Week 6 Theory:
Hypergraph Neural Networks

Presented by Xiaohang Yu
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Graph Representations for Biology and Medicine

Outline

PhD Project

Research Background

Hypergraph Neural Networks (GNNs):
- Background

- Taxonomy

- Encoding design

- Training design

- Applications

- Conclusions
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PhD Project

I am a first-year PhD student at Mathis Laboratory of adaptive
intelligence at EPFL, Switzerland. My advisor is Prof. Mackenzie
Mathis.

I got my Master's degree of Data Science from Tsinghua University,
China. My master’s thesis focused on large-scale scene
reconstruction and rendering and the corresponding applications in
VR to improve the sense of immersion.

Now, I am focusing on 3D/4D reconstruction, particularly
recovering shape and motion from partial observations like videos.

For any inquiries, feel free to reach out to me via mail!



=PrL Research Background: 2D/3D Vision and Beyond
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3D — novel view synthesis
Immersive light field reconstruction

Behavior recognition
on drones for farmers
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Background: Hypergraphs

» Higher-order interactions are commonly modeled as a hypergraph.
* A hypergraph consists of a node set and a hyperedge set.
* A hyperedge (i.e., a subset of nodes) models a higher-order interaction
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Taxonomy of HNNs

[ Modeling higher-order interactions ]
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* Encoding: how do HNNs effectively capture HOIs
* Training: how to encode HOIs with training objectives,
especially when external labels are scarce or absent
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Encoding design - Overview

Typical inputs of hypergraph neural networks (HNNSs) are hypergraph structure
and node (and/or hyperedge) feature vectors.

The quality of the inputs can be critical for the effectiveness of HNNs

Key questions regarding HNN inputs are:

Q1. What input features can be used for nodes and hyperedges?

Q2. How can hypergraph structures be represented?

Hypergraph N = Node and hyperedge
structure ol features




cPrL
Encoding design — Step1. Design Features to Reflect HOIS
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EPFL
Encoding design — Step1. Design Features to Reflect HOIS
External features are additionally given information that is not directly
derived from the input hypergraph structure.
* They complement structural information reflected in hypergraphs.
» External node features in popular benchmark datasets include:
1) bag-of-words vectors for article nodes
2) visual object embeddings for image nodes
3) the counts of atoms for molecule nodes.

=|womm - -»d- f,-»d-

Bag-of-words Visual object Count of atoms
embedding
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cPrL
Encoding design — Step1. Design Features to Reflect HOIS

Structural features are derived from the input hypergraph structure.

* They typically capture structural proximity or similarity among nodes.

» Structural features are either local or global.

* Local structural features capture node-hyperedge membership.

* leveraged the rows of the incidence matrix as part of their node features.

* Global structural features capture proximity or similarity among nodes beyond
direct connections.

e leveraged random walks to capture such proximity and similarity

V! : V:.‘ : : -

Random-walk
(e.g., Hyper2Vec)
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cPrL
Encoding design — Step1. Design Features to Reflect HOIS

Identity features are uniquely assigned to each node and hyperedge.

* They encourage HNNs to distinguish different nodes and hyperedges.

* some work “learned” identity features using an embedding layer.

* Each node and hyperedge has a feature vector that is learned during
training

Embedding
layer

Graph Representations for Biology and Medicine
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cPrL
Encoding design — Step1. Input: Design Features to Reflect HOIS
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Encoding design — Step 2. Express Hypergraphs to Reflect HOIs
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Encoding design — Step 2. Express Hypergraphs to Reflect HOIs

Clique expansion of a hypergraph is a homogeneous, pairwise graph.

Each hyperedge is converted into a clique of its member nodes.
Optionally, self-loops can be added.

Often, edges are weighted by the (normalized) count of hyperedges
Normalization considers the size of each hyperedge.

Some work further weighed edges with learnable parameters

7/12

Rule-based 1/4
o transformation
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cPrL
Encoding design — Step 2. Express Hypergraphs to Reflect HOIs

Adaptive expansion of a hypergraph is a homogeneous, pairwise graph.
» Each hyperedge is converted into pairwise edge(s) via learnable rules.
» some work created and weighed edges based on node features.

Learnable 3/8
transformation

Graph Representations for Biology and Medicine

16



cPrL
Encoding design — Step 2. Express Hypergraphs to Reflect HOIs

Star expansion of a hypergraph is a bipartite, pairwise graph.

» Each hyperedge is converted into a new node.

» Each hyperedge (i.e., new node) and each of its member nodes are
joined by a pairwise edge.

