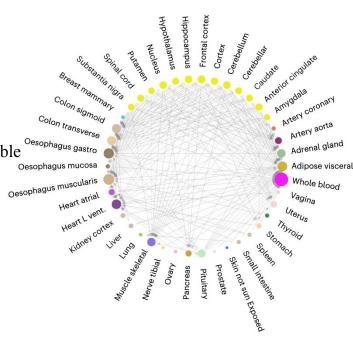
Why Use a Hypergraph for Gene Expression Imputation?

Limitations of Existing Approaches:

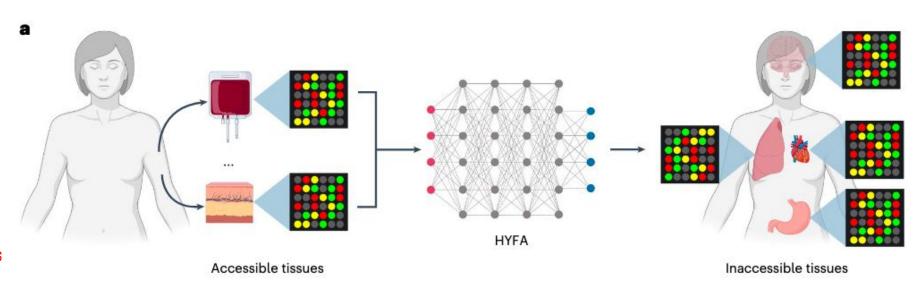
- **Linear methods** (like PCA and regression) fail to capture the **nonlinear** relationships between tissues.
- These approaches rely heavily on genotype data, which is often unavailable due to privacy or technical issues.

Benefits of Hypergraph:

- **Higher-Order Relationships**: Hypergraphs can model **complex interactions** between multiple tissues, genes, and individuals all at once.
- Nonlinear Patterns: Unlike traditional graphs, a hypergraph can capture nonlinear gene expression patterns across different tissues.
- **Flexibility**: Supports a **variable number of tissues**, allowing for input flexibility when not all tissue data is available.



HYFA: Hypergraph Factorization for Gene Expression Imputation



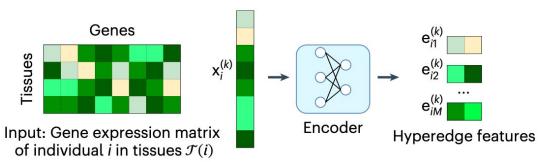
What is HYFA?

- HYFA (Hypergraph Factorization) is a method for imputing missing gene expression across multiple tissues.
- It uses a hypergraph to model complex relationships between individuals, tissues, and genes.

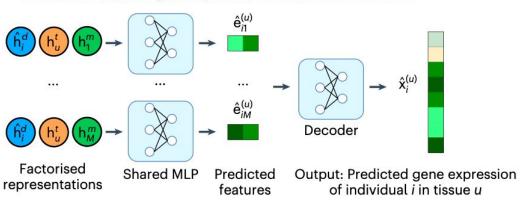
Graph Representations for Biology and Medicine

Workflow of HYFA

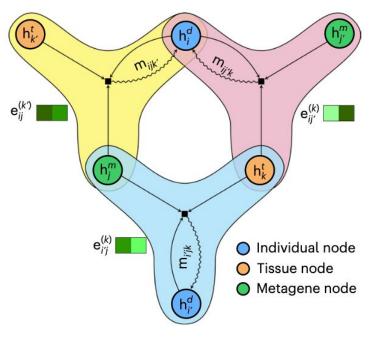
1. Encoder learns low-dimensional representation



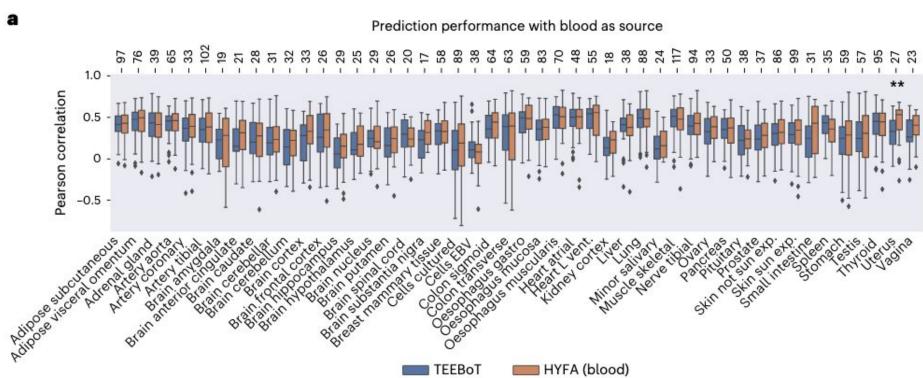
3. Decoder recovers gene expression of uncollected tissue u



