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PhD Project

" 1t year PhD Student at EPFL, Research Assistant at Idiap Research
Institute (LIDIAP).

" Supervised by Dr. André Anjos and Dr. Jean-Marc Odobez.
" FairM| — Machine Learning Fairness with Applicatin to Medical Images.

" A SNSF funded project in a collaboration with the Federal University of
Sao Paulo, Brazil.

" The main purpose :

— Introducing fairness into medical image analysis so that Machine
Learning (ML) could be democratized independently from the
sensitive attributes such as race, gender and ethnicity.

- Some keywords : Machine Learning, Fairness, Medical Image
Analysis




£PFL  PhD Project

" Three objectives :

- Adjustable fairness

- Fairness boundaries

- Fair mixed human-Al decision support
" Adjustable Fairness

- ML performance conflicts with fairness in general.
* A Multi-Objective Optimization (MOO) problem.

- We may need to select proper combination of the performance with fairness.

* Based on the necessity of the task.

- We consider ML tasks in healthcare domain :

B Graph Representations for Biology and Medicine

* Glaucome disease : An eye disease that is seen more in Black people.
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PhD Project

" Utility-Fairness Trade-off

Multi-Objective

e

ion (MOO) Space

Utility

MMMMM

Reference|

- Hypernetwork [1] based trade-off selection

mechanism.

- Base networks generate derived networks.

— Derived networks represent a choice for trade-off :
* Better performance and worse fairness (D1).
* Worse performance and better performance (D10).

[1] Ha, D., Dai, A., & Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.

Utility vs. Fairness utility vs. Faimess (Independence (DP))
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Utility vs. Fairness

—— Model_R1
—— Model_R2
—— Model_R3
—— Model_R4
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Graph Transformers

(GTs)

" Introduction

GT is a transformer designed to capture graph structure with attention.

* Aggregating information from all nodes, no local structure bias.

GTs have promising results in many problems including molecular property
prediction.

GTs have some advantages over GNNs for some issues :

* Over-smoothing : The representative similarities of the nodes, no discrimination.
- GNNs with many layers

* Over-squashing : Insufficient capacity to retain the information from other nodes.
— GNNs capturing large graphs.

GTs are combined with structural/positional encodings to keep more
information on graph.
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Graph Transformers
(GTs)

" Background
- Agraph G with a pair (V(G), E(G)) :
* V(@) : afinite set of nodes
* E(G):asetofedges, E(G) € {{u,v} C V|u#v}
* The neighborhood of ve V(G), N(v)={u e V(G) | (v, u) e E(G)}.

* The graphs G and H are isomorphic if there exists an edge-preserving bijection g:
(V(G) - V(H)).

- G:A-B,A-C,B-C;H: XY, X-Z,Y-Z - G and H are isomorphic.
- Equivariance
* f(Tx) = Tf(x), T : transformation (rotation, translation etc.), x : input vector
- Invariance

e f(Tx) =1(x), T : transformation (rotation, translation etc.), x : input vector
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Graph Transformers

(GTs)

" Background

A single attention head :

Attn(X®) = softmax (Cﬁ) A%
where Q=XOWg, K=XOWy, V=XOW,. We can rewrite Attn(X®) as :

Kexp (XS, X
Attn(X®)), = Z p(Xo (;)) - XOW,
ueV(G) ZwEV(Gj kexp(XU ,Xw )

forve V(G) and :
kexp(x(t)v, X(t)w) = exp(x(t)vax(t)WWK/\/—dk)

And, transformer layer updates X® as :
X&) = FEN(MultiHead(X®) + X®)
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Graph Transformers
(GTs)

" Properties of GT

- GTs may overcome local structural bias by structural/positional encoding.
* Thisis also case for GNNSs.

* Structural encoding : Make the GT aware of graph on local, relative, global level.
— The degree of node (local).

* Positional encoding : Make the node aware of its relative position to other nodes.
— The distance between node pairs (relative).

— GTs support both of non-geometric and geometric features.
* Geometric features require 3D information of the nodes and edges.
— The input needs to be equivariant and invariant, a harder case.
— 3D molecular graphs, 3D bones structure etc.
- GTs carry information between nodes through attention for message passing.

