EE626: Quick introduction into graph machine learning

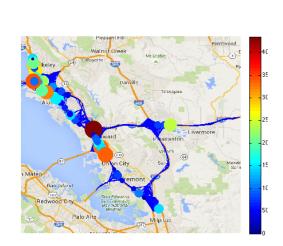
Dr Dorina Thanou 18.09.2024

Questions from previous lecture?

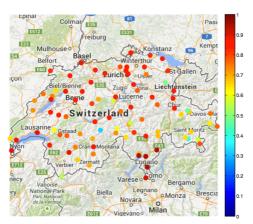
- Link to preferences (please add your name if you haven't done so!):
 - https://docs.google.com/spreadsheets/d/
 1dFSR_FaHpUtTFW5rA0gnV8qMPXFRbK4y8kYhvaevH6g/edit?usp=sharing
- Volunteers for next week?
- Any suggestions?

Going beyond graph structure

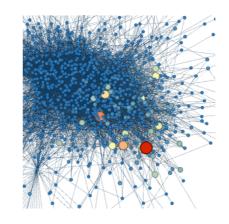
- Very often data comes with additional features
 - Not only graphs, but attributes on the nodes of the graph



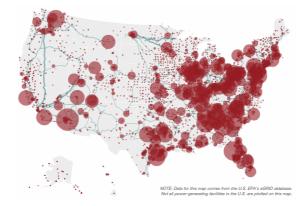
Transportation networks



Weather networks

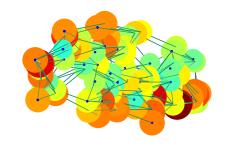


Social networks



Electric grid networks

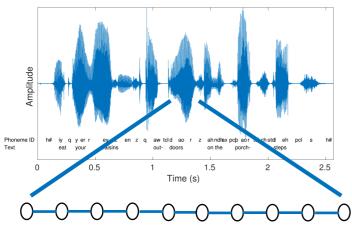
Disease spreading networks

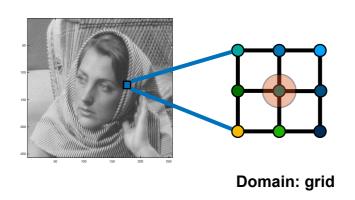


Biological networks

Graph structured data

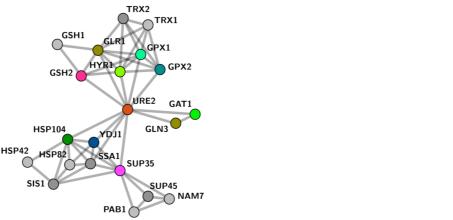
Data live on a regular domain



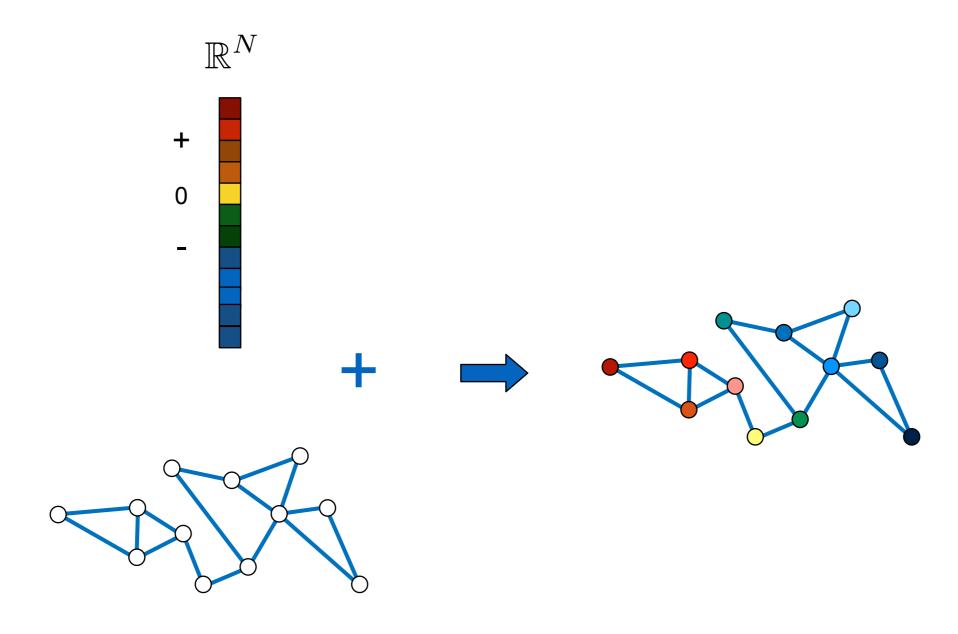


Domain: line

Weighted graphs capture the geometric structure of complex, i.e., irregular, domains



Processing graph structured data

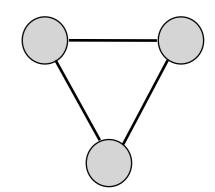


How can we extract useful information by taking into account both structure (edges) and data (values/features on vertices)?

Recap of classical graph matrices

• Undirected graph of N nodes, i.e., $|\mathcal{V}| = N$:

$$G = (\mathcal{V}, \mathcal{E}, W), \quad \mathcal{E} \subseteq \{(i, j) : i, j \in \mathcal{V}\}, \quad (i, j) = (j, i)$$



Adjacency matrix or weight matrix :

$$W_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

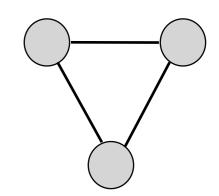
$$W = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

• If the graph is unweighted (often denoted as A):

$$W_{ij} = \begin{cases} 1, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

Recap of classical graph matrices

• Neighborhood of node i: Set of nodes connected to node i by an edge



$$\mathcal{N}_i = \{j : (i,j) \in \mathcal{E}\}$$

• Degree of a node i: It is the sum of the weights of the edges incident to node i

$$W = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

 Degree matrix: A diagonal matrix containing the degree of each node

 $D_i = \sum_i W_{ij}$

$$\downarrow$$

$$D_{ij} = \begin{cases} \sum_{j} W_{ij}, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

The graph Laplacian matrix

The combinatorial Laplacian is defined as:

$$L = D - W$$

 $L = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$

- Symmetric
- Off-diagonal entries non-positive
- Rows sum up to zero
- It is a positive semi-definite matrix:
 - For each function $f: \mathcal{V} \to \mathbb{R}$, where f_i is the value on the i^{th} node of the graph:

$$f^{T}Lf = f^{T}(D - W)f = \sum_{i=1}^{N} D_{ii}f_{i}^{2} - \sum_{i,j=1}^{N} f_{i}f_{j}W_{ij}$$
$$= \frac{1}{2} \sum_{i,j=1}^{N} W_{ij}(f_{i} - f_{j})^{2} \ge 0, \quad \forall f \in \mathbb{R}^{N}$$

Connection to continuous

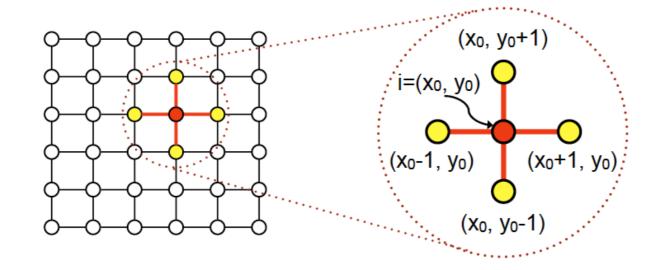
Graph Laplacian: A discrete differential operator

$$(Lf)(i) = \sum_{j \in \mathcal{N}_i} W_{i,j}(f_i - f_j)$$

- The Laplace operator:
 - A second-order differential operator: divergence of the gradient $\Delta f = \nabla^2 f$
 - The gradient is defined as: $abla f = (rac{\partial f}{\partial x_1},...,rac{\partial f}{\partial x_N})$
 - Finally, the Laplacian is: $\Delta f = \sum_{i=1}^{N} \frac{\partial^2 f}{\partial x_i^2}$
- The Laplacian matrix is the graph analogue to the Laplace operator on continuous functions!

Illustrative example

Example: Unweighted grid graph

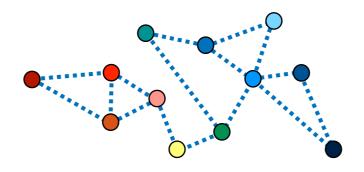


$$-Lf(i) = [f(x_0 + 1, y_0) - f(x_0, y_0)] - [f(x_0, y_0) - f(x_0 - 1, y_0)] + [f(x_0, y_0 + 1) - f(x_0, y_0)] - [f(x_0, y_0) - f(x_0, y_0 - 1)]$$

$$\sim \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = (\Delta f)(x_0, y_0)$$

Signal on the graph or graph signal

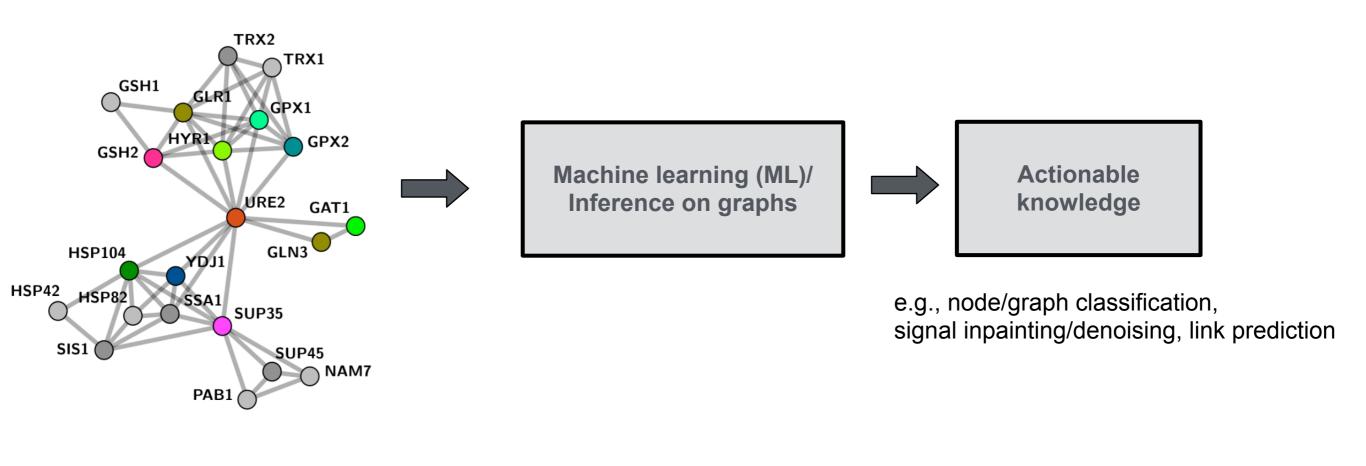
- A function $f: \mathcal{V} \to \mathbb{R}^N$ that assigns real values to each vertex of the graph
- It is defined on the vertices of the graph G = (V, E, W)



- Often represented as a vector $f \in \mathbb{R}^N$, where f(i) is the signal value at node i
- The ordering of the vector follows the ordering of the adjacency matrix

In this lecture...

