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 PhD Project
 Graph Transformers (GTs)

– Introduction

– Background

– Properties of GT

– Applications of GT

– Experimental Study

– Conclusions
 Discussion
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 1st year PhD Student at EPFL, Research Assistant at Idiap Research 
Institute (LIDIAP).

 Supervised by Dr. André Anjos and Dr. Jean-Marc Odobez.
 FairMI – Machine Learning Fairness with Applicatin to Medical Images.
 A SNSF funded project in a collaboration with the Federal University of 

Sao Paulo, Brazil.
 The main purpose :

– Introducing fairness into medical image analysis so that Machine 
Learning (ML) could be democratized independently from the 
sensitive attributes such as race, gender and ethnicity.

– Some keywords : Machine Learning, Fairness, Medical Image 
Analysis
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 Three objectives :
– Adjustable fairness

– Fairness boundaries

– Fair mixed human-AI decision support
 Adjustable Fairness

– ML performance conflicts with fairness in general.
● A Multi-Objective Optimization (MOO) problem.

– We may need to select proper combination of the performance with fairness.
● Based on the necessity of the task.

– We consider ML tasks in healthcare domain :
● Glaucome disease : An eye disease that is seen more in Black people.

PhD Project
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 Utility-Fairness Trade-off

– Hypernetwork [1] based trade-off selection 
mechanism.

– Base networks generate derived networks.

– Derived networks represent a choice for trade-off :
● Better performance and worse fairness (D1).
● Worse performance and better performance (D10).

PhD Project
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[1] Ha, D., Dai, A., & Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.
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 Introduction
– GT is a transformer designed to capture graph structure with attention.

● Aggregating information from all nodes, no local structure bias.

– GTs have promising results in many problems including molecular property 
prediction.

– GTs have some advantages over GNNs for some issues :
● Over-smoothing : The representative similarities of the nodes, no discrimination.

– GNNs with many layers
● Over-squashing : Insufficient capacity to retain the information from other nodes.

– GNNs capturing large graphs.

– GTs are combined with structural/positional encodings to keep more 
information on graph.

Graph Transformers 
(GTs)
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 Background
– A graph G with a pair (V(G), E(G)) :

● V(G) : a finite set of nodes
● E(G) : a set of edges, E(G)  {{u, v}  V | u⊆ ⊆ ≠v}
● The neighborhood of v∈V(G), N(v)={u V(G) | (v, u) E(G)}.∈ ∈
● The graphs G and H are isomorphic if there exists an edge-preserving bijection g:

(V(G) → V(H)).
– G: A-B, A-C, B-C ; H: X-Y, X-Z, Y-Z → G and H are isomorphic.

– Equivariance
● f(Tx) = Tf(x), T : transformation (rotation, translation etc.), x : input vector

– Invariance
● f(Tx) = f(x), T : transformation (rotation, translation etc.), x : input vector

Graph Transformers 
(GTs)
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 Background
– A single attention head :

where Q=X(t)WQ, K=X(t)WK, V=X(t)WV. We can rewrite Attn(X(t)) as :

for v∈V(G) and :
kexp(X(t)

v, X(t)
w) = exp(X(t)

vWQX(t)
wWK/√dk)

– And, transformer layer updates X(t) as :
X(t+1) = FFN(MultiHead(X(t)) + X(t))

Graph Transformers 
(GTs)
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 Properties of GT
– GTs may overcome local structural bias by structural/positional encoding.

● This is also case for GNNs.
● Structural encoding : Make the GT aware of graph on local, relative, global level.

– The degree of node (local).
● Positional encoding : Make the node aware of its relative position to other nodes.

– The distance between node pairs (relative).

– GTs support both of non-geometric and geometric features.
● Geometric features require 3D information of the nodes and edges.

– The input needs to be equivariant and invariant, a harder case.
– 3D molecular graphs, 3D bones structure etc.

– GTs carry information between nodes through attention for message passing.
● This has a computational cost when the graph is large.

Graph Transformers 
(GTs)
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 Applications of GT
– GTs are applied on different areas including molecular property prediction.

