
Week 6 Theory:
Hypergraph Neural Networks

  
Presented by Xiaohang Yu  
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Outline

PhD Project

Research Background 

Hypergraph Neural Networks (GNNs):

- Background

- Taxonomy

- Encoding design 

- Training design

- Applications

- Conclusions



PhD Project
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• I am a first-year PhD student at Mathis Laboratory of adaptive 
intelligence at EPFL, Switzerland. My advisor is Prof. Mackenzie 
Mathis.

• I got my Master's degree of Data Science from Tsinghua University, 
China. My master’s thesis focused on large-scale scene 
reconstruction and rendering and the corresponding applications in 
VR to improve the sense of immersion.

• Now, I am focusing on 3D/4D reconstruction, particularly 
recovering shape and motion from partial observations like videos. 

• For any inquiries, feel free to reach out to me via mail! 



Research Background: 2D/3D Vision and Beyond 
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3D – novel view synthesis 
 Immersive light field reconstruction

2D – object tracking & behavior recognition

Vision-based agent training Capture & render: 
Dataset and VR application Render: 

Detail generation

Representation: 
dynamic reconstruction

Representation:
Large-scale scene reconstruction

Object tracking 
on drones

Behavior recognition 
for farmers

AI coach for divers
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ACM KDD 2024



Background: Hypergraphs
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• Higher-order interactions are commonly modeled as a hypergraph. 
• A hypergraph consists of a node set and a hyperedge set. 
• A hyperedge (i.e., a subset of nodes) models a higher-order interaction
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• Encoding: how do HNNs effectively capture HOIs
• Training: how to encode HOIs with training objectives, 

especially when external labels are scarce or absent 

Taxonomy of HNNs
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Encoding design - Overview
• Typical inputs of hypergraph neural networks (HNNs) are hypergraph structure 

and node (and/or hyperedge) feature vectors. 
• The quality of the inputs can be critical for the effectiveness of HNNs
• Key questions regarding HNN inputs are: 
• Q1. What input features can be used for nodes and hyperedges?
• Q2. How can hypergraph structures be represented? 
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Encoding design – Step1. Design Features to Reflect HOIS
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External features are additionally given information that is not directly 
derived from the input hypergraph structure. 
• They complement structural information reflected in hypergraphs.
• External node features in popular benchmark datasets include:
 1) bag-of-words vectors for article nodes
 2) visual object embeddings for image nodes
 3) the counts of atoms for molecule nodes. 

Encoding design – Step1. Design Features to Reflect HOIS
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Structural features are derived from the input hypergraph structure. 
• They typically capture structural proximity or similarity among nodes. 
• Structural features are either local or global.
• Local structural features capture node-hyperedge membership. 
• leveraged the rows of the incidence matrix as part of their node features.
• Global structural features capture proximity or similarity among nodes beyond 

direct connections. 
• leveraged random walks to capture such proximity and similarity

Encoding design – Step1. Design Features to Reflect HOIS
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Identity features are uniquely assigned to each node and hyperedge. 
• They encourage HNNs to distinguish different nodes and hyperedges.
• some work “learned” identity features using an embedding layer. 
• Each node and hyperedge has a feature vector that is learned during 

training

Encoding design – Step1. Design Features to Reflect HOIS
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Encoding design – Step1. Input: Design Features to Reflect HOIS
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Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
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Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
Clique expansion of a hypergraph is a homogeneous, pairwise graph. 
• Each hyperedge is converted into a clique of its member nodes. 
• Optionally, self-loops can be added.
• Often, edges are weighted by the (normalized) count of hyperedges 

Normalization considers the size of each hyperedge. 
• Some work further weighed edges with learnable parameters
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Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
Adaptive expansion of a hypergraph is a homogeneous, pairwise graph. 
• Each hyperedge is converted into pairwise edge(s) via learnable rules.
 • some work created and weighed edges based on node features.
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Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
Star expansion of a hypergraph is a bipartite, pairwise graph. 
• Each hyperedge is converted into a new node. 
• Each hyperedge (i.e., new node) and each of its member nodes are 
joined by a pairwise edge.
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Line expansion of a hypergraph is a homogeneous, pairwise graph.
 • Each pair of a hyperedge and its node is converted into a new node. 
• Two new nodes are joined by a pairwise edge if they share a 
hyperedge or a node.

Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
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A hypergraph can be represented as a tensor
• The order of the tensor equals the maximum hyperedge size 
• The dimensionality of each mode equals the node count. 
• Each tensor entry is non-zero if there exists a hyperedge 

containing all its mode indices.

Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
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These methods are either reductive or non-reductive. 
• Reductive methods may incur information loss after transformation 
• However, they provide simple and straightforward graph structures.
• Non-reductive methods incur no information loss. 
• However, they are often more complex and, thus, difficult to handle. 