How can we infer useful information from graph structured data?



 X, \mathcal{G}

 $f(X,\mathcal{G})$

Outline

- Traditional ML on graphs
 - Graph-based feature engineering
- Recent ML on graphs
 - Feature learning on graphs

Graph-structured features/embeddings: A high level overview

- Hand-crafted features: Capture some structural properties of the graph, followed by some statistics (signatures)
- Graph kernel methods: Design similarity functions in an embedding space
- Spectral features: Capture the graph properties through spectral graph theory

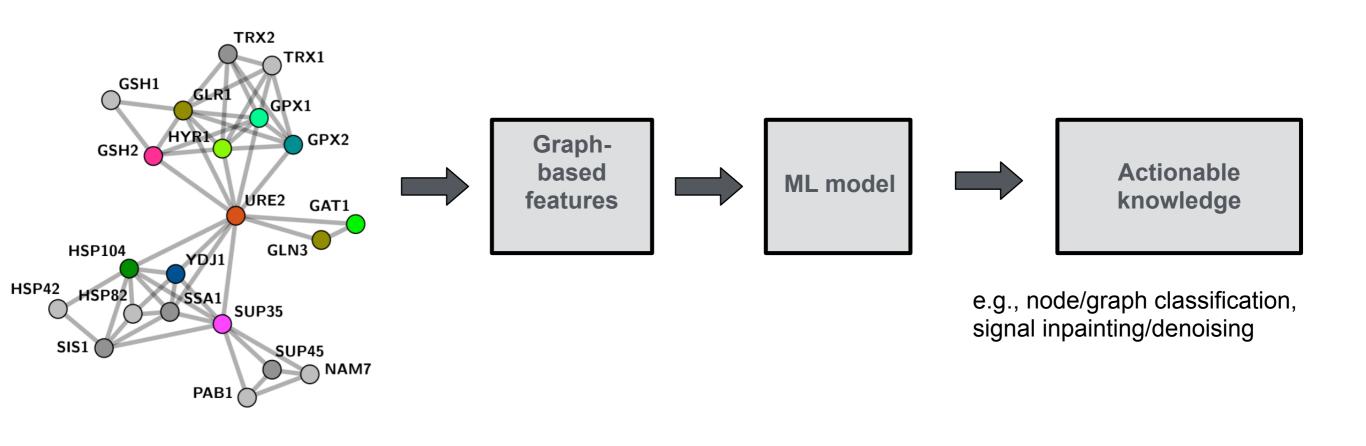
Model-driven

- Learned features: Learn graph features directly from data by designing models based on meaningful assumptions
 - Unsupervised (shallow) embeddings: Learn features based on different ways of preserving information from the original graph (often without node attributes)
 - **Graph neural network features:** Learn features from the data using a well-designed family of neural networks (often with node attributes)

Data-driven

Traditional ML pipeline on graphs

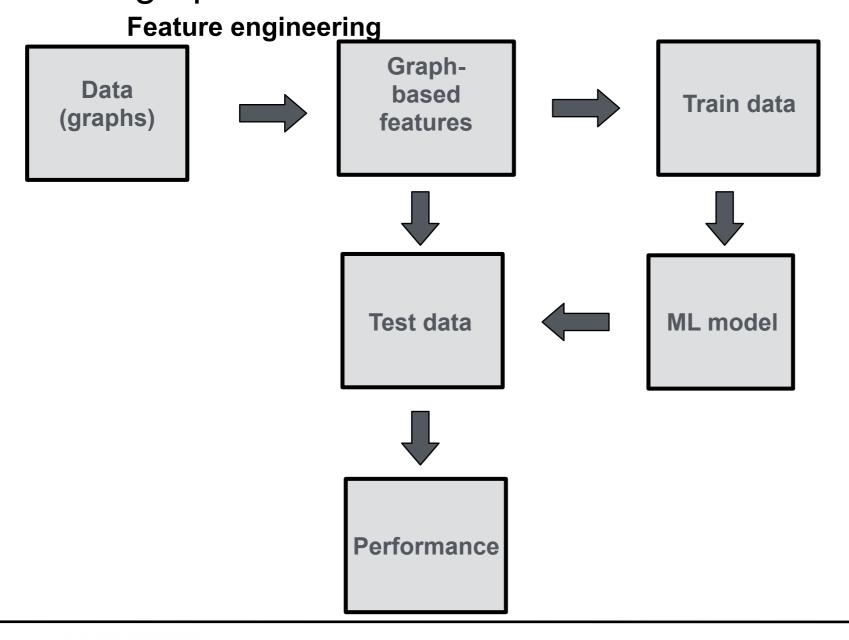
How can we learn useful information from graph structured data?



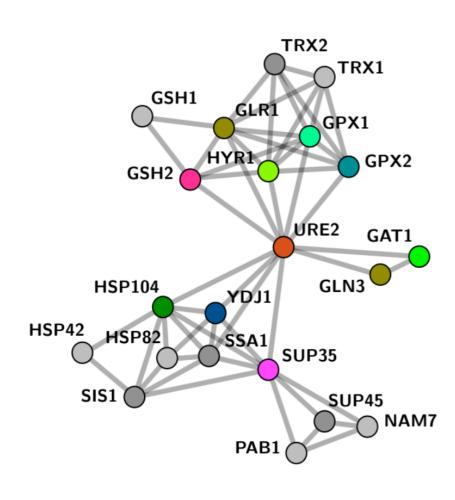
$$X, \mathcal{G} \longrightarrow \phi(X, \mathcal{G}) \longrightarrow f(\phi(X, \mathcal{G})) \longrightarrow Y$$

Traditional ML pipeline on graphs

 Feature engineering is a way of extracting meaningful information from graphs



Traditional ML pipeline: Input



Input:

• Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$

• Graph with attributes: \mathcal{G}, X

 X, \mathcal{G}

Traditional ML pipeline: Features

- Should reveal important information regarding the graph structure
- Key to achieving good model performance

Graphbased features

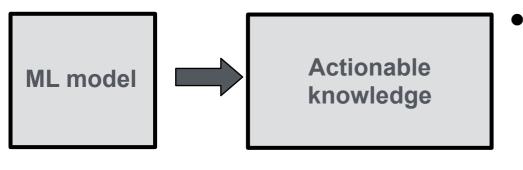
- Features can be defined at different scales
 - At a node, edge, sets of nodes, entire graph level

 $\phi(X,\mathcal{G})$

- The choice of the features depends on
 - the end task
 - prior knowledge on the data

Traditional ML pipeline: Learning tasks

- The features are given as input to an ML model
 - Examples: logistic regression, SVM, neural networks, etc.



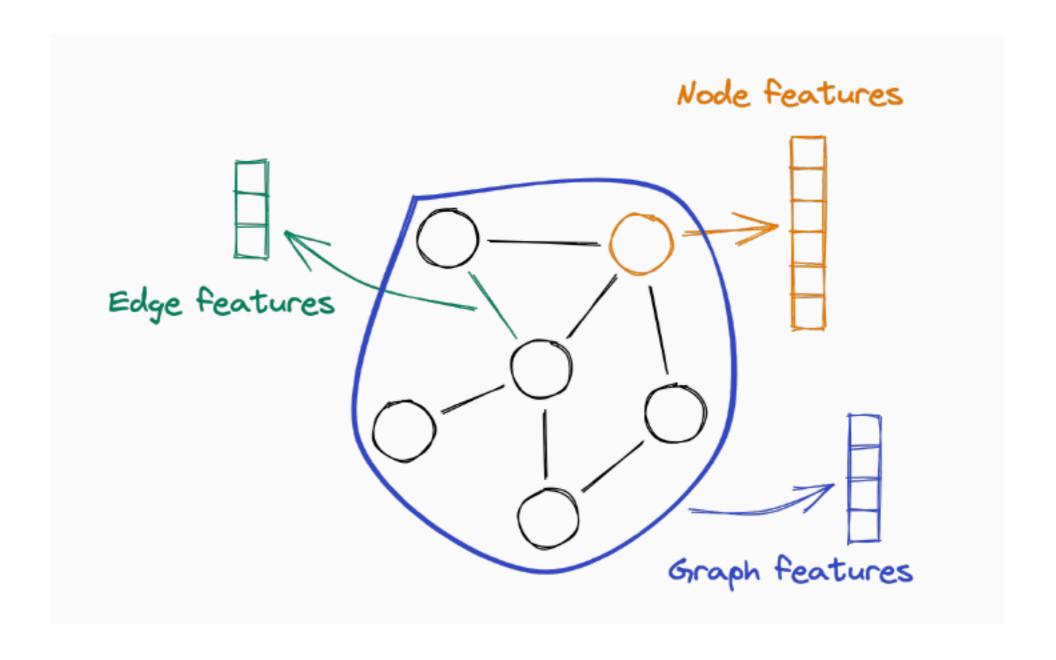
e.g., node/graph classification, signal inpainting/denoising

Training phase:

 Given a set of graph-based features, train a model f that predicts the correct Y

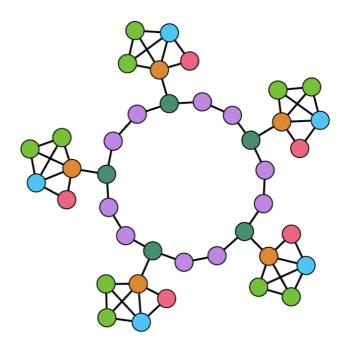
- $f(\phi(X,\mathcal{G})) \implies Y$
- Testing phase:
 - Given a new node/link/graph, compute its features, and give them as an input to f to make a prediction

Extracting information at different levels



Node level features

Typically useful for node classification/clustering tasks



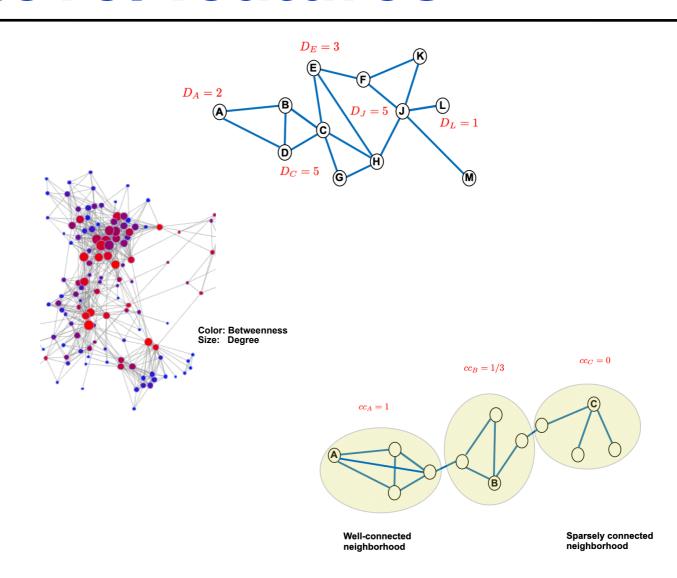
 Aim at characterizing the structure and position of a node in the network