* This has a computational cost when the graph is large.
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Graph Transformers
(GTs)

" Applications of GT

- GTs are applied on different areas including molecular property prediction.

* Although it's a new approach and has some drawbacks.

- [2] proposes a Brain Network Transformer to diagnose the disease from MRI.

* The adjacency matrix as a structural encoding, better than Laplacian.

- [3],[4] apply the Equivariant Transformer architecture to predict the quantum
mechanical propoerties of molecules.

*  Molecular structure in atom level captured by multi-head attention.

- [5] uses GTs for the web-scale heterogeneous (heterophilic) graphs.

* Different projection matrices for attention during capture of node/edge relations.

[2] Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer. ArXiv, 2022.

[3] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic graphs. In ICLR, 2023.

[4] Philipp Thélke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular potentials. In ICLR, 2022.
[5] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In WWW, pp. 2704-2710, 2020.
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Graph Transformers

(GTs)

11

" Experimental Study

- Three research questions are asked to focus on different aspects of GTs :

Q1 : Structural awareness ?
Q2 : Reduced over-smoothing ?

Q3 : Reduced over-squashing ?

. Structural awareness ?

Does introducing different structural awareness into GTs improve capturing graph
properties better ?

Three tasks having different level of difficulty are tested on different datasets.
- Edge detection (easy), Triangle count (medium), Link skip (hard)
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Graph Transformers
(GTs)

" Experimental Study

- Q1 : Structural awareness ?

* Does introducing different structural awareness into GTs improve capturing graph
properties better ?

* Three tasks having different level of difficulty are tested on different datasets.
- Edge detection (easy), Triangle count (medium), Link skip (hard)

Easy Medium Hard
Model EDGES TRIANGLES-SMALL TRIANGLES-LARGE CSL

2-way Accuracy T 10-way Accuracy T 10-way Accuracy T 10-way Accuracy T

GIN 98.11 +1.7s 71.53 <0.04 33.54 +o.30 10.00 =o.00
Transformer 55.84 +o0.32 12.08 o031 10.01 +o0.04 10.00 =o.00
Transformer (LdpPE) 98.00 =+1.0s 78.29 zo0.2s 10.64 +2.04 100.00 -o.00
Transformer (R\VSE) 97.11 +1.7s 99.40 +o0.10 54.76 +7.2a 100.00 +o0.00

Gra.phormer 97.67 +o.07 99.09 +o.51 42.34 i6.4s 90.00 =o0.00
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L Graph Transformers
(GTs)

" Experimental Study

- Q2 : Reduced over-smoothing ?
* Do GTs solve the over-smoothing problem better than GANs ?

* Two different heterophilic dataset compilation (smaller (6) and larger (5))

Model (PE/SE type) AcToRr CORNELL TEXAS WISCONSIN CHAMELEON  SQUIRREL
Geom-GCN |||Pei et &1] 2020| 31.59 +1.1s 60.54 +a67 64.51 +s.66 66.76 <272 60.00 +2.81 38.15 <092
GCN (IlO PE/SE) 33.92 so.6a 53.78 ss.07 65.95 +s.67 66.67 <263 43.14 +13s 30.70 x1.7
GCN (LapPE) 34.30 =112 56.22 2265 65.95 =s.67 66.47 =137 43.53 =145 30.80 =138
GCN (RWSE) 33.69 =107 53.78 z4.00 62.97 =321 69.41 =2.66 43.84 +1.08 3L.77 =065
GCN (DEG) 33.99 zo0.m 53.51 2263 66.76 =272 67.26 =153 46.36 =2.07 34.50 =os7

GPSECNFTransformer (1 5P 37.68 052 66.22 sssr 7541 2146 TATL 2207 4857 2102 35.58 zoss
GPSGCN+ Transformer (RWS) 36.95 s065  65.14 2575 7351 2265 T8.04 zass  47.57 2000 34.78 21m

GPSECN+ Transformer (DEQG) 36.91 056 64.05 2245 7351 sss0 7549 25 5259 s1s 42.24 2100
Transformer (LapPE) 38.43 +os7 69.46 +173  TT7.84 z1.0s 76.08 1.02 49.69 =111 35.77 =050
Transformer (RV\TSE) 38.13 +o0es T0.81 +202 T7.57 =124 80.20 =z2.23 4945 2134 35.35 o075
Transformer (DEG) 37.39 su.s0 71.89 s2.4s 77.30 132 79.80 +o.90 56.18 so.ss 43.64 so.65
Graphormer (DEG Otlly) 36.91 +o0.ss 68.38 =173 76.76 +1.70 T7.06 +1.07 54.08 2235 43.20 +o.82

Graphormer (DEG, attn. blaS) 36.69 <o.70 68.38 173 76.22 w216 T77.65 <200 53.84 w210 43.75 so.59
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" Experimental Study

- Q2 : Reduced over-smoothing ?
* Do GTs solve the over-smoothing problem better than GANs ?