Encoding design – Step 2. Express Hypergraphs to Reflect HOIs
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Encoding design – Step 3. Pass Message to Reflect HOIs - Overview
• HNNs learn node (and hyperedge) embeddings by aggregating 

information from other nodes (and hyperedges). 
• This process is called message passing.
• In HNNs’ message passing, some of the key issues involve: 
• Q1) Whose messages to aggregate 
• Q2) What messages to aggregate 
• Q3) How to aggregate messages
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Encoding design – Step 3. Pass Message to Reflect HOIs
Target Selection can be determined by how the input hypergraph is expressed.
• The star-expansion transforms a hypergraph into a bipartite graph. 

- Two groups of nodes: Node group and Hyperedge group with two-stage passing
- From the node group to the hyperedge group
- From the hyperedge group to the node group

• Clique-expansion transforms a hypergraph into a weighted graph. 
- Akin typical GNNs, it perform message passing between nodes.



■
G

ra
ph

 R
ep

re
se

nt
at

io
ns

  f
or

 B
io

lo
gy

 a
nd

 M
ed

ic
in

e

23

What messages to aggregate. Possible message representations: 
• Hyperedge-consistent messages: 

- the node representation remains the same across all aggregations. 
• Hyperedge-dependent messages: 

- The role of a node may vary based on the hyperedges it is involved in

Encoding design – Step 3. Pass Message to Reflect HOIs
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Aggregate Function
• Fixed pooling function 

- Notable examples are summation or average. 
• Learnable pooling function

- adaptively aggregate node/hyperedge messages
- attention mechanism is widely used to assign different weights to message

Encoding design – Step 3. Pass Message to Reflect HOIs
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Hyperedge prediction (a.k.a. Link Prediction) is a task that predicts future or 
unobserved hyperedges
• Classifying real and fake hyperedges
• Representative fake hyperedges are crucial 

- heuristic fake hyperedge generation
- learnable fake hyperedge generation

Encoding design – Learning to Classify
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Training design – Learning to contrast
Contrastive learning (CL) aims to contrast multiple views of a hypergraph.
• View generation and encoding 
• Construct contrastive loss:

- maximize the embedding similarity of identical nodes/edges
- minimize the embedding similarity of different ones
- Node-level (node - node) contrastive losses 
- Hyperedge-level (hyperedge - hyperedge) contrastive losses
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Training design – Learning to Generate
Trains the network to generate hyperedges that reflect the characteristics of 
the input data.
• Generation is an effective SSL strategy for neural networks. 
• GPT [OpenAI, 2023] and MAE [He et al., 2022] are notable examples.
• In generative SSL, two major aspects should be focused on:
• Q1) What to generate: Generative task 
• Q2) How to generate: Generative method
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Application of HNNs

• Recommendation systems: recommend products to customers 
based on their past purchases and preferences

• Bioinformatics and medical science: predict the structure of 
proteins and other biological molecules

• Time series analysis: forecast taxi demands, gas pressures, 
vehicle speeds, traffic, electricity consumptions, meteorological 
measures, stocks, and crimes.

• Computer vision: recognize objects in images
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• HNNs are a type of neural network that's specifically designed to work with 
hypergraphs. 

• They're able to learn from the structure of the graph and make predictions 
about the relationships between the different nodes. 

• They're being used in a lot of different applications, including 
recommendation systems, bioinformatics, and computer vision. 
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Week 6: 
Hypergraph Neural Networks:Application

  
Presented by Ti Wang  
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Previous Research as a Master's Student

3D Human Pose and Shape Estimation:

● Transformer-based Methods
● Graph-based Methods
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❏ https://github.com/Vegetebird/MHFormer/tree/main
❏ https://github.com/kasvii/PMCE/tree/main

https://github.com/Vegetebird/MHFormer/tree/main
https://github.com/kasvii/PMCE/tree/main
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Current Research as a PhD Student in EDEE

● Focusing on 2D/3D animal pose estimation
● Foundation Model for Animal

3
https://github.com/DeepLabCut/DeepLabCut?tab=readme-ov-file 
https://actu.epfl.ch/news/unifying-behavioral-analysis-through-animal-founda/ 

https://github.com/DeepLabCut/DeepLabCut?tab=readme-ov-file
https://actu.epfl.ch/news/unifying-behavioral-analysis-through-animal-founda/


Hypergraph factorization for multi-tissue 
gene expression imputation
Ramon Viñas, Chaitanya K. Joshi, Dobrik Georgiev, Phillip Lin, Bianca Dumitrascu, Eric R. Gamazon, Pietro 
Liò-——Nature Machine Intelligence, 2023

4

https://www.nature.com/articles/s42256-023-00684-8 

https://www.nature.com/articles/s42256-023-00684-8


Background

What is Gene Expression?