Common node level features

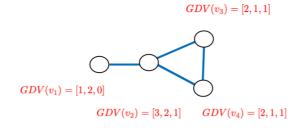
Node degree

Node centrality

Clustering coefficient

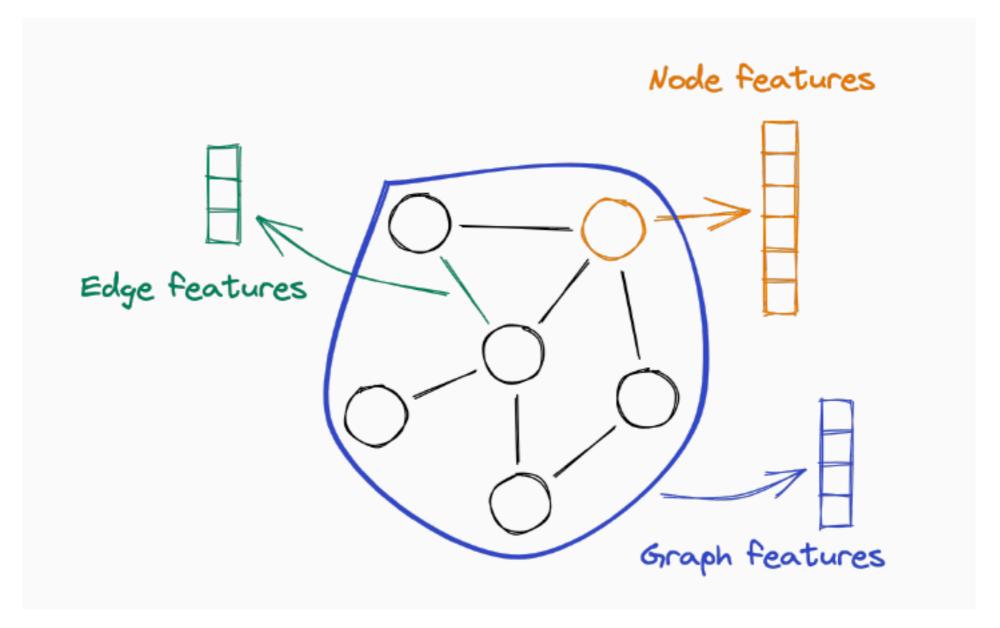


Graphlets



Possible graphlets:

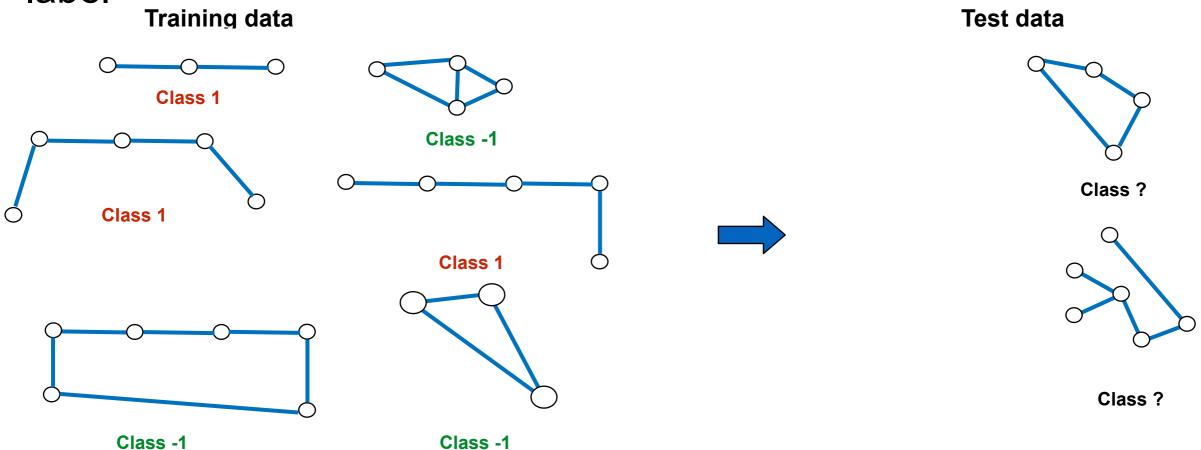
From node level to graph level task



How can we design features that characterize the structure of the entire graph?

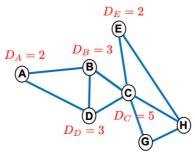
Illustrative example: Graph classification

Common assumption: Graphs with similar structure have similar label

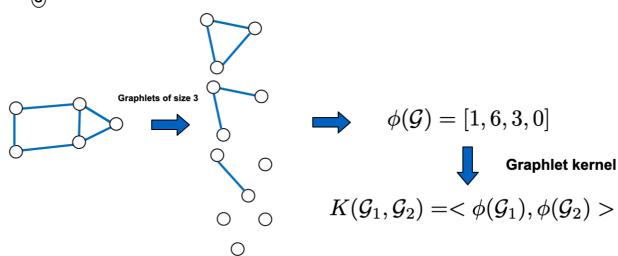


Graph level features

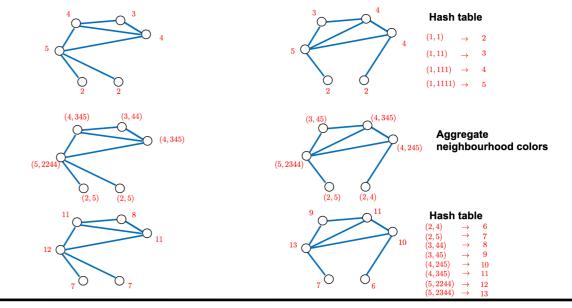
Bag of nodes



Graphlet kernel



• The Weisfeiler-Lehman kernel

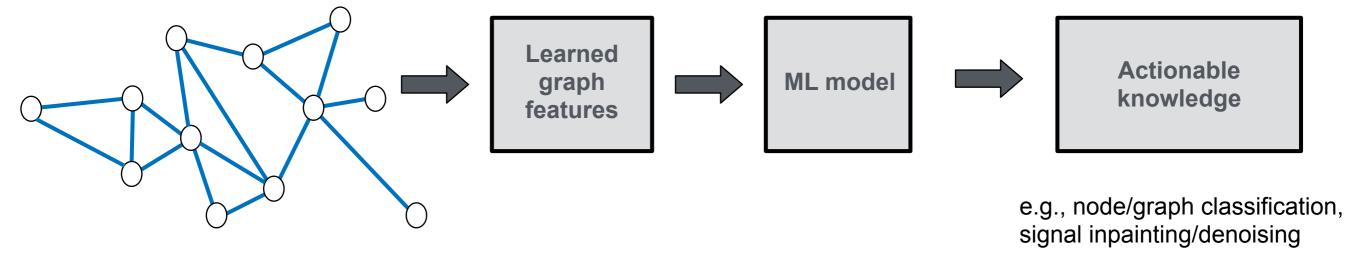


Limitations of hand-crafted graph features

- Hand-engineered features are defined a priori: no adaptation to the data
- Designing graph features can very often be a time consuming and expensive process
- Not easy to incorporate additional features on the nodes
- More flexibility can be achieved with an end-to-end learning pipeline

Graph representation learning

 Intuition: Optimize the feature extraction part by adapting it to the specific instances of the graphs/data



Feature Learning

 \mathcal{G}

 $\phi(\mathcal{G})$

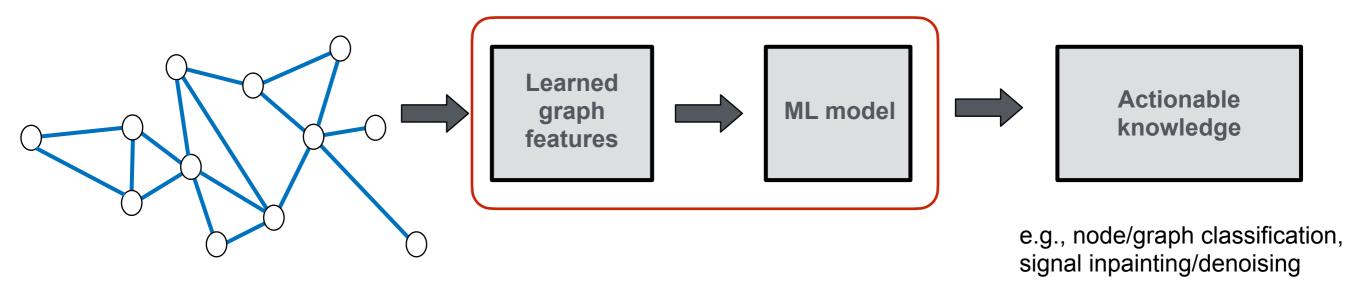
 $f(\phi(\mathcal{G}))$

Y

Graph representation learning

Intuition: Optimize the feature extraction part by adapting it to the specific instances of the graphs/data

Learned components



Feature Learning

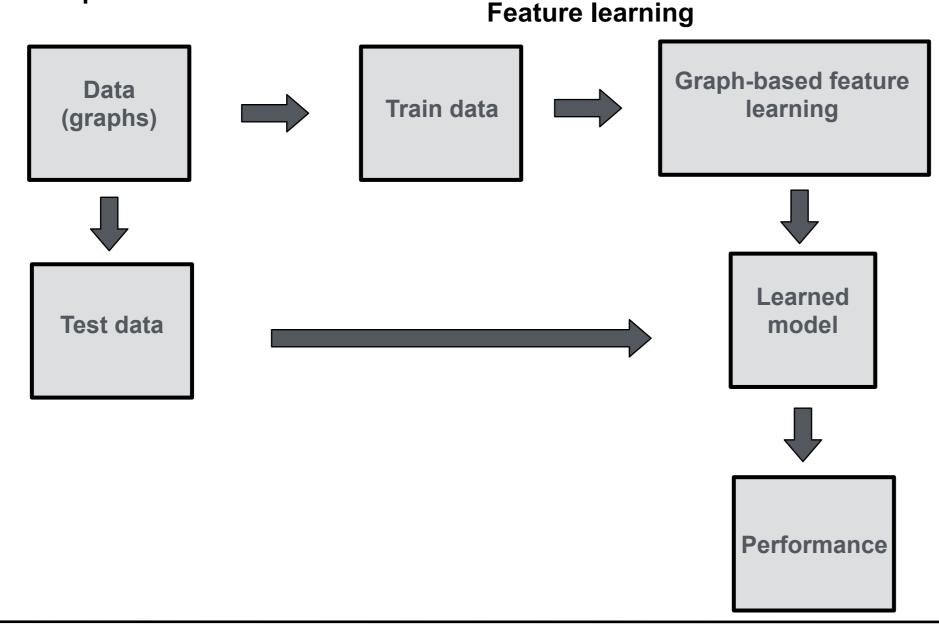
 \mathcal{G}

$$\phi(\mathcal{G})$$

$$f(\mathcal{G}) \implies f(\phi(\mathcal{G}))$$

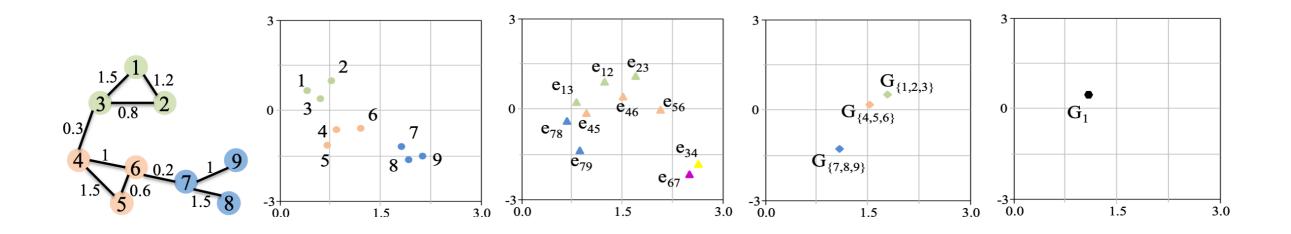
Graph representation learning: basic pipeline