* Two different heterophilic dataset compilation (smaller (6) and larger (5))

B Graph Representations for Biology and Medicine

Model (PE/SE type) ROMAN-EMPIRE ~ AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS
GON|[Platonov et al.|(2023] 73.69 4075 48.70 +o.s 89.75 w052 83.64 socr 7609 wiar
GAT |Platonov et al. l 80.87 +o.30 49.09 +o6s 92.01 +o.6s 83.70 2047 T7.43 +1.20
GCN (LapPE) 83.37 soss 44.35 +o36 94.26 +o.40 84.95 ro7s T7.7T9 1134
GCN (RWSE) 84.84 to.55 46.40 +o.55 93.84 1o0.as 85.11 sorr  TT.81 +1.40
GCN (DEG) 84.21 to.ar 50.01 +o.60 94.14 +o.50 82.51 +oss 76.96 +1.21
GAT (LapPE) 84.80 +o.16 44.90 to.73 93.50 +o.54 84.99 sos2 76.59 toss
GAT (RWSE) 86.62 to.5a 48.58 +oa1 92.53 +o0.65 85.02 soer  T7.83 £1.22
GAT (DEG) 85.51 .56 51.65 +o.60 93.04 +0.62 84.22 tos T7.10 125
GPSGCN +Performer (T 4pPT) 83.96 1053 48.20 +o.67 93.85 +o.a1 84.72 zorr TT.85 +12s
GPSGCN+Performer (RWSE) 84.72 2nos 48.08 20ns 92.88 4050 84.81 zoss  T6.45 tim
GPSGCNtPerformer (DR 83.38 woos 48.93 woar 93.60 o.47 80.49 1007 T4.24 1115
GPSEATPerformer ([ apPE) 85.93 to.c2 48.86 <08 92.62 <070 84.62 s051  T6.71 xoos
GPSGATPerformer (RWSE) 87.04 io.5s 49.92 so.6s 91.08 1o.s8 84.38 Lo T7.14 1140
QPSGAT+Performer (DEG) 85.54 wo.ss 51.03 +o.60 91.52 +o.16 82.45 tos0 76.51 2110
G PSGCN+Transformer (LapPE) OOM OOM 91.82 zoa1 83.51 200 OOM

GPSECN+Translormer (RWSE) 0O0M 0O0M 91.17 w051 83.53 w100 0OOM

GPgEeNFTransformer (DE() 00M 0O0OM 91.76 0.0 80.82 0.5 0OOM

GPgEAT Transformer ([ 4 b pE) OOM OOM 92.29 om 84.70 0.5 OOM

GPSUAT+Iransbormer (RWSE) OOM ooM 90.82 0.6 84.01 z0.6 OOM

GPSGAT+Transformer (DE(Y) OoM OoM 91.58 =056 81.89 o5 OOM
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Graph Transformers
(GTs)

" Experimental Study

- Q3 : Reduced over-squashing ?
* Do GTs solve the over-squashing problem better than GANs ?
* One synthetic dataset for the NeighborsMatch problem (d=[2,6])

o
@

Train Acc.
o
[=2]

S
=

GCN

GGNN

GAT
Transformer

o
o
(N NN

2 3 4 5 5
Problem radius (depth)
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Graph Transformers

(GTs)

" Conclusions

GTs have some advantages over GNNSs for over-smoothing and over-
squashing problems.

* Integrating structural bias mechanisms (structural/positional encodings) into
GNNs also makes them robust against these problems.

GTs have some computational complexity issues especially on larger graphs
with deeper layers/depths (3 datasets in Q2 related experiments).

Heterophilic graphs are still hard to be captured by GT/GNN.