Node group
A

Hyperedge group

Graph Representations for Biology and Medicine
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cPrL
Encoding design — Step 2. Express Hypergraphs to Reflect HOIs

Line expansion of a hypergraph is a homogeneous, pairwise graph.
 Each pair of a hyperedge and its node is converted into a new node.
* Two new nodes are joined by a pairwise edge if they share a
hyperedge or a node.

uloxno ao> 55
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Pair of a hyperedge
& its member node
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cPrL
Encoding design — Step 2. Express Hypergraphs to Reflect HOIs

A hypergraph can be represented as a tensor

* The order of the tensor equals the maximum hyperedge size

* The dimensionality of each mode equals the node count.

* Each tensor entry is non-zero if there exists a hyperedge
containing all its mode indices.
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Encoding design — Step 2. Express Hypergraphs to Reflect HOIs

These methods are either reductive or non-reductive.

» Reductive methods may incur information loss after transformation

» However, they provide simple and straightforward graph structures.

* Non-reductive methods incur no information loss.

» However, they are often more complex and, thus, difficult to handle.
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Encoding design — Step 3. Pass Message to Reflect HOIs - Overview

* HNNSs learn node (and hyperedge) embeddings by aggregating
information from other nodes (and hyperedges).

» This process is called message passing.

* In HNNs’ message passing, some of the key issues involve:

* QI1) Whose messages to aggregate

* Q2) What messages to aggregate

* Q3) How to aggregate messages

£ layer
node embeddings Message passing node embeddings

(¢ — 1) layer

Graph Representations for Biology and Medicine
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Encoding design — Step 3. Pass Message to Reflect HOIs

Target Selection can be determined by how the input hypergraph is expressed.
* The star-expansion transforms a hypergraph into a bipartite graph.
- Two groups of nodes: Node group and Hyperedge group with two-stage passing
- From the node group to the hyperedge group
- From the hyperedge group to the node group
* Clique-expansion transforms a hypergraph into a weighted graph.
- Akin typical GNNSs, it perform message passing between nodes.

Graph Representations for Biology and Medicine

Star-expanded graph Clique-expanded graph
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Encoding design — Step 3. Pass Message to Reflect HOIs

What messages to aggregate. Possible message representations:
* Hyperedge-consistent messages:
- the node representation remains the same across all aggregations.
* Hyperedge-dependent messages:
- The role of a node may vary based on the hyperedges it is involved in
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cPrL
Encoding design — Step 3. Pass Message to Reflect HOIs

Aggregate Function

* Fixed pooling function
- Notable examples are summation or average.

* Learnable pooling function
- adaptively aggregate node/hyperedge messages
- attention mechanism i1s widely used to assign different weights to message

(1) Fixed

ok *ﬂﬂjﬁa— Bine

(2) Learnable +
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cPrL . . .
Encoding design — Learning to Classify

Hyperedge prediction (a.k.a. Link Prediction) is a task that predicts future or
unobserved hyperedges
* C(lassifying real and fake hyperedges
* Representative fake hyperedges are crucial
- heuristic fake hyperedge generation
- learnable fake hyperedge generation

. N . - R
Thheyyp\c_‘ar‘r*eecI greesat

Hypergraph They are fake
hyperedges \_ y
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Training design — Learning to contrast

Contrastive learning (CL) aims to contrast multiple views of a hypergraph.
* View generation and encoding
* Construct contrastive loss:

- maximize the embedding similarity of identical nodes/edges

- minimize the embedding similarity of different ones

- Node-level (node - node) contrastive losses

- Hyperedge-level (hyperedge - hyperedge) contrastive losses

They are the
same, Tom!

Co-authorship
relation
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Training design — Learning to Generate

Trains the network to generate hyperedges that reflect the characteristics of
the input data.

* Generation 1s an effective SSL strategy for neural networks.

* GPT [OpenAl, 2023] and MAE [He et al., 2022] are notable examples.

* In generative SSL, two major aspects should be focused on:

* QI) What to generate: Generative task

* Q2) How to generate: Generative method
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Application of HNNs

Recommendation systems: recommend products to customers
based on their past purchases and preferences

Bioinformatics and medical science: predict the structure of
proteins and other biological molecules

Time series analysis: forecast taxi demands, gas pressures,
vehicle speeds, traffic, electricity consumptions, meteorological
measures, stocks, and crimes.

Computer vision: recognize objects in images

28
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Take Homes

HNNSs are a type of neural network that's specifically designed to work with
hypergraphs.

They're able to learn from the structure of the graph and make predictions
about the relationships between the different nodes.