 Feature learning is a way of extracting data-adaptive graph representations



Learning features on graphs

Learned features convert the graph data in a (low dimensional)
latent space (i.e., embedding space) where hidden/discriminative
information about data is revealed



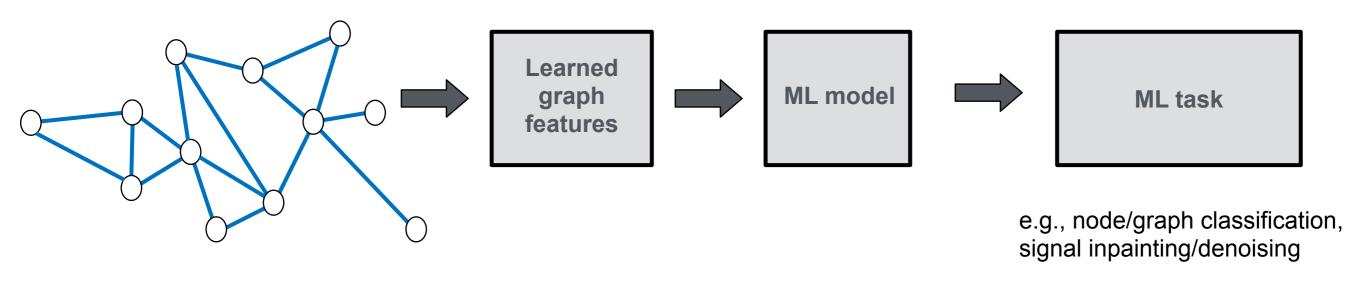
Node embedding Edge embedding Subgraph embedding Graph embedding

Original space Embedding space

How can we learn the embedding space?

Supervised graph representation learning

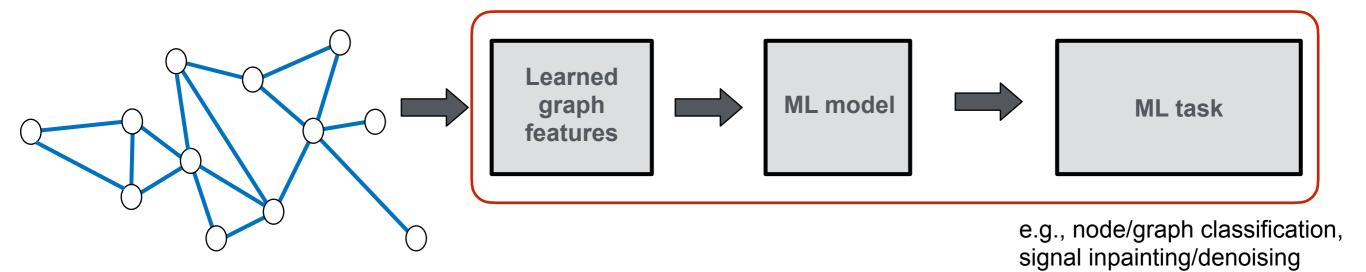
 Learn low-dimensional embeddings for a specific downstream task, e.g., node or graph classification



Supervised graph representation learning

 Learn low-dimensional embeddings for a specific downstream task, e.g., node or graph classification

Joint learning



Unsupervised graph representation learning

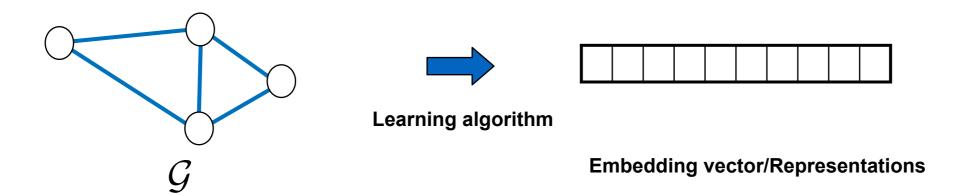
- Representations are not optimized for a specific downstream task
 - They are optimized with respect to some notion of "closeness" in the graph
 - The notion of "closeness" defines the design of the embedding algorithm
- Potentially used for many downstream inference tasks

Learned embedding vector

1. Node/graph classification
2. Node/graph clustering
3. Link prediction
4. Visualization
5. ...

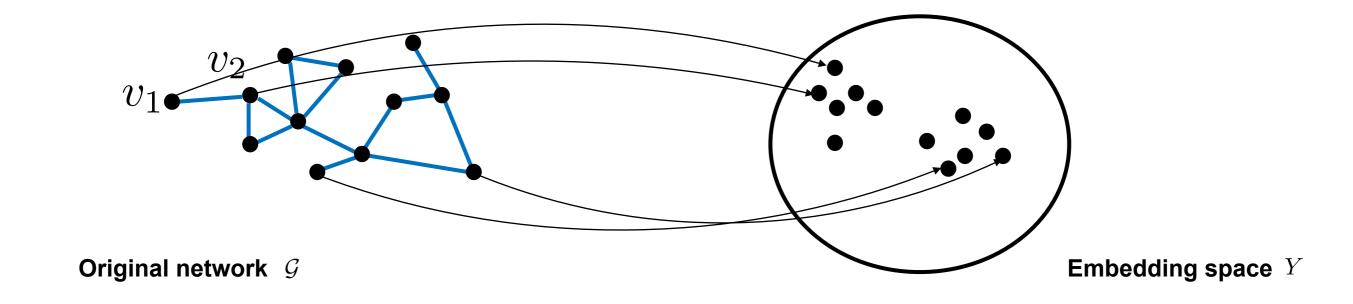
Embeddings on graphs: Definition

• Given an input graph $\mathcal{G}=(\mathcal{V},\mathcal{E},W)$, and a predefined dimensionality of the embedding $d<<|\mathcal{V}|$, the goal is to convert \mathcal{G} (or a subgraph, or a node) into a d-dimensional space in which graph properties are preserved



• Graph properties can be quantified using proximity measures on the graph (e.g., K-hop neighborhood)

Illustrative example: Node embeddings



What is the similarity in the graph that should be preserved in the embedding space?

$$sim_{\mathcal{G}}(v_1, v_2) \approx sim_Y(Y_1, Y_2)$$

Example: Laplacian Eigenmaps

 Intuition: Preserve pairwise node similarities derived from the adjacency/weight matrix

$$sim_{\mathcal{G}}(v_i, v_j) = W_{ij}$$

Measure similarity in the embedding space using the mean square error

$$sim_Y(Y_i, Y_j) = ||Y_i - Y_j||_2^2$$

 Impose larger penalty if two nodes with larger pairwise similarity are embedded far apart

$$l(sim_{\mathcal{G}}(v_i, v_j), sim_Y(Y_i, Y_j)) = sim_{\mathcal{G}}(v_i, v_j) \cdot sim_Y(Y_i, Y_j)$$
$$= W_{ij} ||Y_i - Y_j||_2^2$$

Laplacian Eigenmaps - algorithm

 Compute embeddings that minimize the expected square distance between connected nodes

Centered embeddings

Uncorrelated embedding coordinates

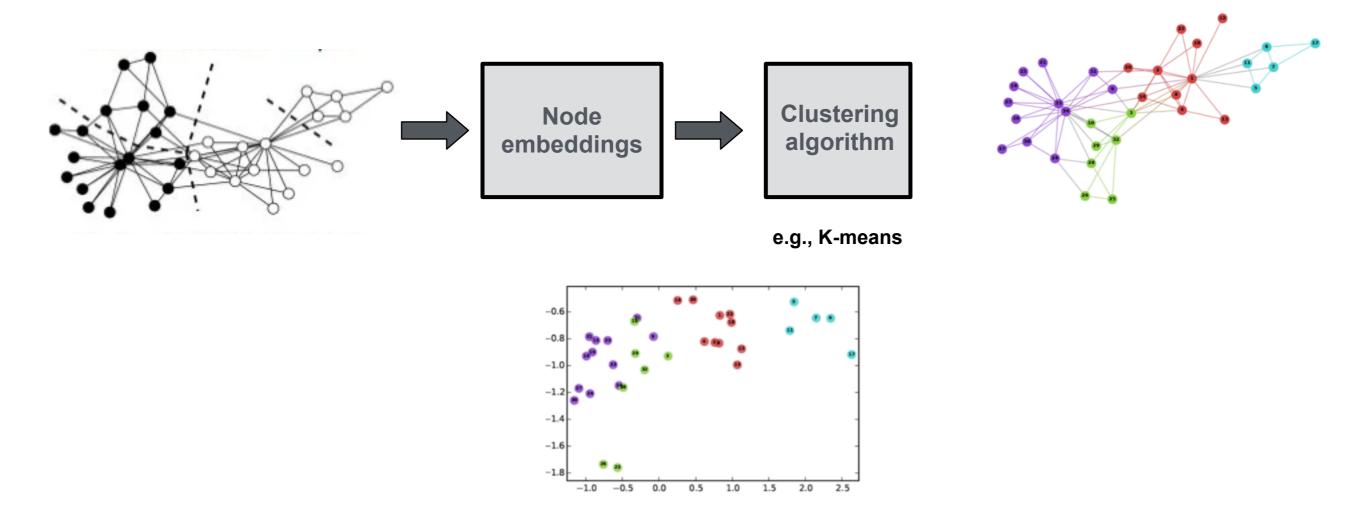
Laplacian Eigenmaps: K first non-trivial eigenvectors of the

Laplacian!