Generalizability may be achieved sometimes, not always.

* They generalized poorly on large datasets such as Triangles-Large in Q1 related
experiments.

16
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" Thanks for listening, Q/A ?
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Discussions

" Do we need to switch to GTs now ?

- There are some drawbacks such as computational complexity and additional
mechanism need (structural bias etc.).

- A comprehensive study by Google [6] showed that ViTs (Vision Transformers)
are as good as traditional CNNs such as ResNet for image classification
tasks.

* Not better than CNNs. This may also be case for GT vs. GNN.

[6] Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, Andreas Veit, Proceedings of the IEEE/CVF International
Conference on Computer Vision (2021)



Week 5: Graph Transformers
(Application Aspects)

Presented by Hossein Mirzaei
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Previous Research as a Master's Student

Trustworthy machine learning, with a focus on the vision domain:

e  Adversarially robust deep neural networks.
e  Qut-of-distribution detection.
e Backdoor attacks and defenses.

Graph Representations for Biology and Medicine
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Current Research as a PhD Student in NeuroAl

Focusing on time series and vision data.
Learning multi-dimensional representations within the neuroscience domain.
Extracting robust features from brain neural activity.

Modeling and predicting brain-vision encoding.

Behaviour N
labels — —
Time Y. 0
labels
! ]| @~

w

v
2y
2y
2y

Neural data 11

(N)
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UL~
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A Graph-Transformer for Whole Slide
Image Classification

Yi Zheng, Rushin H. Gindra , Emily J. Green, Eric J. Burks , Margrit Betke, Jennifer E. Beane ,
Vijaya B. Kolachalama
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What Are Whole Slide Images (WSIs)?

e Digital high-resolution scans of histopathological slides.

e  Used for computational pathology and disease diagnosis.

302 pm, 299 px

Challenges of WSIs

e  (igabyte-sized images: Complex to analyze.
e  Requires techniques that capture both local (patch) and global (WSI) information.

Graph Representations for Biology and Medicine

n
()]
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Traditional Analysis Methods

e  Patch-based methods: Divide WSI into smaller patches.
e  Limitations: Ignores WSI-level context, assumes all patches are independent.

WSI Applications

e  Disease classification (e.g., cancer grading).
° Identifying the presence or absence of a tumor on an WSI.
e  Tissue segmentation, mutation prediction, etc.

Graph Representations for Biology and Medicine
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Problem Setup

Task

e  C(lassify whole slide images into categories like Normal vs. Cancerous.
e  (ritical for accurate diagnosis and treatment planning.

Focus on Lung Cancer

e  Normal Tissue vs. Lung Adenocarcinoma (LUAD) vs. Lung Squamous Cell Carcinoma (LSCC).
e  Different cancers require distinct treatments, making accurate classification essential.

Key Challenges in Classification

e  Large image sizes: Millions of pixels to process.
e  Label noise: Assuming every patch has the same label as the entire WSI.
e  Need for models that can handle both patch-level and WSI-level information.

Limitations of Traditional Patch-Based Methods

e  Patches treated independently, losing spatial relationships between regions.
e  Unable to capture global tumor architecture.
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L Motivation

Why Use Graphs?

e  Represent WSI as a graph where:

o Nodes = Patches of the image.

o Edges = Spatial relationships between patches.
e  Preserves the spatial structure of WSIs.

Why Use Transformers?

o  Vision Transformers excel in modeling long-range dependencies.
e  Capture global WSI context efficiently, improving classification accuracy.

GTP Workflow

e  Feature Extraction: Use contrastive learning to get patch features.
o  Graph Construction: Connect patches based on adjacency.
° Transformer Processing: Predict WSI-level labels (Normal, LUAD, LSCC).



=PrL Proposed Method

Key Contributions

1. Novel Graph-Transformer Framework (GTP)
o Integrates Graph Neural Networks (GNN) and Vision Transformers (ViT) for whole slide image (WSI)
classification.
o  Effectively captures both local patch-level and global WSI-level information.

2.  GraphCAM: Class Activation Mapping
o Introduces a new GraphCAM technique for generating interpretable saliency maps on WSis.
o  Enables visualization of regions highly associated with predicted class labels (Normal, LUAD, LSCC).