They're being used in a lot of different applications, including
recommendation systems, bioinformatics, and computer vision.

e
L7 =
Recommender Bioinformatics &
system Medical science
Time series analysis  Computer
vision
Input Message Training Applications

Passing Strategies

29
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Week 6:
Hypergraph Neural Networks: Application

Presented by Ti Wang

)
£
2
°
)
=
o
c
©
>
<)
o
0
1]
1
(<]
2
)
c
o
2
©
3
c
]
0
o
S
o
)
14
<
Qo
©
S
o




=PrL

Previous Research as a Master's Student
3D Human Pose and Shape Estimation:

e Transformer-based Methods
e  (Graph-based Methods

Graph Representations for Biology and Medicine

A https://github.com/Vegetebird/MHFormer/tree/main
A https://github.com/kasvii/PMCE/tree/main



https://github.com/Vegetebird/MHFormer/tree/main
https://github.com/kasvii/PMCE/tree/main
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Current Research as a PhD Student in EDEE

e Focusing on 2D/3D animal pose estimation
e Foundation Model for Animal

Graph Representations for Biology and Medicine

https://github.com/Deepl abCut/Deepl abCut?tab=readme-ov-file
https://actu.epfl.ch/news/unifying-behavioral-analysis-through-animal-founda/



https://github.com/DeepLabCut/DeepLabCut?tab=readme-ov-file
https://actu.epfl.ch/news/unifying-behavioral-analysis-through-animal-founda/

Hypergraph factorization for multi-tissue
gene expression imputation

Ramon Vinas, Chaitanya K. Joshi, Dobrik Georgiev, Phillip Lin, Bianca Dumitrascu, Eric R. Gamazon, Pietro
Lio Nature Machine Intelligence, 2023

https://www.nature.com/articles/s42256-023-00684-8



https://www.nature.com/articles/s42256-023-00684-8

=PrL Background

What is Gene Expression?

e  Gene expression is how cells use information from genes to create proteins.
e  Every tissue (like the brain or liver) uses different genes to perform its specific functions.

Why It Matters

e Studying gene expression across tissues helps us understand diseases and develop treatments.

DNA RNA

Protein

Transcription X
Translation

Reverse
transcription

Replication

Graph Representations for Biology and Medicine
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PrL Background

The Problem: Missing Data

e It’s hard to collect gene expression data from all tissues, especially difficult ones like brain tissue.
o  This leaves gaps in understanding how different tissues work together.

e  Genotype data is not always available due to privacy concerns.

e Tissues collected for different individuals vary, leading to gaps in data.

Traditional Methods

e Traditional ways to fill these gaps depend on genetic data, which may not always be available for
privacy or technical reasons.
e  Existing methods cannot capture complex, non-linear relationships between tissues.
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Task Overview

What is the Task?

e predict gene expression in tissues where data is missing or difficult to collect (e.g., brain, heart).
e fill in these gaps using data from tissues that are easier to collect (e.g., blood, skin).

Challenges

o Gene expression varies across tissues
o Each tissue has a unique gene expression pattern based on its function. Understanding
this helps us study how tissues work together and how diseases progress.
e Limited access to some tissues:
o Certain tissues are hard or invasive to sample (like brain tissue), leaving gaps in our
understanding of these critical tissues.
e Nonlinear and Complex Relationships: Gene expression across tissues isn't a simple 1-to-1
relationship. The relationships between different tissues are complex and nonlinear.

Graph Representations for Biology and Medicine
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Why Use a Hypergraph for Gene Expression Imputation?

Limitations of Existing Approaches:

Motivation
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e Nonlinear Patterns: Unlike traditional graphs, a hypergraph can capture
nonlinear gene expression patterns across different tissues.

e  Flexibility: Supports a variable number of tissues, allowing for input
flexibility when not all tissue data is available.
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HYFA: Hypergraph Factorization for Gene Expression Imputation

\- 4
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HYFA
Accessible tissues Inaccessible tissues

What is HYFA?

e HYFA (Hypergraph Factorization) is a method for imputing missing gene expression across multiple tissues.
e [t uses a hypergraph to model complex relationships between individuals, tissues, and genes.