● Although it’s a new approach and has some drawbacks.

– [2] proposes a Brain Network Transformer to diagnose the disease from MRI.
● The adjacency matrix as a structural encoding, better than Laplacian.

– [3],[4] apply the Equivariant Transformer architecture to predict the quantum 
mechanical propoerties of molecules.

● Molecular structure in atom level captured by multi-head attention.

– [5] uses GTs for the web-scale heterogeneous (heterophilic) graphs.
● Different projection matrices for attention during capture of node/edge relations.

Graph Transformers 
(GTs)
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[2] Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer. ArXiv, 2022.
[3] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic graphs. In ICLR, 2023.
[4] Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular potentials. In ICLR, 2022.
[5] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In WWW, pp. 2704–2710, 2020.
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 Experimental Study
– Three research questions are asked to focus on different aspects of GTs :

● Q1 : Structural awareness ? 
● Q2 : Reduced over-smoothing ?
● Q3 : Reduced over-squashing ?

– Q1 : Structural awareness ?
● Does introducing different structural awareness into GTs improve capturing graph 

properties better ?
● Three tasks having different level of difficulty are tested on different datasets.

– Edge detection (easy), Triangle count (medium), Link skip (hard)

Graph Transformers 
(GTs)
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 Experimental Study
– Q1 : Structural awareness ?

● Does introducing different structural awareness into GTs improve capturing graph 
properties better ?

● Three tasks having different level of difficulty are tested on different datasets.
– Edge detection (easy), Triangle count (medium), Link skip (hard)
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 Experimental Study
– Q2 : Reduced over-smoothing ?

● Do GTs solve the over-smoothing problem better than GANs ?
● Two different heterophilic dataset compilation (smaller (6) and larger (5))

Graph Transformers 
(GTs)
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 Experimental Study
– Q2 : Reduced over-smoothing ?

● Do GTs solve the over-smoothing problem better than GANs ?
● Two different heterophilic dataset compilation (smaller (6) and larger (5))
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 Experimental Study
– Q3 : Reduced over-squashing ?

● Do GTs solve the over-squashing problem better than GANs ?
● One synthetic dataset for the NeighborsMatch problem (d=[2,6])

Graph Transformers 
(GTs)
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 Conclusions
– GTs have some advantages over GNNs for over-smoothing and over-

squashing problems.
● Integrating structural bias mechanisms (structural/positional encodings) into 

GNNs also makes them robust against these problems.

– GTs have some computational complexity issues especially on larger graphs 
with deeper layers/depths (3 datasets in Q2 related experiments).

– Heterophilic graphs are still hard to be captured by GT/GNN.

– Generalizability may be achieved sometimes, not always.
● They generalized poorly on large datasets such as Triangles-Large in Q1 related 

experiments.

Graph Transformers 
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 Thanks for listening, Q/A ?

Graph Transformers 
(GTs)
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 Do we need to switch to GTs now ?
– There are some drawbacks such as computational complexity and additional 

mechanism need (structural bias etc.).

– A comprehensive study by Google [6] showed that ViTs (Vision Transformers) 
are as good as traditional CNNs such as ResNet for image classification 
tasks.

● Not better than CNNs. This may also be case for GT vs. GNN.

Discussions
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[6] Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, Andreas Veit, Proceedings of the IEEE/CVF International 
Conference on Computer Vision (2021) 



Week 5: Graph Transformers
(Application Aspects)

  
Presented by Hossein Mirzaei  
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Previous Research as a Master's Student

Trustworthy machine learning, with a focus on the vision domain:

● Adversarially robust deep neural networks.
● Out-of-distribution detection.
● Backdoor attacks and defenses.
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Current Research as a PhD Student in NeuroAI

● Focusing on time series and vision data.
● Learning multi-dimensional representations within the neuroscience domain.
● Extracting robust features from brain neural activity.
● Modeling and predicting brain-vision encoding.
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A Graph-Transformer for Whole Slide 
Image Classification
Yi Zheng, Rushin H. Gindra , Emily J. Green, Eric J. Burks , Margrit Betke, Jennifer E. Beane , 
Vijaya B. Kolachalama
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Background

What Are Whole Slide Images (WSIs)?