● Gene expression is how cells use information from genes to create proteins.
● Every tissue (like the brain or liver) uses different genes to perform its specific functions.

Why It Matters

● Studying gene expression across tissues helps us understand diseases and develop treatments.
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Background

The Problem: Missing Data

● It’s hard to collect gene expression data from all tissues, especially difficult ones like brain tissue.
○ This leaves gaps in understanding how different tissues work together.

● Genotype data is not always available due to privacy concerns.
● Tissues collected for different individuals vary, leading to gaps in data.

Traditional Methods

● Traditional ways to fill these gaps depend on genetic data, which may not always be available for 
privacy or technical reasons.

● Existing methods cannot capture complex, non-linear relationships between tissues.
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What is the Task?

● predict gene expression in tissues where data is missing or difficult to collect (e.g., brain, heart).
● fill in these gaps using data from tissues that are easier to collect (e.g., blood, skin).

Challenges

● Gene expression varies across tissues
○ Each tissue has a unique gene expression pattern based on its function. Understanding 

this helps us study how tissues work together and how diseases progress.
● Limited access to some tissues:

○ Certain tissues are hard or invasive to sample (like brain tissue), leaving gaps in our 
understanding of these critical tissues.

● Nonlinear and Complex Relationships: Gene expression across tissues isn't a simple 1-to-1 
relationship. The relationships between different tissues are complex and nonlinear.

Task Overview
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Why Use a Hypergraph for Gene Expression Imputation?

Limitations of Existing Approaches:

● Linear methods (like PCA and regression) fail to capture the nonlinear 
relationships between tissues.

● These approaches rely heavily on genotype data, which is often unavailable 
due to privacy or technical issues.

Benefits of Hypergraph:

● Higher-Order Relationships: Hypergraphs can model complex 
interactions between multiple tissues, genes, and individuals all at once.

● Nonlinear Patterns: Unlike traditional graphs, a hypergraph can capture 
nonlinear gene expression patterns across different tissues.

● Flexibility: Supports a variable number of tissues, allowing for input 
flexibility when not all tissue data is available.

Motivation 
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What is HYFA?

● HYFA (Hypergraph Factorization) is a method for imputing missing gene expression across multiple tissues.
● It uses a hypergraph to model complex relationships between individuals, tissues, and genes.

HYFA: Hypergraph Factorization for Gene Expression Imputation
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Workflow of HYFA
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Prediction Performance
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Prediction Performance
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Cell-Type Specific Gene Expression
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● HYFA accurately predicts gene expression for specific cell types, even in tissues not used for training.
● These results demonstrate the effectiveness of HYFA’s factorized tissue representations, allowing it to 

accurately infer gene expression at the cell-type level.



Problem Solved:

● HYFA addresses the challenge of imputing missing gene expression in hard-to-reach tissues by leveraging data 
from accessible tissues, without relying on genotype information.

Key Features of HYFA

● Hypergraph Structure: Captures higher-order relationships across tissues, genes, and individuals, allowing more 
accurate predictions.

● Cell-Type Specific Predictions: HYFA can infer cell-type-specific gene expression even for tissues not used 
during training, as demonstrated with vascular endothelial cells and fibroblasts.

Superior Performance:

● HYFA consistently outperforms traditional methods (like TEEBoT), especially when using multiple reference 
tissues.

● Achieves strong correlations for difficult-to-predict cell types, highlighting its robustness and accuracy.

Broader Implications:

● HYFA’s ability to infer accurate gene expression across tissues and cell types is crucial for precision medicine and 
understanding complex diseases.

 Summary
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https://github.com/rvinas/HYFA



Hypergraph Transformers for EHR-based 
Clinical Predictions
Ran Xu, Mohammed K. Ali, Joyce C. Ho, Carl Yang——AMIA Jt Summits Transl Sci Pro, 2023

15



What are Electronic Health Records (EHR)?

● Digital records of patient health information collected over time.
● Include data such as:

○ Diagnoses, treatments, and medications.
○ Medical procedures, lab test results, and doctor’s notes.
○ Vital signs, allergies, and medical imaging results.

Background
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Growing Importance of EHRs

● EHR systems are now standard in most healthcare facilities, providing large, diverse datasets.
● Used extensively for clinical decision-making and research, particularly in personalized medicine.

Example of EHR Usage:

● EHRs help track the progress of chronic diseases like diabetes and heart disease, allowing healthcare providers 
to monitor long-term health trends across multiple visits.