=PrL Workflow of HYFA

1. Encoder learns low-dimensional representation 2. Message passing computes factorised representations
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Prediction Performance

=PrL

Prediction performance with blood as source
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Prediction Performance

Prediction performance with accessible tissues as source tissues (whole blood, skin and adipose subcutaneous)
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Cell-Type Specific Gene Expression

Skeletal muscle Skeletal muscle
endothelial cell (vascular). fibroblast. N=1, p = 0.77
N=1,p=0.79
6 - o : L
—~ 5 — e % ..
8 ads ¢ Q
.01 |
B =
g2 g
) L 24
— 1 &l
0 - 0 -
0 2 4 6 0 2 4 6 8 10
logip(observed) loglp(observed)

HYFA accurately predicts gene expression for specific cell types, even in tissues not used for training.
These results demonstrate the effectiveness of HYFA’s factorized tissue representations, allowing it to
accurately infer gene expression at the cell-type level.
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cPrL Summary

Graph Representations for Biology and Medicine

Problem Solved:

e HYFA addresses the challenge of imputing missing gene expression in hard-to-reach tissues by leveraging data
from accessible tissues, without relying on genotype information.

Key Features of HYFA

e Hypergraph Structure: Captures higher-order relationships across tissues, genes, and individuals, allowing more
accurate predictions.

e  Cell-Type Specific Predictions: HYFA can infer cell-type-specific gene expression even for tissues not used
during training, as demonstrated with vascular endothelial cells and fibroblasts.

Superior Performance:

e HYFA consistently outperforms traditional methods (like TEEBoT), especially when using multiple reference
tissues.
e  Achieves strong correlations for difficult-to-predict cell types, highlighting its robustness and accuracy.

Broader Implications:

e HYFA’s ability to infer accurate gene expression across tissues and cell types is crucial for precision medicine and

understanding complex diseases.
https://github.com/rvinas/HYFA
14



Hypergraph Transformers for EHR-based
Clinical Predictions

Ran Xu, Mohammed K. Ali, Joyce C. Ho, Carl Yang——AMIA Jt Summits Transl Sci Pro, 2023
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=PrL Background

What are Electronic Health Records (EHR)?

e Digital records of patient health information collected over time. [

e Include data such as: $ :
o Diagnoses, treatments, and medications. e
o Medical procedures, lab test results, and doctor’s notes. .I
o Vital signs, allergies, and medical imaging results. 3

Growing Importance of EHRs

e EHR systems are now standard in most healthcare facilities, providing large, diverse datasets.
e Used extensively for clinical decision-making and research, particularly in personalized medicine.

Example of EHR Usage:

® EHRs help track the progress of chronic diseases like diabetes and heart disease, allowing healthcare providers
to monitor long-term health trends across multiple visits.

Graph Representations for Biology and Medicine

16



=PrL Background

Graph Representations for Biology and Medicine

Challenges with EHR Data

® Diverse and Complex Data: Each patient visit contains multiple medical codes (e.g., diagnoses,
medications), creating a high-dimensional and heterogeneous dataset.

® Irregularity and Sparsity: EHR data is often incomplete, with irregular time intervals and missing
information.

Limitations of Traditional Models

e Pairwise Relations: Graph-based models capture only pairwise interactions between medical codes,
ignoring the broader context of co-occurring codes.

e Expert-Defined Rules: Rule-based systems are labor-intensive and lack generalizability across datasets.

Need for Accurate Models

e  Effective EHR modeling is crucial for improving personalized medicine and population health strategies.

17



=PrL Task Overview

Main Task

e Predict patient outcomes (e.g., disease progression, cardiovascular risk) using Electronic
Health Records (EHR) data.

Data Structure:

e Each patient visit contains multiple medical codes (diagnoses, medications, procedures).
e These codes co-occur and interact in complex ways, requiring advanced methods to
capture relationships.

Goal

e Accurately model the interactions among medical codes within each visit to support clinical
outcome predictions.

Graph Representations for Biology and Medicine

18
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Motivation
Why Use Hypergraphs for EHR Data?
Clinical Outcome:
"7?; Type 2 High cardiovascular risk
b4 Obesity " diabetes
l—/
7
Ch.eSt % Digety Type 2 diabetes
pain ‘-"—. Chpst Kidney disease
. pain
~ = Kldney Renal failure
P disease Gout pp
Renal failure %
Limitations of Traditional Graphs: Benefits of Hypergraphs:

e Traditional graphs only capture pairwise relationships
between medical codes, missing the higher-order
interactions crucial in complex patient visits.

e Example: a patient visit with multiple diagnoses (e.g.,
diabetes, kidney disease) is reduced to simple
pairwise edges, losing the broader context.

e Hypergraphs can capture higher-order interactions,
where a single visit connects multiple medical codes
simultaneously.

e Example: all relevant medical codes (nodes) in a visit
are connected via a hyperedge, preserving the full
context and allowing more accurate predictions.