2. Message passing computes factorised representations

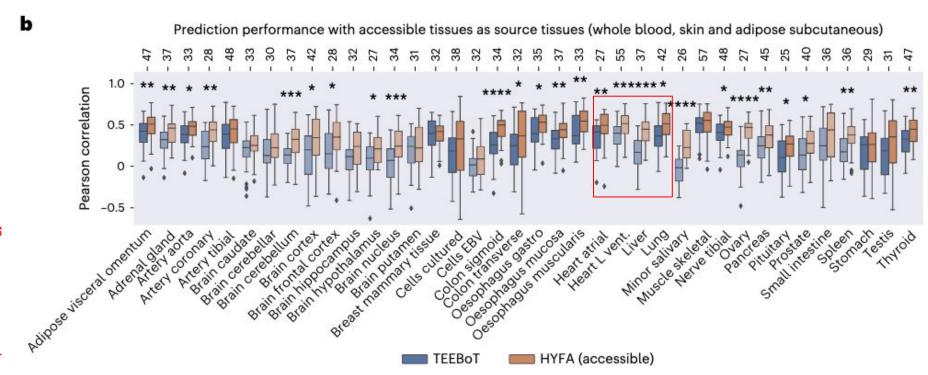


Prediction Performance

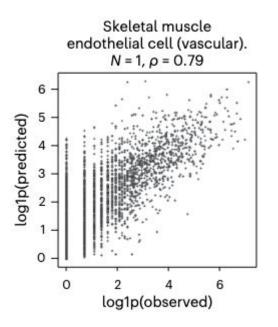


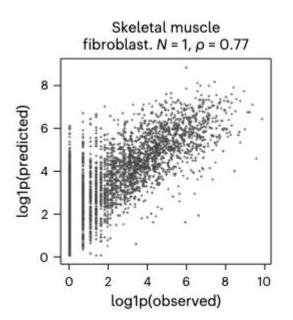
Graph Representations for Biology and Medicine

Prediction Performance



Cell-Type Specific Gene Expression





- HYFA accurately predicts gene expression for specific cell types, even in tissues not used for training.
- These results demonstrate the **effectiveness of HYFA's factorized tissue representations**, allowing it to accurately infer gene expression at the **cell-type level**.

Summary

Problem Solved:

• HYFA addresses the challenge of imputing **missing gene expression** in hard-to-reach tissues by leveraging data from accessible tissues, without relying on genotype information.

Key Features of HYFA

- **Hypergraph Structure**: Captures **higher-order relationships** across tissues, genes, and individuals, allowing more accurate predictions.
- Cell-Type Specific Predictions: HYFA can infer cell-type-specific gene expression even for tissues not used during training, as demonstrated with vascular endothelial cells and fibroblasts.

Superior Performance:

- HYFA consistently **outperforms traditional methods** (like TEEBoT), especially when using multiple reference tissues.
- Achieves strong correlations for difficult-to-predict cell types, highlighting its robustness and accuracy.

Broader Implications:

• HYFA's ability to infer accurate gene expression across tissues and cell types is crucial for **precision medicine** and understanding complex diseases.

https://github.com/rvinas/HYFA

Hypergraph Transformers for EHR-based Clinical Predictions

Ran Xu, Mohammed K. Ali, Joyce C. Ho, Carl Yang——AMIA Jt Summits Transl Sci Pro, 2023

Background

What are Electronic Health Records (EHR)?

- Digital records of patient health information collected over time.
- Include data such as:
 - Diagnoses, treatments, and medications.
 - Medical procedures, lab test results, and doctor's notes.
 - Vital signs, allergies, and medical imaging results.