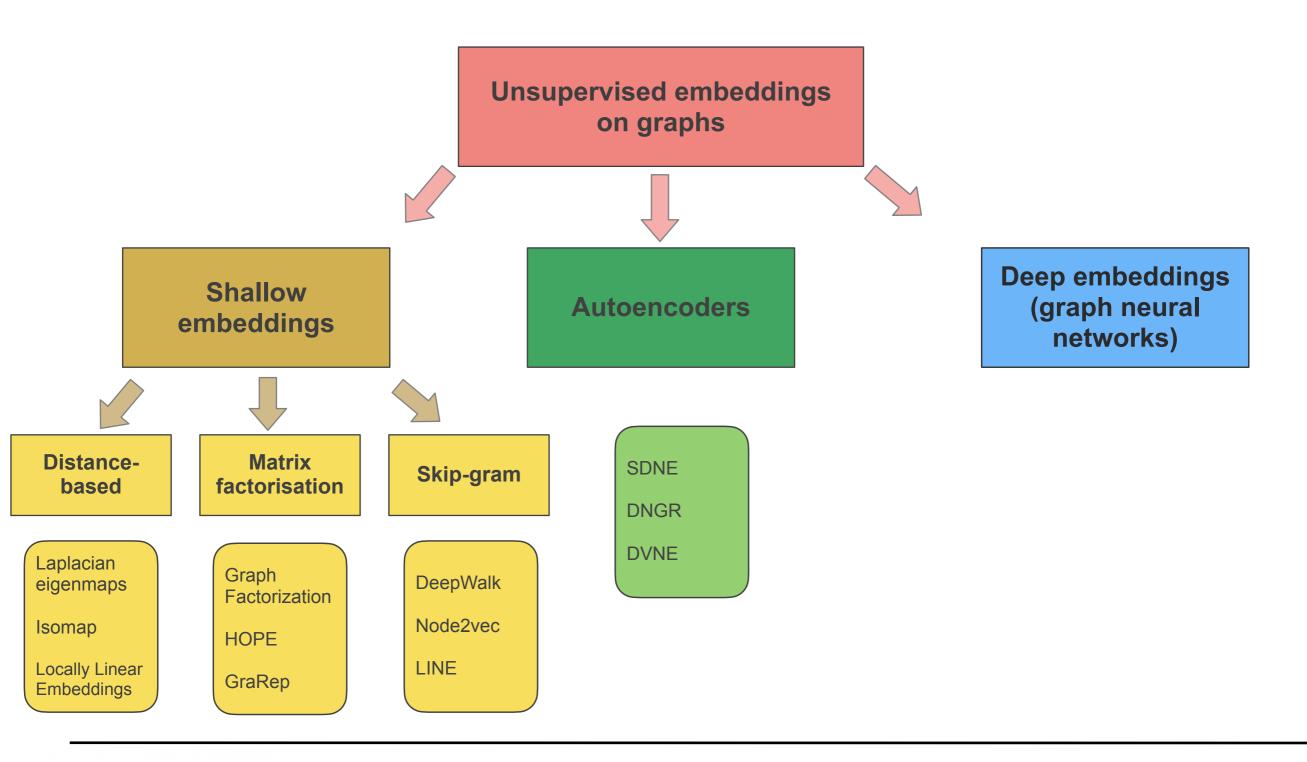
[Belkin et al, 2003, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Comp.]

Application of node embeddings: Node clustering/Community

- The karate-club example
 - Compute node embeddings
 - Apply any clustering algorithm (e.g., K-means) on the learned embeddings



Learning unsupervised embeddings on graphs: A (partial) taxonomy



Summary so far

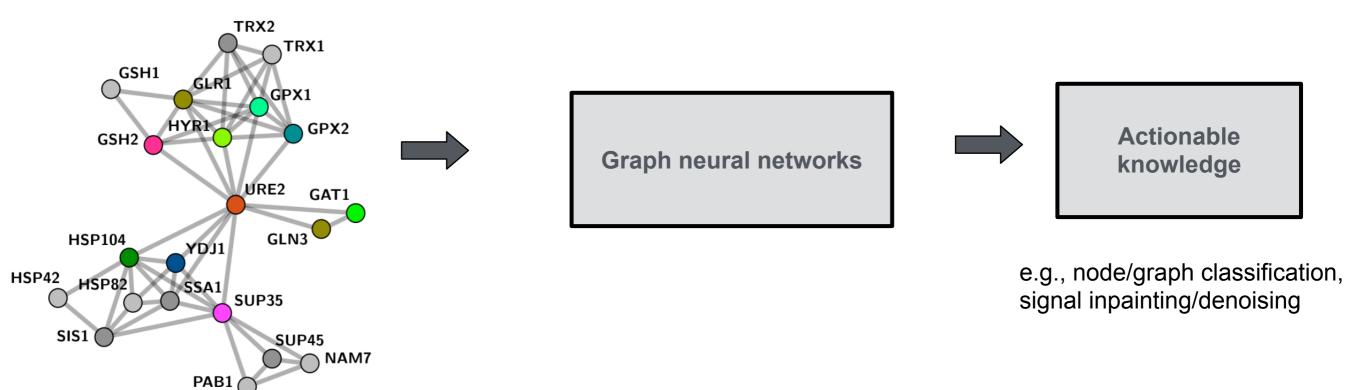
- Feature learning on graphs is a data-driven (and ofter more flexible) alternative to designing hand-crafted features
- Unsupervised learning on graphs provides representations i.e., embeddings, that are not adapted to specific tasks
- Different assumptions lead to different ways of preserving information from the original graph in the embedding space (e.g., weight matrix, random walks...)
- The choice of what structure information to preserve depends on the application

Limitations of the (discussed) node embedding algorithms

- Usually transductive not inductive
 - Learned embedding models often do not generalize to new nodes
- Do not incorporate node attributes
- Independent of downstream tasks
- No parameter sharing:
 - Every node has its own unique embedding

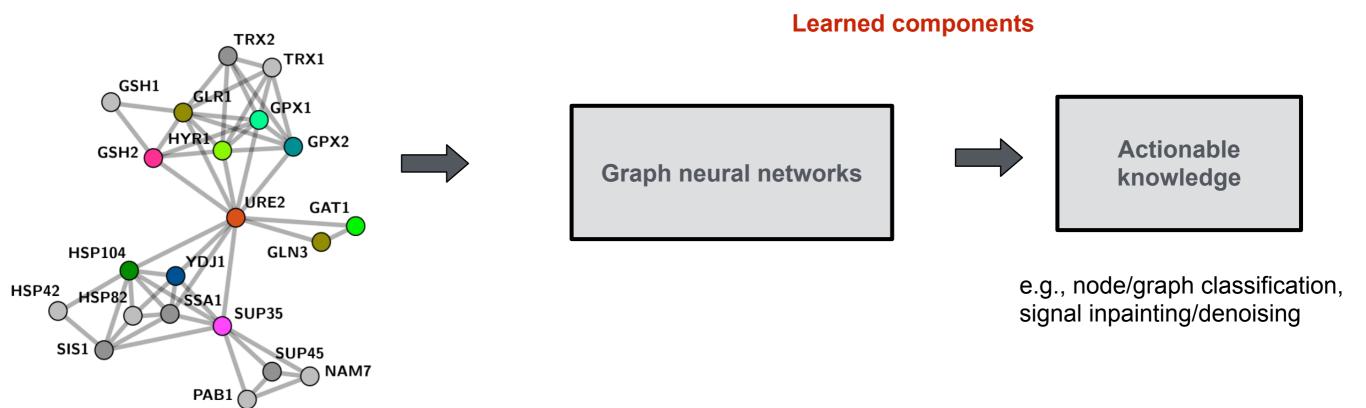
Graph neural networks (GNNs)

- A different way of obtaining 'deeper' embeddings inspired by deep learning
- They generalize to graphs with node attributes

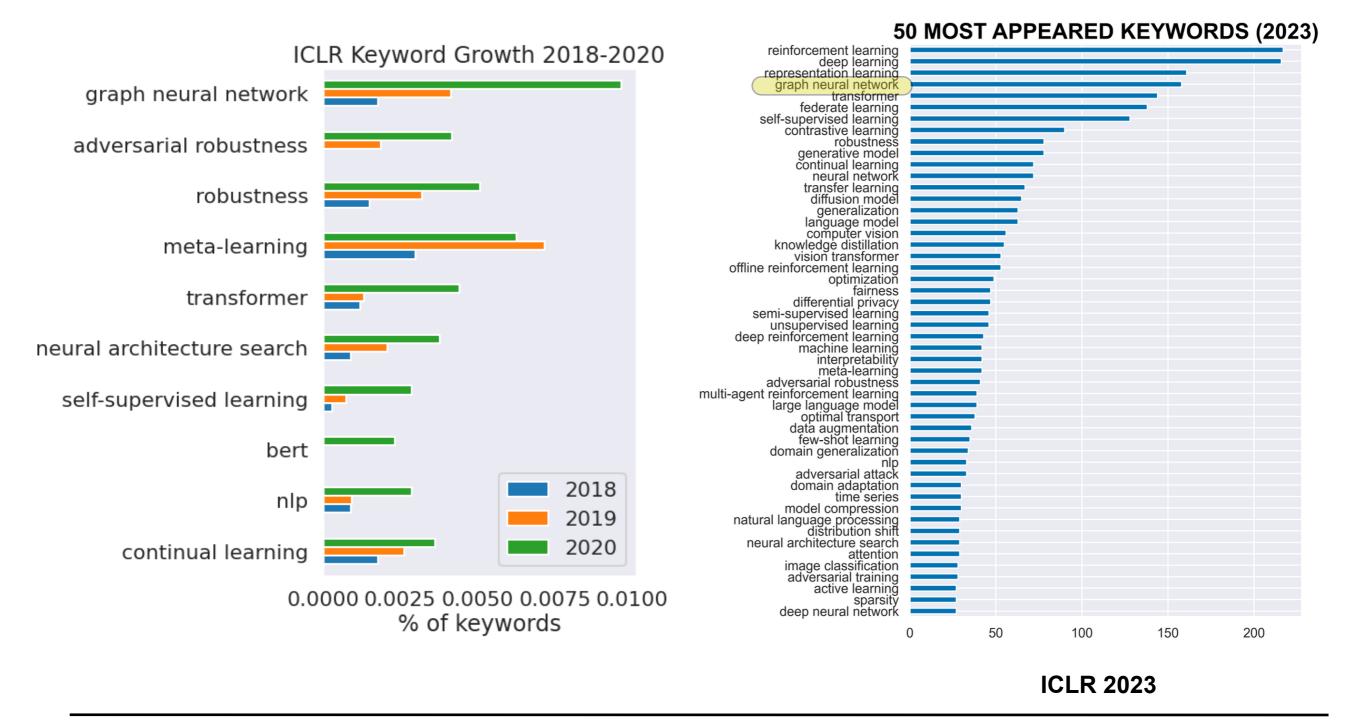


Graph neural networks (GNNs)

- A different way of obtaining 'deeper' embeddings inspired by deep learning
- They generalize to graphs with node attributes



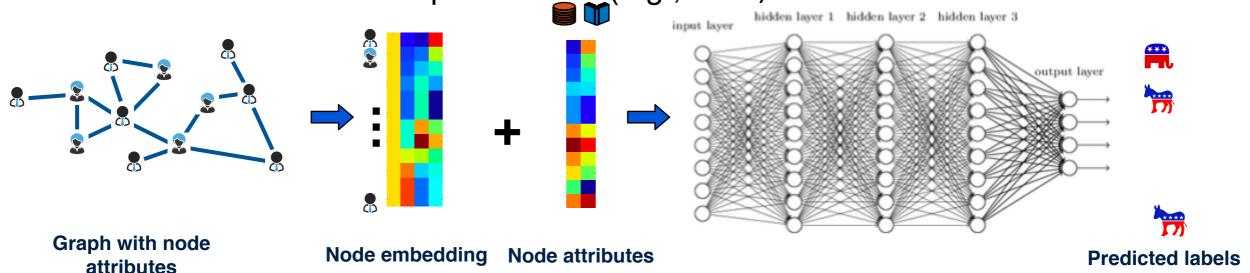
GNNs: A growing trend



Computing embeddings from

A naive approach:

- Embed graph and node attributes into a Euclidean space
- Feed them into a deep neural net (e.g., MLP)



Issues with that:

- Computationally expensive
- Not applicable to graphs of different sizes
- Not invariant to node ordering: if we reorder nodes the representations will be different

Can we do better? Yes!