 Challenges with EHR Data

● Diverse and Complex Data: Each patient visit contains multiple medical codes (e.g., diagnoses, 
medications), creating a high-dimensional and heterogeneous dataset.

● Irregularity and Sparsity: EHR data is often incomplete, with irregular time intervals and missing 
information.

Background
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Limitations of Traditional Models

● Pairwise Relations: Graph-based models capture only pairwise interactions between medical codes, 
ignoring the broader context of co-occurring codes.

● Expert-Defined Rules: Rule-based systems are labor-intensive and lack generalizability across datasets.

Need for Accurate Models

●  Effective EHR modeling is crucial for improving personalized medicine and population health strategies.



Task Overview

Main Task

● Predict patient outcomes (e.g., disease progression, cardiovascular risk) using Electronic 
Health Records (EHR) data.

Data Structure:

● Each patient visit contains multiple medical codes (diagnoses, medications, procedures).
● These codes co-occur and interact in complex ways, requiring advanced methods to 

capture relationships.

Goal

● Accurately model the interactions among medical codes within each visit to support clinical 
outcome predictions.
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Why Use Hypergraphs for EHR Data?

Motivation 
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Limitations of Traditional Graphs:

● Traditional graphs only capture pairwise relationships 
between medical codes, missing the higher-order 
interactions crucial in complex patient visits.

● Example: a patient visit with multiple diagnoses (e.g., 
diabetes, kidney disease) is reduced to simple 
pairwise edges, losing the broader context.

Benefits of Hypergraphs:

● Hypergraphs can capture higher-order interactions, 
where a single visit connects multiple medical codes 
simultaneously.

● Example: all relevant medical codes (nodes) in a visit 
are connected via a hyperedge, preserving the full 
context and allowing more accurate predictions.



Model Overview

● HypEHR is a hypergraph-based model aimed at predicting clinical outcomes from EHR data by 
capturing complex interactions between medical codes within a patient visit.

HypEHR: Hypergraph Transformer Model (Overview)
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Hypergraph Construction

● Medical codes (diagnoses, procedures, medications) are represented as nodes.
● Each patient visit forms a hyperedge, connecting all the relevant medical codes.
● This preserves both the relationships between the codes and the context of the visit, providing a richer data 

structure for predictions.

How HypEHR Solves EHR Challenges

● Higher-order Interactions: Captures relationships that occur between multiple codes, not just pairs.
● Flexible Representation: Handles the diverse and irregular nature of EHR data by using hypergraphs, which are 

better suited than traditional pairwise graphs.



Set Transformer

● Used to model the relationships between medical codes (nodes) and patient visits (hyperedges).
● Can handle sets of any size, making it flexible for various patient records.

HypEHR: Hypergraph Transformer Model
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Self-Attention Mechanism

● HypEHR employs self-attention to identify the most important medical codes within a patient visit.
● By assigning higher weights to relevant medical codes, it filters out irrelevant ones, improving the model’s focus on 

clinically significant information.
● This also makes the model more interpretable, allowing us to gain insights into which medical codes are the most 

important for specific predictions.



HypEHR: Hypergraph Transformer Model
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Message Passing (Aggregation)

● Two key steps:
1. Node to Hyperedge Aggregation (        ): Information from individual medical codes (nodes) is aggregated to 

form hyperedge (visit) embeddings.
2. Hyperedge to Node Aggregation (        ): The hyperedge embeddings are then used to update the 

representations of the medical codes (nodes).
● This process helps the model understand how medical codes interact within the broader context of a visit, leading to 

more accurate predictions.



Results
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Datasets:

● MIMIC-III: Predicting 25 clinical phenotypes based on patient data from ICU visits.
● CRADLE: Predicting cardiovascular disease (CVD) risk for diabetic patients.

Performance Metrics: Accuracy (ACC), Area Under ROC Curve (AUROC), and Area Under Precision-Recall Curve (AUPR).
Key Results

● HypEHR significantly outperforms traditional models like Logistic Regression (LR), SVM, and Graph Neural Networks.



Summary
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Key Contributions

● HypEHR introduces a hypergraph-based approach to model complex interactions in EHR data, outperforming traditional 
models.

● The use of self-attention allows the model to identify the most relevant medical codes, improving both accuracy and 
interpretability.

Significant Results

● Improved performance: HypEHR achieves notable improvements in both AUROC and AUPR, outperforming traditional 
and hypergraph-based baselines.

Broader Implications

● The ability to model higher-order interactions makes HypEHR applicable to other domains with complex, multi-relational 
data, such as social networks and biological networks.

Future Work

● Potential extensions include incorporating chronological information to better model time-sequences in EHR data or 
applying HypEHR to other prediction tasks beyond clinical outcomes.
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