Growing Importance of EHRs

- EHR systems are now standard in most healthcare facilities, providing large, diverse datasets.
- Used extensively for clinical decision-making and research, particularly in personalized medicine.

Example of EHR Usage:

• EHRs help track the **progress of chronic diseases** like diabetes and heart disease, allowing healthcare providers to monitor **long-term health trends** across multiple visits.

Background

Challenges with EHR Data

- **Diverse and Complex Data**: Each patient visit contains multiple medical codes (e.g., diagnoses, medications), creating a **high-dimensional and heterogeneous dataset**.
- **Irregularity and Sparsity**: EHR data is often incomplete, with irregular time intervals and missing information.

Limitations of Traditional Models

- **Pairwise Relations**: Graph-based models capture only pairwise interactions between medical codes, ignoring the broader context of co-occurring codes.
- Expert-Defined Rules: Rule-based systems are labor-intensive and lack generalizability across datasets.

Need for Accurate Models

• Effective EHR modeling is crucial for improving personalized medicine and population health strategies.

Task Overview

Main Task

Predict patient outcomes (e.g., disease progression, cardiovascular risk) using Electronic
 Health Records (EHR) data.

Data Structure:

- Each patient visit contains multiple medical codes (diagnoses, medications, procedures).
- These codes co-occur and interact in complex ways, requiring advanced methods to capture relationships.

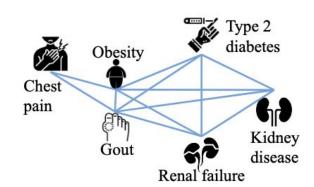
Goal

 Accurately model the interactions among medical codes within each visit to support clinical outcome predictions.

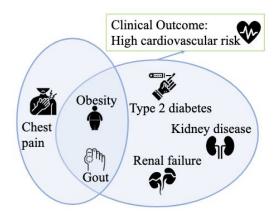
EPFL

Motivation

Why Use Hypergraphs for EHR Data?



- Traditional graphs only capture pairwise relationships between medical codes, missing the higher-order interactions crucial in complex patient visits.
- Example: a patient visit with multiple diagnoses (e.g., diabetes, kidney disease) is reduced to simple pairwise edges, losing the broader context.



Benefits of Hypergraphs:

- Hypergraphs can capture higher-order interactions, where a single visit connects multiple medical codes simultaneously.
- Example: all relevant medical codes (nodes) in a visit are connected via a hyperedge, preserving the full context and allowing more accurate predictions.

EPFL

HypEHR: Hypergraph Transformer Model (Overview)

Model Overview

 HypEHR is a hypergraph-based model aimed at predicting clinical outcomes from EHR data by capturing complex interactions between medical codes within a patient visit.

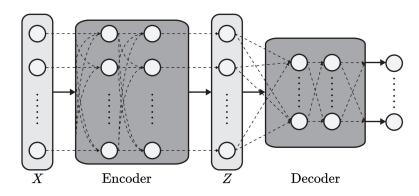
Hypergraph Construction

- Medical codes (diagnoses, procedures, medications) are represented as nodes.
- Each patient visit forms a **hyperedge**, connecting all the relevant medical codes.
- This preserves both the relationships between the codes and the context of the visit, providing a richer data structure for predictions.

How HypEHR Solves EHR Challenges

- **Higher-order Interactions**: Captures relationships that occur between multiple codes, not just pairs.
- **Flexible Representation**: Handles the diverse and irregular nature of EHR data by using hypergraphs, which are better suited than traditional pairwise graphs.

HypEHR: Hypergraph Transformer Model



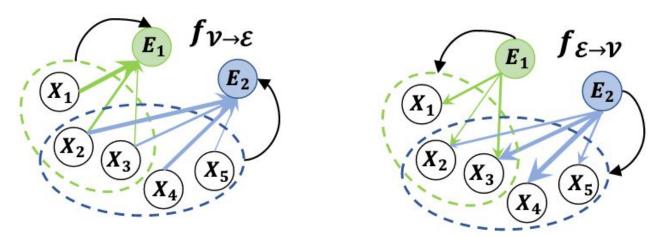
Set Transformer

- Used to model the relationships between medical codes (nodes) and patient visits (hyperedges).
- Can handle sets of any size, making it flexible for various patient records.