19



=PrL HypEHR: Hypergraph Transformer Model (Overview)

Graph Representations for Biology and Medicine

Model Overview

e HypEHR is a hypergraph-based model aimed at predicting clinical outcomes from EHR data by
capturing complex interactions between medical codes within a patient visit.

Hypergraph Construction

Medical codes (diagnoses, procedures, medications) are represented as nodes.

e  Each patient visit forms a hyperedge, connecting all the relevant medical codes.

e This preserves both the relationships between the codes and the context of the visit, providing a richer data
structure for predictions.

How HypEHR Solves EHR Challenges

e Higher-order Interactions: Captures relationships that occur between multiple codes, not just pairs.
e  Flexible Representation: Handles the diverse and irregular nature of EHR data by using hypergraphs, which are
better suited than traditional pairwise graphs.

20
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PrL HypEHR: Hypergraph Transformer Model
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:

e Used to model the relationships between medical codes (nodes) and patient visits (hyperedges).

e (Can handle sets of any size, making it flexible for various patient records.

Self-Attention Mechanism

HypEHR employs self-attention to identify the most important medical codes within a patient visit.

By assigning higher weights to relevant medical codes, it filters out irrelevant ones, improving the model’s focus on

clinically significant information.

®  This also makes the model more interpretable, allowing us to gain insights into which medical codes are the most

important for specific predictions.
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Message Passing (Aggregation)

e Two key steps:
1. Node to Hyperedge Aggregation ( fy_,¢): Information from individual medical codes (nodes) is aggregated to
form hyperedge (visit) embeddings.
2. Hyperedge to Node Aggregation ( fc—1): The hyperedge embeddings are then used to update the
representations of the medical codes (nodes).
®  This process helps the model understand how medical codes interact within the broader context of a visit, leading to
more accurate predictions.
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Results
— MIMIC-III CRADLE
g ACC AUROC AUPR F1 ACC AUROC AUPR F1
LR36 68.66+024 64.62+025 4563+032 13.74+040 7622+0.30 57.22+028 2599+026 42.18+0.35
SVM?? 72.02+0.12 55.10+0.14 34.19+£0.17 3235+021 6857+0.13 5357+0.11 23.50+0.15 5234+0.22
MLP38 70.73+024 7120+022 52.14+023 1639+030 77.02+0.17 63.89+0.18 33.28+023 45.16+0.26
GCTZ 7658 +0.23  78.62+021 63.99+027 3548+034 7726+0.22 67.08+0.19 3590+020 56.66+0.25
GAT* 76.75+026 78.89+0.12 6622+029 3488+033 77.82+020 66.55+0.27 36.06+0.18 56.43+0.26
HyperGCN'2  78.01+£0.23 80.34+0.15 67.68+0.16 39.29+020 78.18+0.11 67.83+0.18 3828+0.19 60.24+0.21
HCHA" 78.07+0.28 8042+0.17 6856+0.15 37.78+022 78.60+0.15 68.05+0.17 39.23+0.13 59.26+0.21
HypEHR 79.07 £ 0.31* 82.19+0.13* 71.08 £ 0.17* 41.51 +0.25* 79.76 + 0.18* 70.07 £ 0.13* 4092 + 0.12* 61.23 + 0.18*
Datasets:

e  MIMIC-III: Predicting 25 clinical phenotypes based on patient data from ICU visits.

e CRADLE: Predicting cardiovascular disease (CVD) risk for diabetic patients.

Performance Metrics: Accuracy (ACC), Area Under ROC Curve (AUROC), and Area Under Precision-Recall Curve (AUPR).
Key Results

e HypEHR significantly outperforms traditional models like Logistic Regression (LR), SVM, and Graph Neural Networks.

Graph Representations for Biology and Medicine
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Summary
Key Contributions
e HypEHR introduces a hypergraph-based approach to model complex interactions in EHR data, outperforming traditional
models.
e  The use of self-attention allows the model to identify the most relevant medical codes, improving both accuracy and
interpretability.
Significant Results

e Improved performance: HypEHR achieves notable improvements in both AUROC and AUPR, outperforming traditional
and hypergraph-based baselines.

Broader Implications

e  The ability to model higher-order interactions makes HypEHR applicable to other domains with complex, multi-relational
data, such as social networks and biological networks.

Future Work

e Potential extensions include incorporating chronological information to better model time-sequences in EHR data or
applying HypEHR to other prediction tasks beyond clinical outcomes.

Graph Representations for Biology and Medicine
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