Graph Representations for Biology and Medicine
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Whole Slide Image Graph Construction Graph Transformer

) Extra learnable

g L O ) o) M—am— embedding
— ¥ o 9 g - @ Patch and Position
g _ | 2 5 3| (o ™ embedding
. i —.—’ o =
3 =i =3 g ?; ol & — @ @
- ! > =
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= E . |8 1 gl |52
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Q | & — —{0 I | |® Y
f 3 ‘g '5" 2 = "‘<D
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Key Components of the Method

e Contrastive Learning-Based Feature Extractor: Generates robust patch features without manual labels.
e  Graph Neural Network (GNN): Captures spatial relationships between patches.
e Vision Transformer (ViT): Models global context and long-range dependencies.

Graph Representations for Biology and Medicine
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Step-by-Step Workflow

Graph Representations for Biology and Medicine

Proposed Method

Input WSI

4000 um

Patch tiling and background patch removal

A0 >
.
v
“',o ¥
oSy
e
20 3

Node representation

380 um

8-connectivity

8-connectivity

(b) Node representation and connectivity information.

1. Patch Extraction: WSI divided into smaller image patches.
2. Contrastive Feature Extraction: Feature vectors for each patch are extracted via contrastive learning.
3. Graph Construction: Patches are nodes, edges represent spatial adjacency.

4. Graph Convolutional Layer: Aggregates information from neighboring patches.
5. Transformer Layer: Captures global WSI context for accurate classification.

Subgraph representation
of shown patches

oo T¥

Subgraph representation
of shown patches

11
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Mini-batch of Pair of augmented Embedding vectors
samples samples
— ) e
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Proposed Method

Latent vectors

—> A2 —

Pairs of
latent vectors Contrastive

— C1 —

Learning Loss

Embedding vectors of patches,
which are used for graph construction

Projections of embedding vectors, which are
used for computing contrastive learning loss

(c) Feature generation and contrastive learning.

Training a Feature Extractor on WSIs Using a Common Contrastive Learning Objective Function

12
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Results

PERFORMANCE METRICS FOR THE 3-LABEL (NORMAL VS. LUAD vs. LSCC) CLASSIFICATION TASK. MEAN PERFORMANCE METRICS ARE
REPORTED ALONG WITH THE CORRESPONDING VALUES OF STANDARD DEVIATION IN PARENTHESES

(a) Precision, Recall/Sensitivity, and Specificity (Percentage (%) values are reported).

Method Data Precision Recall/Sensitivity Specificity
Normal LUAD LSCC Normal LUAD LSCC Normal LUAD LSCC

TransMIL | CPTAC | 89.7(1.8) 81.0(3.1) 87.1(1.7) | 90.4(1.9) 81.2(2.0) 85.9(3.7) | 94.4(1.1) 90.8(1.9) 93.7(1.2)
[27] TCGA | 76.6(5.1) 64.3(4.1) 80.4(1.7) | 87.3(3.6) 75.8(5.3) 55.6(7.7) | 90.6(2.9) 73.0(5.6) 92.4(1.9)
AttPool CPTAC | 88.4(2.7) 77.1(2.7) 80.6(3.3) | 85.9(3.3) 78.0(4.7) 81.6(1.8) | 94.0(1.5) 88.9(2.1) 90.1(2.2)
[15] TCGA | 89.1(4.1) 69.9(3.9) 81.4(3.0) | 87.8(2.7) 79.4(2.4) 71.3(4.0) | 94.9(2.0) 82.5(2.9) 91.4(1.7)
GTP* CPTAC | 82.9(6.5) 81.6(6.5) 86.5(4.7) | 93.6(5.0) 74.4(6.7) 80.3(4.8) | 89.3(5.3) 91.6(3.9) 93.6(2.7)
(only GCN) | TCGA | 72.5(9.0) 69.1(3.2) 82.0(9.8) | 90.7(8.3) 57.7(9.7) 69.9(9.5) | 82.4(9.9) 85.7(8.4) 90.7(6.1)
GTP CPTAC | 93.2(3.0) 88.4(3.9) 87.8(3.0) | 95.9(2.2) 83.9(4.5) 89.2(4.0) | 96.2(1.7) 94.7(1.9) 93.8(1.7)
TCGA | 89.2(2.8) 74.4(2.7) 84.4(0.7) | 92.6(2.7) 79.8(1.9) 75.2(1.6) | 94.7(1.6) 86.0(2.3) 92.7(0.4)

(b) Accuracy and AUC (Percentage (%) values are reported).