Good priors are key to learning

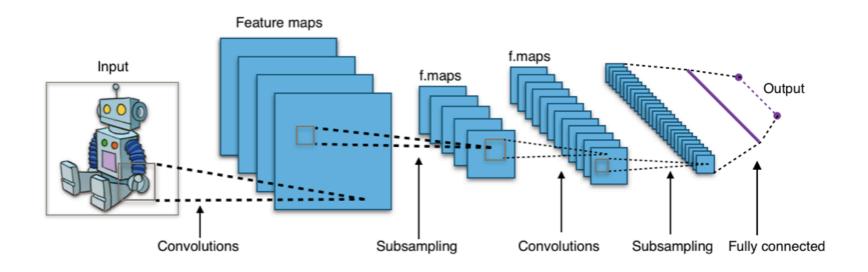
- We build intuition from classical deep learning algorithms
- CNNs exploit structure in the images

Translation invariance

Composability

CNN architecture: Illustrative

 CNNs hierarchically aggregate (through convolution) and pool (i.e., subsample) images along pixel-grid



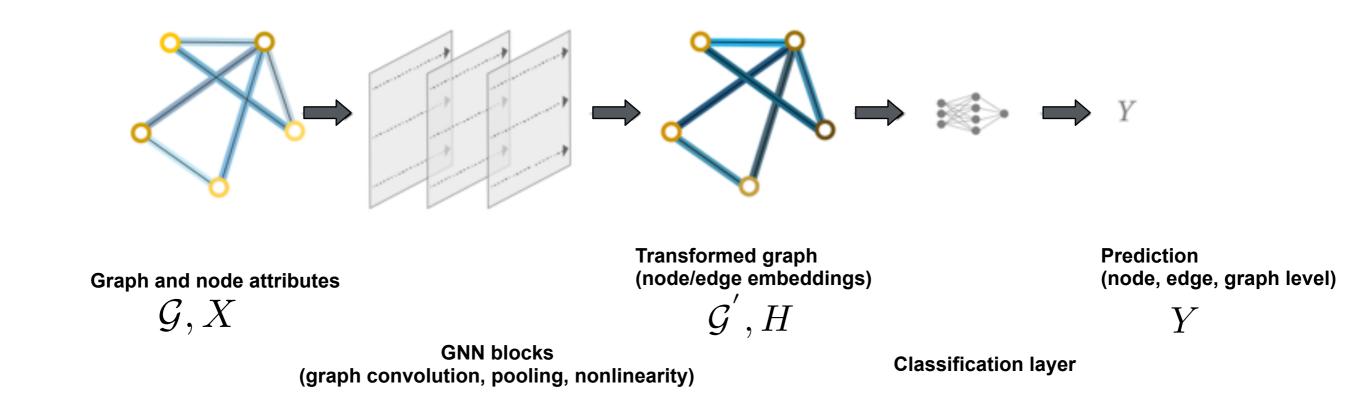
https://en.wikipedia.org/wiki/File:Typical_cnn.png

How can we extend CNNs on graphs?

- Desirable properties
 - Convolution: how to achieve translation invariance
 - Localization: what is the notion of locality
 - **Graph pooling:** how to downsample on graphs
 - **Efficiency**: how to keep the computational complexity low
 - **Generalization:** how to build models that generalize to unseen graphs

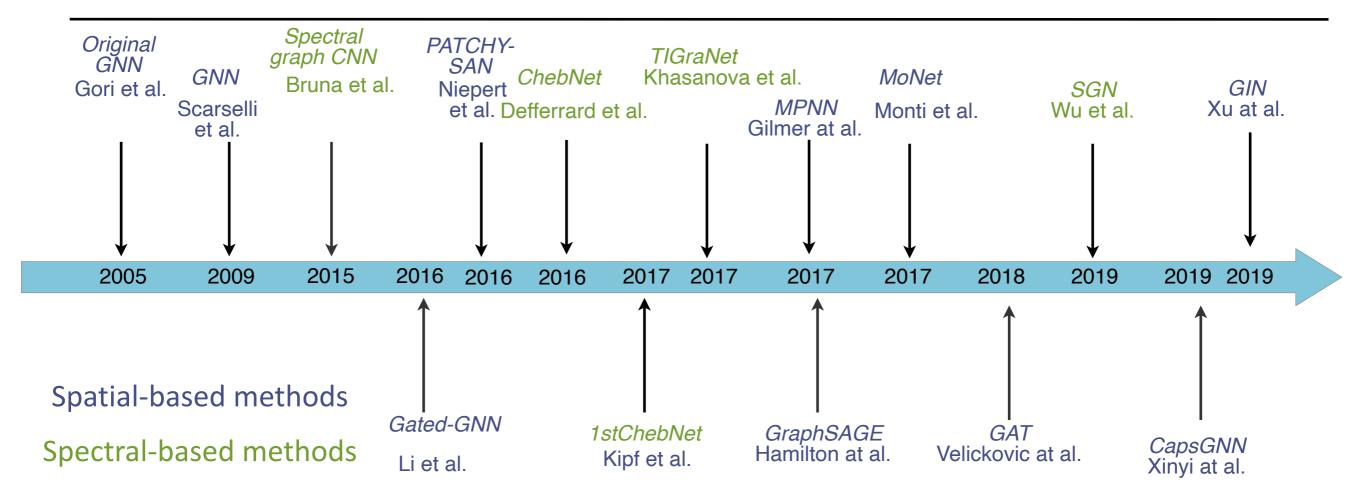
GNN model: schematic overview

Applicable to most state-of-the-art architectures



 We apply permutation invariant functions on local neighbourhoods of the graph

First GNN architectures

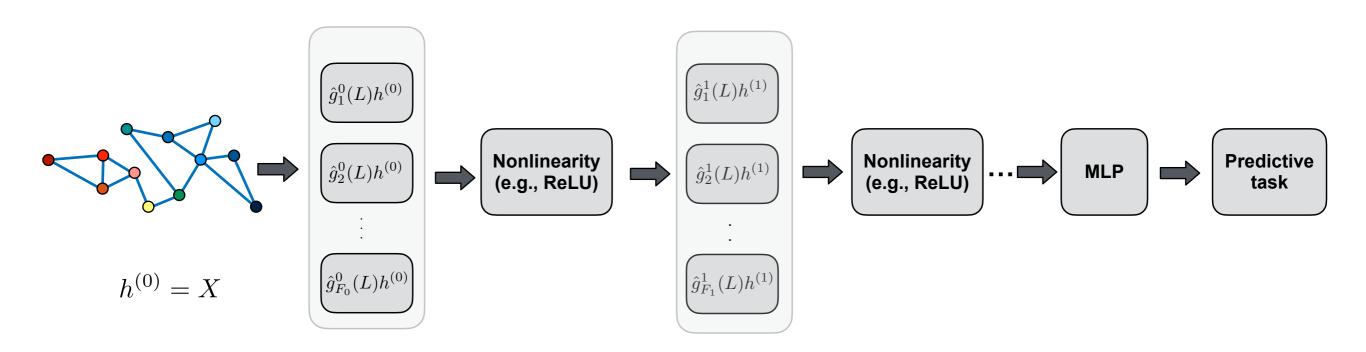


Recent trends

- Spectrally-inspired architectures: GraphHeat (Xu'19), GWNN (Xu'19), SIGN (Frasca'20), DGN (Beaini'20), Framelets (Zheng'21), FAGCN (Bo'21)
- More expressive GNNs: higher order WL test (Maron'19, Morris'20), physics-inspired GNNs (Chamberlain'21), and many more!

The basic GNN: a spectral viewpoint

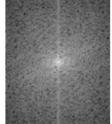
 Typical GNN architectures consist of a set of graph convolutional layers, each of which is followed by elementwise nonlinearity



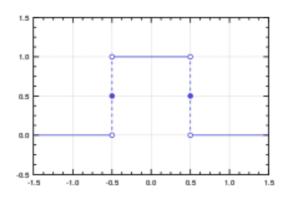
 By learning the parameters of the each convolutional filter, we learn how to propagate information on a graph to compute node embeddings

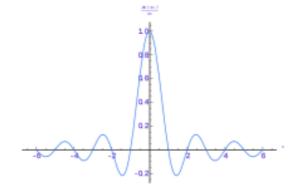
The Fourier transform

 One of the most fundamental notions in signal processing/ analysis



 A mathematical transform that decomposes functions depending on space or time into functions depending on spatial or temporal frequency





How can we define the Graph Fourier transform for graph structured data?