● Digital high-resolution scans of histopathological slides.
● Used for computational pathology and disease diagnosis.

Challenges of WSIs

● Gigabyte-sized images: Complex to analyze.
● Requires techniques that capture both local (patch) and global (WSI) information.
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Traditional Analysis Methods

● Patch-based methods: Divide WSI into smaller patches.
● Limitations: Ignores WSI-level context, assumes all patches are independent.

WSI Applications

● Disease classification (e.g., cancer grading).
●  Identifying the presence or absence of a tumor on an WSI.
● Tissue segmentation, mutation prediction, etc.

Background
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Task

● Classify whole slide images into categories like Normal vs. Cancerous.
● Critical for accurate diagnosis and treatment planning.

Focus on Lung Cancer

● Normal Tissue vs. Lung Adenocarcinoma (LUAD) vs. Lung Squamous Cell Carcinoma (LSCC).
● Different cancers require distinct treatments, making accurate classification essential.

Key Challenges in Classification

● Large image sizes: Millions of pixels to process.
● Label noise: Assuming every patch has the same label as the entire WSI.
● Need for models that can handle both patch-level and WSI-level information.

Limitations of Traditional Patch-Based Methods

● Patches treated independently, losing spatial relationships between regions.
● Unable to capture global tumor architecture.

Problem Setup
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Why Use Graphs?

● Represent WSI as a graph where:
○ Nodes = Patches of the image.
○ Edges = Spatial relationships between patches.

● Preserves the spatial structure of WSIs.

Why Use Transformers?

● Vision Transformers excel in modeling long-range dependencies.
● Capture global WSI context efficiently, improving classification accuracy.

GTP Workflow

● Feature Extraction: Use contrastive learning to get patch features.
● Graph Construction: Connect patches based on adjacency.
● Transformer Processing: Predict WSI-level labels (Normal, LUAD, LSCC).

Motivation 
■
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Key Contributions

1. Novel Graph-Transformer Framework (GTP)
○ Integrates Graph Neural Networks (GNN) and Vision Transformers (ViT) for whole slide image (WSI) 

classification.
○ Effectively captures both local patch-level and global WSI-level information.

2. GraphCAM: Class Activation Mapping
○ Introduces a new GraphCAM technique for generating interpretable saliency maps on WSIs.
○ Enables visualization of regions highly associated with predicted class labels (Normal, LUAD, LSCC).

Proposed Method
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Key Components of the Method

● Contrastive Learning-Based Feature Extractor: Generates robust patch features without manual labels.
● Graph Neural Network (GNN): Captures spatial relationships between patches.
● Vision Transformer (ViT): Models global context and long-range dependencies.

Proposed Method
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Proposed Method

Step-by-Step Workflow

● 1. Patch Extraction: WSI divided into smaller image patches.
● 2. Contrastive Feature Extraction: Feature vectors for each patch are extracted via contrastive learning.
● 3. Graph Construction: Patches are nodes, edges represent spatial adjacency.
● 4. Graph Convolutional Layer: Aggregates information from neighboring patches.
● 5. Transformer Layer: Captures global WSI context for accurate classification.
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Training a Feature Extractor on WSIs Using a Common Contrastive Learning Objective Function

Proposed Method
■

G
ra

ph
 R

ep
re

se
nt

at
io

ns
  f

or
 B

io
lo

gy
 a

nd
 M

ed
ic

in
e

12



Results
■
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GraphCAM

Class Activation Mapping for Graphs

● GraphCAM is designed to generate saliency maps on graph-structured data, highlighting regions of the WSI most relevant to the classification 
decision.