Method Data Accuracy AUC
CPTAC | 85.9(0.7) | 96.1(0.3)
TransMIL [27] | 1oGa | 71.6(2.3) | 88.0(0.7)
CPTAC | 81.9(2.1) | 92.5(1.6)
AtPool [151 | ‘7oA | 79.3(2.3) | 91.3(1.1)
GTP* CPTAC | 83.0(2.7) | 95.2(1.2)
(only GCN) | TCGA | 72.4(4.9) | 86.6(3.8)
= CPTAC | 91.2(2.5) | 97.7(0.9)
TCGA | 82.3(1.0) | 92.8(0.3)

and other methods. log;((0.05) = —1.301.

Method Data log,(p-value)
. CPTAC | —1.578(0.853)
TransMIL [27] | roga | —5.627(2.263)
CPTAC | —2.305(1.250)

AttPool [15] | 'rega | —2.068(1.339)
GTP* CPTAC | —1.759(1.129)
(only GCN) | TCGA | —5.373(3.146)

(c) DeLong’s algorithm for comparing the AUC values between GTP

13
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PF

L GraphCAM

Transformer layer
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Reconstructlon from = % Inference direction
graph to WSI —» GraphCAM direction

Graph Class Activation Map

Class Activation Mapping for Graphs

GraphCAM is designed to generate saliency maps on graph-structured data, highlighting regions of the WSI most relevant to the classification

decision.

Propagation of Relevance

GraphCAM propagates relevance scores from the output class prediction back through the transformer and graph layers.

Uses the attention maps from the transformer layer to understand which nodes (patches) are most important for the classification.

14
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PrL

Discussion

Why Graph-Transformer is a Great Fit for This Work

Captures both local patch-level and global WSI-level information
Vision Transformer effectively models long-range dependencies
Flexibly handles variable patch sizes and complex WSI structures
Enhances interpretability with GraphCAM

Demonstrates strong generalization across multiple datasets

15



Brain Network Transformer

Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, Carl Yang

16
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PrL Background

Understanding Brain Networks

1. What Are Brain Networks?
o  Brain networks are maps of how different parts of the brain, called Regions of Interest (ROIs), communicate with each
other.
o In these networks, nodes represent ROIs, and edges show the strength of the connections between them.

2. How Do We Build Brain Networks?

o  Brain activity is captured using Functional Magnetic Resonance Imaging (fMRI).
o  fMRI measures changes in blood oxygen levels (BOLD signals), which indicate the connections between different brain
regions.

17
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1.

2.

Graph Representations for Biology and Medicine

3.

Background

Understanding Brain Function

o

o

Brain networks reveal how different regions of the brain work together.
Helps us explore key processes like memory, learning, and decision-making.

Diagnosing Mental and Neurological Disorders

o

o

Brain networks provide insights into conditions like autism, Alzheimer’s, and schizophrenia.
They help researchers detect abnormalities and predict disease progression.

Improving Treatment and Interventions

o

o

By understanding brain networks, we can develop better treatments for mental health conditions.
Helps in designing personalized therapies based on how specific brain regions are affected.

18
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Challenges in Brain Network Analysis

1.  Complexity of Brain Networks
o  Brain networks typically have hundreds of ROIs and up to 160,000 edges.
o  Handling the vast number of connections is computationally challenging.

2.  Fixed Size and Dense Connectivity
o  Every node (ROI) connects to every other node.

o Common graph models struggle with scalability and accuracy for brain networks.

3. Need for Specialized Models

o  Traditional graph models fail to capture functional modules of brain regions effectively.
o  Transformer models show promise but need adaptation for the unique structure of brain networks.

Modeling Brain Networks as Graphs

Graph Representations for Biology and Medicine

o  Nodes represent Regions of Interest (ROIs) in the brain, as defined by an atlas.
o  Edges are calculated based on pairwise correlations between the BOLD (blood-oxygen-level-dependent) signals, which are measured

19

using fMRI. These signals reflect brain activity and allow us to map the connections between different regions.
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P-L Motivation

Problems with Existing Graph Models

Graph Neural Networks (GNNs)

o  Commonly used for graph-based data but mainly focus on local node connections.
o  Struggle with large, fully connected brain networks where all nodes are important.