A notion of frequency on the graph

The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $\frac{d^2}{dx^2}$ graph Laplacian: L

eigenfunctions: $e^{j\omega x}$

$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$

eigenvectors: χ_ℓ

$$f: \mathcal{V} \to \mathbb{R}^N$$

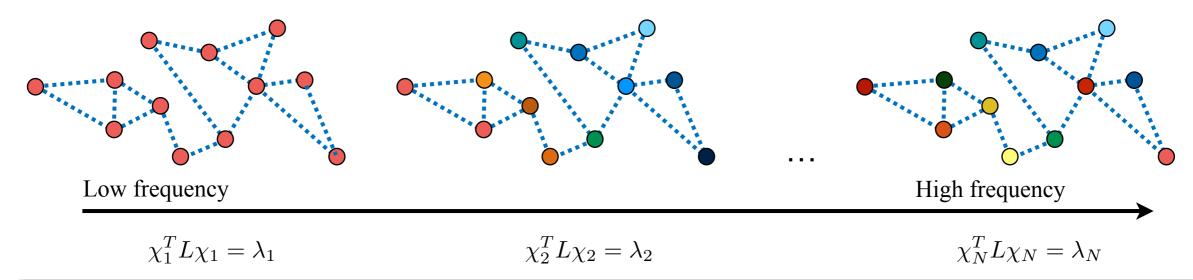
$$f: \mathcal{V} \to \mathbb{R}^N$$
 Classical FT
$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$
 Graph FT:
$$\hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i)$$

$$f(i) = \sum_{\ell=1}^{N} \hat{f}(\ell) \chi_{\ell}(i)$$

FT: Fourier Transform

Graph Fourier transform

 The eigenvectors of the Laplacian provide a harmonic analysis of graph signals



Graph Fourier Transform:

$$\hat{f}(\lambda_{\ell}) = \langle f, \chi_{\ell} \rangle = \sum_{n=1}^{N} f(n) \chi_{\ell}^{T}(n), \quad \ell = 1, 2, ..., N$$

By exploiting the orthonormality of the eigenvectors, we obtain:

$$f(n) = \sum_{\ell=1}^{N} \hat{f}(\lambda_{\ell}) \chi_{\ell}(n), \quad \forall n \in \mathcal{V}$$

Towards a convolution on graphs: A spectral viewpoint

- Key intuition: Convolution in the vertex domain is equivalent to multiplication in the spectral domain
- Recall that: The graph Fourier transform of a graph signal x is defined using the eigenvectors and the eigenvalues of the Laplacian matrix ($L=\chi\Lambda\chi^T$)
- We define convolution on graphs starting from the multiplication in the GFT domain

Classical convolution

$$x*g = \chi \hat{g}(\Lambda) \chi^T x = \hat{g}(L) x$$

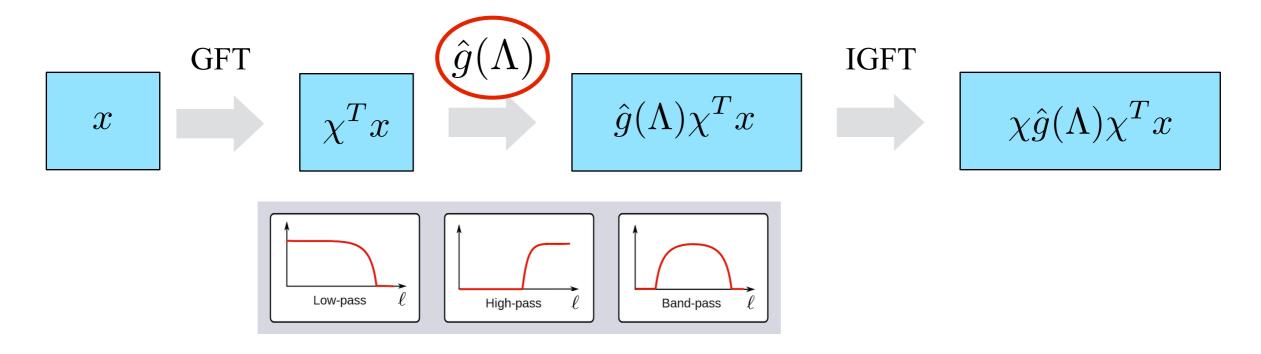
$$\bigcap \text{IGFT}$$

$$\widehat{(x*g)}(\lambda) = ((\chi^T x) \circ \hat{g})(\lambda)$$
 GFT

Convolution on graphs

Graph spectral filtering

- It is defined in direct analogy with classical filtering in the frequency domain
 - Filtering a graph signal x with a spectral filter $\hat{g}(\cdot)$ is performed in the graph Fourier domain



Convolution on graphs is equivalent to filtering!

$$x * g = \chi \hat{g}(\Lambda) \chi^T x = \hat{g}(L) x$$

Shuman et al., "The emerging field of signal processing on graphs", IEEE Signal Process. Mag., 2013

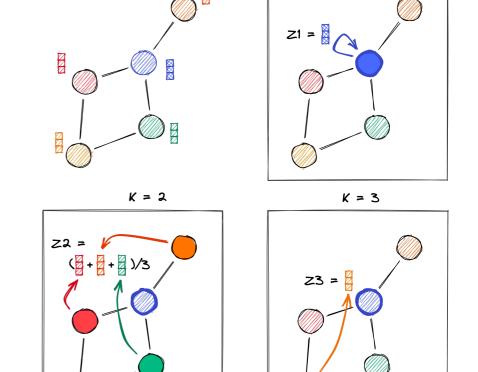
A spatial interpretation of graph convolution

• If we approximate the filter with polynomials of the Laplacian, we get a spatial interpretation on the graph

$$x*g=\hat{g}(L)x=\sum_{k=0}^K \theta_k L^k x=\sum_{k=0}^K \theta_k z_k$$
 nat:

Note that:

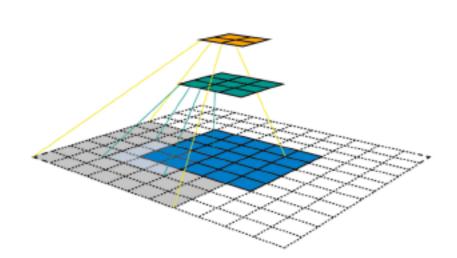
$$z_0 = x$$
 $z_1 = Lz_0$
 $z_2 = Lz_1 = L^2z_0$
 \vdots
 $z_K = Lz_{K-1} = \cdots = L^Kz_0$



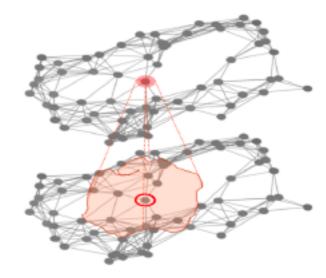
- Graph convolution can be computed recursively by exchanging information in a local neighborhood (i.e., message passing)
- The kernel $\hat{g}(\cdot)$ does not depend on the order of the nodes: permutation invariant!

The receptive field of graph convolution

- Node embeddings are based on local neighborhood propagation
- Due to the irregular nature of the graph, there is no fixed size neighbourhood
- The degree K of the polynomial defines the receptive field of each node



Receptive field on an image



Receptive field on a graph

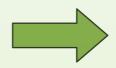
Spectral approaches in one slide

Convolution is defined in the graph Fourier domain

$$x *_{\theta} g = \chi \hat{g}(\theta) \chi^T x$$

Spectral GCNN:

$$\hat{g}(\lambda) = \theta$$



$$x * g = \chi \theta \chi^T x$$

ChebNet:

$$\hat{g}(\lambda) = \sum_{i=0}^{K} \theta_i T_i(\lambda)$$

$$\hat{g}(\lambda) = \sum_{k=0}^{K} \theta_i T_i(\lambda) \qquad \qquad x * g = \sum_{k=0}^{K} \theta_i T_i(L) x$$

$$K=1$$

$$K = 1$$
 $x * g = (\theta_0 - \theta_1 D^{-1/2} W D^{-1/2}) x$

• Parameters θ are learned through the network

Graph Convolutional Networks

Main intuition: Design a scalable architecture with first-order approximation of spectral graph convolution

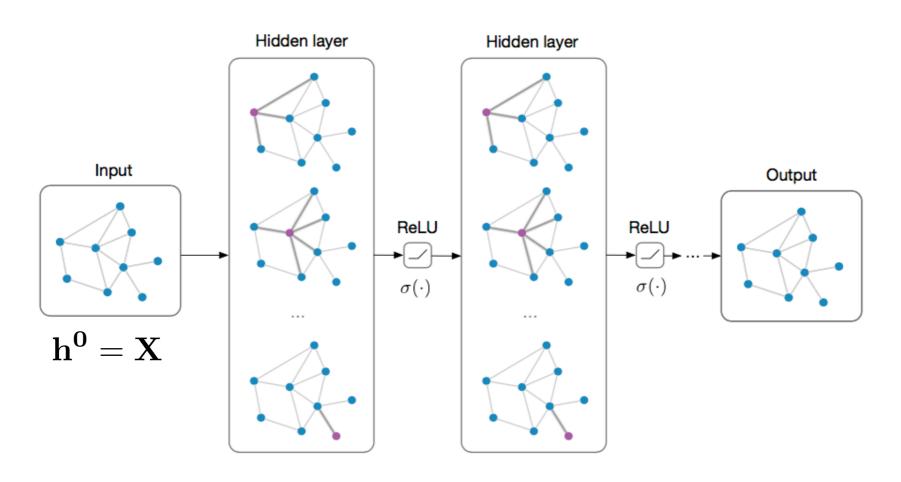
A convolutional layer is defined as:

$$h^{l+1} = \sigma(\tilde{D}^{-1/2}\tilde{W}\tilde{D}^{-1/2}h^{l}\theta^{l+1})$$

Learned parameters

GCN architecture

Very often, it consists of two GCN layers

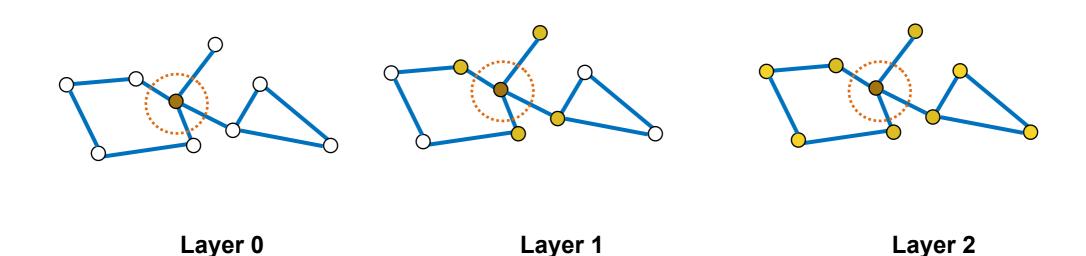


$$\mathbf{h^{l+1}} = \sigma(\mathbf{\tilde{D}^{-1/2}\tilde{W}\tilde{D}^{-1/2}h^l\theta^{l+1}})$$

[Kipf et al., Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017]