Self-Attention Mechanism

- HypEHR employs **self-attention** to identify the **most important medical codes** within a patient visit.
- By assigning **higher weights** to relevant medical codes, it filters out irrelevant ones, improving the model's focus on clinically significant information.
- This also makes the model more **interpretable**, allowing us to gain insights into which medical codes are the most important for specific predictions.

HypEHR: Hypergraph Transformer Model



Message Passing (Aggregation)

- Two key steps:
 - 1. Node to Hyperedge Aggregation ($f_{V\to\mathcal{E}}$): Information from individual medical codes (nodes) is aggregated to form hyperedge (visit) embeddings.
 - 2. **Hyperedge to Node Aggregation** ($f_{\mathcal{E}\to\mathcal{V}}$): The hyperedge embeddings are then used to update the representations of the **medical codes (nodes)**.
- This process helps the model understand how **medical codes interact** within the broader context of a visit, leading to more accurate predictions.

Results

Model	MIMIC-III				CRADLE			
	ACC	AUROC	AUPR	F1	ACC	AUROC	AUPR	F1
LR ³⁶	68.66 ± 0.24	64.62 ± 0.25	45.63 ± 0.32	13.74 ± 0.40	76.22 ± 0.30	57.22 ± 0.28	25.99 ± 0.26	42.18 ± 0.35
SVM ³⁷	72.02 ± 0.12	55.10 ± 0.14	34.19 ± 0.17	32.35 ± 0.21	68.57 ± 0.13	53.57 ± 0.11	23.50 ± 0.15	52.34 ± 0.22
MLP^{38}	70.73 ± 0.24	71.20 ± 0.22	52.14 ± 0.23	16.39 ± 0.30	77.02 ± 0.17	63.89 ± 0.18	33.28 ± 0.23	45.16 ± 0.26
GCT ²² GAT ³⁹	76.58 ± 0.23 76.75 ± 0.26	78.62 ± 0.21 78.89 ± 0.12	63.99 ± 0.27 66.22 ± 0.29	35.48 ± 0.34 34.88 ± 0.33	77.26 ± 0.22 77.82 ± 0.20	67.08 ± 0.19 66.55 ± 0.27	35.90 ± 0.20 36.06 ± 0.18	56.66 ± 0.25 56.43 ± 0.26
HyperGCN ¹² HCHA ¹³	78.01 ± 0.23 78.07 ± 0.28	80.34 ± 0.15 80.42 ± 0.17	67.68 ± 0.16 68.56 ± 0.15	39.29 ± 0.20 37.78 ± 0.22	78.18 ± 0.11 78.60 ± 0.15	67.83 ± 0.18 68.05 ± 0.17	38.28 ± 0.19 39.23 ± 0.13	60.24 ± 0.21 59.26 ± 0.21
HypEHR	79.07 ± 0.31*	82.19 ± 0.13*	71.08 ± 0.17*	41.51 ± 0.25*	79.76 ± 0.18*	70.07 ± 0.13*	40.92 ± 0.12*	61.23 ± 0.18*

Datasets:

- MIMIC-III: Predicting 25 clinical phenotypes based on patient data from ICU visits.
- **CRADLE**: Predicting cardiovascular disease (CVD) risk for diabetic patients.

Performance Metrics: Accuracy (ACC), Area Under ROC Curve (AUROC), and Area Under Precision-Recall Curve (AUPR). **Key Results**

• HypEHR significantly outperforms traditional models like Logistic Regression (LR), SVM, and Graph Neural Networks.

Summary

Key Contributions

- HypEHR introduces a **hypergraph-based approach** to model complex interactions in EHR data, outperforming traditional models.
- The use of **self-attention** allows the model to identify the most relevant medical codes, improving both accuracy and interpretability.

Significant Results

• Improved performance: HypEHR achieves notable improvements in both AUROC and AUPR, outperforming traditional and hypergraph-based baselines.

Broader Implications

• The ability to model higher-order interactions makes **HypEHR** applicable to other domains with complex, multi-relational data, such as **social networks** and **biological networks**.

Future Work

• Potential extensions include incorporating **chronological information** to better model time-sequences in EHR data or applying HypEHR to other prediction tasks beyond clinical outcomes.