Propagation of Relevance

● GraphCAM propagates relevance scores from the output class prediction back through the transformer and graph layers.
● Uses the attention maps from the transformer layer to understand which nodes (patches) are most important for the classification.
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Why Graph-Transformer is a Great Fit for This Work

● Captures both local patch-level and global WSI-level information
● Vision Transformer effectively models long-range dependencies
● Flexibly handles variable patch sizes and complex WSI structures
● Enhances interpretability with GraphCAM
● Demonstrates strong generalization across multiple datasets

Discussion
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Brain Network Transformer
Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, Carl Yang
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Understanding Brain Networks

1. What Are Brain Networks?
○ Brain networks are maps of how different parts of the brain, called Regions of Interest (ROIs), communicate with each 

other.
○ In these networks, nodes represent ROIs, and edges show the strength of the connections between them.

2. How Do We Build Brain Networks?
○ Brain activity is captured using Functional Magnetic Resonance Imaging (fMRI).
○ fMRI measures changes in blood oxygen levels (BOLD signals), which indicate the connections between different brain 

regions.

Background
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Background

Why Study Brain Networks?

1. Understanding Brain Function
○ Brain networks reveal how different regions of the brain work together.
○ Helps us explore key processes like memory, learning, and decision-making.

2. Diagnosing Mental and Neurological Disorders
○ Brain networks provide insights into conditions like autism, Alzheimer’s, and schizophrenia.
○ They help researchers detect abnormalities and predict disease progression.

3. Improving Treatment and Interventions
○ By understanding brain networks, we can develop better treatments for mental health conditions.
○ Helps in designing personalized therapies based on how specific brain regions are affected.
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Challenges in Brain Network Analysis

1. Complexity of Brain Networks
○ Brain networks typically have hundreds of ROIs and up to 160,000 edges.
○ Handling the vast number of connections is computationally challenging.

2. Fixed Size and Dense Connectivity
○ Every node (ROI) connects to every other node.
○ Common graph models struggle with scalability and accuracy for brain networks.

3. Need for Specialized Models
○ Traditional graph models fail to capture functional modules of brain regions effectively.
○ Transformer models show promise but need adaptation for the unique structure of brain networks.

Motivation 

Modeling Brain Networks as Graphs

○ Nodes represent Regions of Interest (ROIs) in the brain, as defined by an atlas.
○ Edges are calculated based on pairwise correlations between the BOLD (blood-oxygen-level-dependent) signals, which are measured 

using fMRI. These signals reflect brain activity and allow us to map the connections between different regions.
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Problems with Existing Graph Models

Graph Neural Networks (GNNs)

○ Commonly used for graph-based data but mainly focus on local node connections.
○ Struggle with large, fully connected brain networks where all nodes are important.

Common Graph Transformers

○ Originally designed for general graphs, not brain networks.
○ Use eigenvalues/eigenvectors for positional encoding, which are costly and unnecessary for brain networks.

Motivation 
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Problems with Existing Graph Models

Scalability Issues

○ Brain networks have more nodes and edges than typical graph domains, such as molecular graphs.
○ Existing graph transformer models are inefficient when applied to large-scale brain networks.

Motivation 
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Orthonormal Clustering Readout (OCREAD)
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Method 

Input: Brain Networks

● Brain networks are modeled as graphs where nodes are Regions of Interest (ROIs) and edges represent connections between 
regions, derived from fMRI signals.

Multi-Head Self-Attention (MHSA)

● The model uses Multi-Head Self-Attention to focus on all regions in the brain at once.
● This allows the model to learn important patterns across all brain regions, handling the complexity of fully connected graphs.
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Method 

Connection Profiles as Node Features

● Instead of using complex embeddings, each node (ROI) is represented by a connection profile.
● The connection profile captures how each brain region is connected to others, serving as simple yet powerful node features.

Orthonormal Clustering Readout (OCREAD)

● Brain regions often act together in groups (functional modules). OCREAD assigns brain regions to these soft clusters based on their 
connections.

● The orthonormal projection makes sure that clusters are well-separated, improving accuracy.
● OCREAD summarizes the whole brain network into meaningful, cluster-aware representations, which are then used to make predictions.
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Output: Predictions

● The model outputs predictions about the brain’s state, such as classifying whether someone has 
autism or identifying other brain-related outcomes.

Method 
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Results
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