Common Graph Transformers

o  Originally designed for general graphs, not brain networks.

o  Use eigenvalues/eigenvectors for positional encoding, which are costly and unnecessary for brain networks.
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Problems with Existing Graph Models

Scalability Issues

o Brain networks have more nodes and edges than typical graph domains, such as m8
o  Existing graph transformer models are inefficient when applied to large-scale brain networks.

on eigenvalues and eigenvectors redundant. The third challenge is scalability. Typically, the numbers
of nodes and edges in molecule graphs are less than 50 and 2500, respectively. However, for brain
networks, the node number is generally around 100 to 400, while the edge number can be up to
160,000. Therefore, operations like the generation of all edge features in existing graph transformer
models can be time-consuming, if not infeasible.
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(a) Node features projected to a 3D space
with PCA. Colors indicate functional modules.
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(b) Orthonormal bases can make indistinguishable nodes in non-
orthonormal bases easily distinguishable.
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e  Brain networks are modeled as graphs where nodes are Regions of Interest (ROls) and edges represent connections between

regions, derived from fMRI signals.

Multi-Head Self-Attention (MHSA)

e The model uses Multi-Head Self-Attention to focus on all regions in the brain at once. 23
e This allows the model to learn important patterns across all brain regions, handling the complexity of fully connected graphs.
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e Instead of using complex embeddings, each node (ROI) is represented by a connection profile.
e  The connection profile captures how each brain region is connected to others, serving as simple yet powerful node features.

Orthonormal Clustering Readout (OCREAD)

e  Brain regions often act together in groups (functional modules). OCREAD assigns brain regions to these soft clusters based on their

connections.

The orthonormal projection makes sure that clusters are well-separated, improving accuracy. ”
OCREAD summarizes the whole brain network into meaningful, cluster-aware representations, which are then used to make predictions.
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e  The model outputs predictions about the brain’s state, such as classifying whether someone has

autism or identifying other brain-related outcomes.
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Table 1: Performance comparison with different baselines (%). The performance gains of BRAIN-

Results

NETTF over the baselines have passed the t-test with p-value<0.03.

Dataset: ABIDE Dataset: ABCD
Type Method e = e o
AUROC  Accuracy Sensitivity  Specificity AUROC  Accuracy Sensitivity  Specificity

Gzl SAN 71.3£2.1  65.3%2.9 55.449.2 68.3+£7.5 90.1+1.2  81.0+1.3 84.9+3.5 77.5+4.1
Trans f(l))rmer Graphormer 63.5£3.7 60.8+2.7  78.7£22.3 36.7+23.5 89.0+1.4  80.2+x1.3 81.8+11.6  82.4+7.4
VanillaTF 76.4+1.2  65.241.2 66.4+11.4 71.1+12.0 94.3+0.7 85.9+1.4  87.7+¥2.4 82.6+3.9

Fixed BrainGNN 62.4+3.5 594423  36.7+24.0 70.7x19.3 OOM OOM OOM OOM
Netwoik BrainGB 69.7£3.3  63.6+1.9 63.7¢8.3  60.4+10.1 91.9+0.3  83.1+0.5 84.6+4.3 81.5+3.9
BrainNetCNN  74.9+2.4  67.8+2.7 63.849.7  71.0+£10.2 93.5+40.3  85.7+0.8 87.9+34 83.0+4.4
Learnable FBNETGNN  75.6+x1.2  68.0+1.4 64.7+8.7 62.4+9.2 94.5+0.7 87.2+#1.2  87.0+£2.5 86.7+2.8
Netwoi BrainNetGNN  55.3%x1.9  51.2+54  67.7437.5 33.9+34.2 75.3£5.2  67.5#477  67.7£5.7 68.0+6.5
DGM 52.743.8 60.7+12.6 53.8+41.2 51.1+40.9 76.8£19.0 68.6+8.1  40.5£29.7  95.6+4.2
Ours BRAINNETTF 80.2+1.0 71.0+1.2 72.5£5.2 69.3+£6.5 96.2+0.3  88.4+0.4  89.4+2.6 88.4+1.5
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