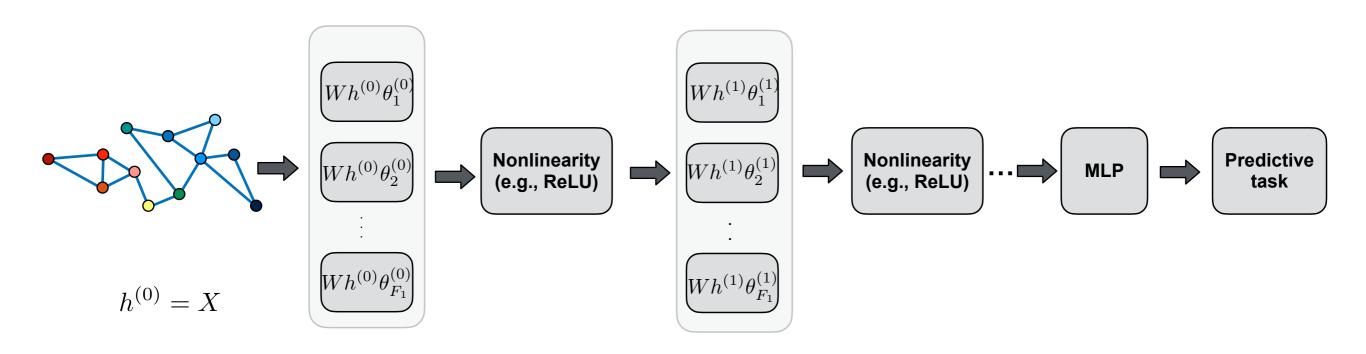
Each layer increases the receptive

- Each layer increases the receptive field by K hops
- Example: K=1



The basic GNN: a spatial viewpoint

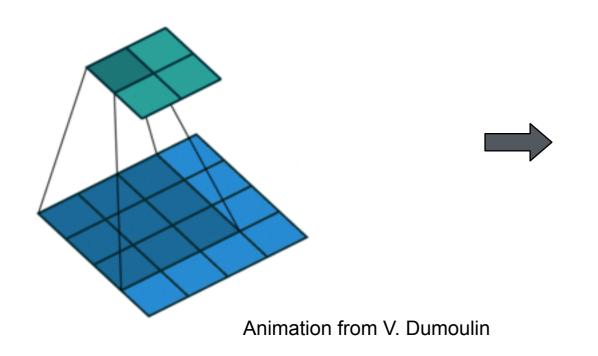
• Consists of a set of graph convolutional layers, each of which is followed by elementwise nonlinearity, i.e., $h^{(l+1)} = \sigma(z^{(l)})$

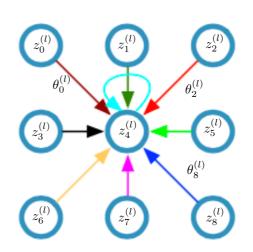


Each layer increases the receptive field by 1-hop neighbors

Towards a graph convolution: A spatial viewpoint

- Key intuition: Generalize the notion of convolution from images (grid graph) to networks (irregular graph)
- Example of a single CNN layer with 3x3 filter
 - Fixed neighbourhood
 - Canonical order across neighbors



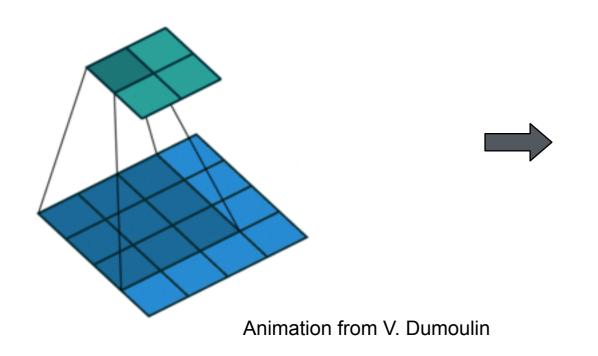


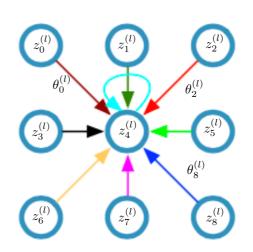
$$z_i^{(l+1)} = \sum_{i=0}^8 \theta_i^{(l)} z_i^{(l)}$$

Can we exploit similar structure for graph data?

Towards a graph convolution: A spatial viewpoint

- Key intuition: Generalize the notion of convolution from images (grid graph) to networks (irregular graph)
- Example of a single CNN layer with 3x3 filter
 - Fixed neighbourhood
 - Canonical order across neighbors



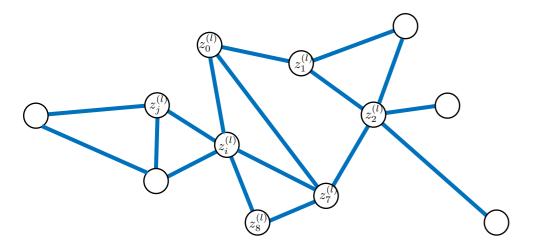


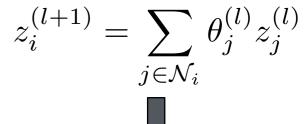
$$z_i^{(l+1)} = \sum_{i=0}^8 \theta_i^{(l)} z_i^{(l)}$$

Can we exploit similar structure for graph data?

Spatial graph convolution

- Main issue: We cannot have variable number of weights; it requires assuming an order on the nodes
- Solution: Impose same filter weights for all nodes





$$z_i^{(l+1)} = \sum_{j \in \mathcal{N}_i} \theta^{(l)} z_j^{(l)}$$

$$z_i^{(l+1)} = \theta^{(l)} z_i^{(l)} + \sum_{j \in \mathcal{N}_i} \theta^{(l)} z_j^{(l)}$$

Update embeddings by exchanging information with 1-hop neighbors

Message Passing Neural Network

- Main intuition: Each node exchange messages with its neighbors and update its representations based on these messages
- The message passing scheme runs for T time steps and updates the representation of each vertex based on its previous representation and the representation of its neighbors

$$m_i^{l+1} = \sum_{j \in \mathcal{N}_i} M_l(h_i^l, h_j^l, e_{ij}) \qquad \text{Message function}$$

$$h_i^{l+1} = U_l(h_i^l, m_i^{l+1}) \qquad \text{Vertex update function}$$

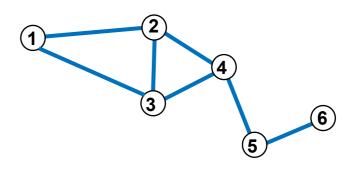
Learned differentiable functions!

[Gilmer et al, Neural Message Passing for Quantum Chemistry, ICML, 2017]

MPNN - Example

At each iteration, the embeddings are updated as follows:

$$\begin{split} h_1^{l+1} &= \theta_0^l h_1^l + \theta_1^l h_2^l + \theta_1^l h_3^l \\ h_2^{l+1} &= \theta_0^l h_2^l + \theta_1^l h_1^l + \theta_1^l h_3^l + \theta_1^l h_4^l \\ h_3^{l+1} &= \theta_0^l h_3^l + \theta_1^l h_1^l + \theta_1^l h_2^l + \theta_1^l h_4^l \\ h_4^{l+1} &= \theta_0^l h_4^l + \theta_1^l h_2^l + \theta_1^l h_3^l + \theta_1^l h_5^l \\ h_5^{l+1} &= \theta_0^l h_5^l + \theta_1^l h_4^l + \theta_1^l h_6^l \\ h_6^{l+1} &= \theta_0^l h_6^l + \theta_1^l h_5^l \end{split}$$



The output of the message passing is:

$$\{h_1^{l_{max}}, h_2^{l_{max}}, h_3^{l_{max}}, h_4^{l_{max}}, h_5^{l_{max}}, h_6^{l_{max}}\}$$

Comparison between spatial and spectral design

 Spectral convolution: Generalizes the notion of convolution by following a frequency viewpoint

 Spatial convolution: Generalizes the notion of convolution by following a spatial viewpoint

- Strong links exist between both; The practical difference usually relies on the receptive field
 - Spectral approaches: Every layer can 'reach' K-hops neighbors
 - Spatial approaches: Each layer can 'reach' 1-hops neighbors

A summary of the GNN landscape

Convolutional GNNs:

$$h_i = \phi(X_i, \bigoplus_{j \in \mathcal{N}_i} \psi(X_j))$$

Message passing GNNs:

$$h_i = \phi(X_i, \bigoplus_{j \in \mathcal{N}_i} \psi(X_i, X_j))$$

Attentional GNNs:

$$h_i = \phi(X_i, \bigoplus_{j \in \mathcal{N}_i} \alpha(X_i, X_j) \psi(X_j))$$

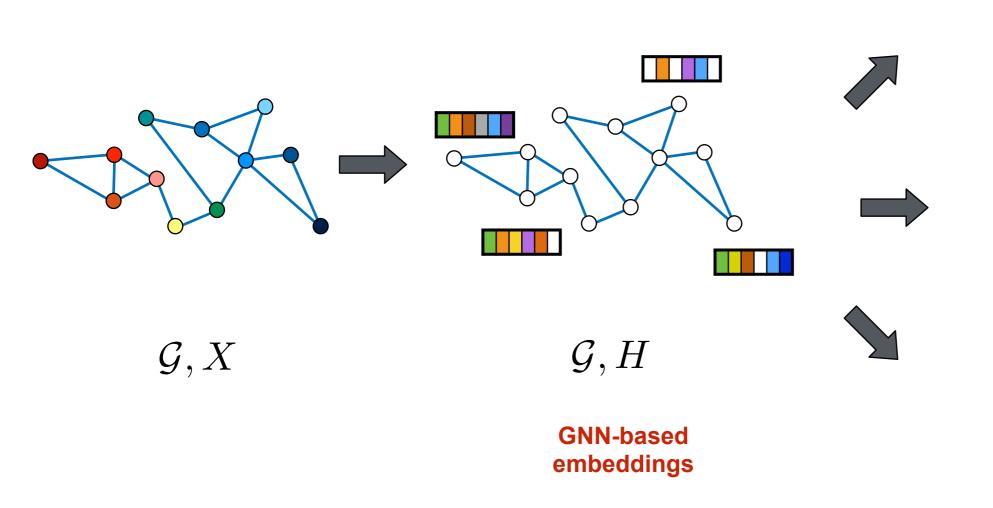
Functions to be learned!

Depending on how these functions are instantiated, different architectures are obtained

[Slide inspired from P. Veličković]

How to use GNNs?

- GNNs typically provide embeddings at a node level
- These embeddings can be used for learning a downstream task



Node classification

$$\tilde{y}_i = f(h_i)$$

Graph classification

$$\tilde{y}_{\mathcal{G}} = f(\underset{i \in \mathcal{V}}{\oplus} h_i)$$

Link prediction

$$\tilde{y}_{i,j} = f(h_i, h_j, W_{ij})$$

Useful resources

Toolboxes

- https://github.com/rusty1s/pytorch_geometric
- https://github.com/dmlc/dgl
- https://github.com/deepmind/jraph
- https://github.com/tensorflow/gnn

Datasets

- DGL datasets: https://docs.dgl.ai/api/python/dgl.data.html
- PyG datasets: https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
- OGB datasets: https://ogb.stanford.edu
- https://chrsmrrs.github.io/datasets/
- https://chrsmrrs.github.io/datasets/

Summary

- Machine learning on graphs/networks requires developing new tools that extract information (i.e., features) from complex structures
- Graph-based features (i.e., embeddings) can be designed based on some prior, or learned from data
- Graph neural networks: A very active area of research
 - Different architecture designs, most of them can be categorized as convolutional, message passing, attentional
- A variety of applications, especially in science and biomedicine!

References

- 1. Graph representation learning (chap 5), William Hamilton
- 2. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, Bronstein et al, 2022
 - https://arxiv.org/abs/2104.13478
- 3. A Comprehensive Survey on Graph Neural Networks, Wu et al, 2021
 - https://arxiv.org/abs/1901.00596

Thank you!

