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Questions from previous lecture?

* Link to preferences (please add your name if you haven’t done
so!):

- https://docs.google.com/spreadsheets/d/
1dFSR_FaHpUtTFW5rAO0gnV8qMPXFRbK4y8kYhvaevH6g/edit?usp=sharing

e \olunteers for next week?

* Any suggestions?
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Going beyond graph structure

* Very often data comes with additional features
- Not only graphs, but attributes on the nodes of the graph
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Graph structured data

e Data live on a regular domain

Amplitude

Phoneme ID h#t iy gyerr ey en z q aw fcl
r fisns ~ out- doors  onthe  porch-

N /,/”’ s T |
td eh pc s h#
teps ‘, 2 ‘7:,
é 2_‘5 ) o
Domain: grid
O_O M\ M\ M\
\J \J \)
Domain: line

 Weighted graphs capture the geometric structure of complex, i.e.,
iIrregular, domains
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Processing graph structured data

RN

- R
<

How can we extract useful information by taking into account both
structure (edges) and data (values/features on vertices)?

Dr Dorina Thanou
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Recap of classical graph matrices

 Undirected graph of N nodes, i.e.,|V| = N : Q\—
G=V,EW), EC{(,§):i.jeVy, (i.j) = (i)

e Adjacency matrix or weight matrix :

0, otherwise

—_ O = <

Wz‘:i{ ! W= |1
1

* If the graph is unweighted (often denoted as A) :

1, if(i,f) €&

0, otherwise

Wi = <

\
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Recap of classical graph matrices

* Neighborhood of node : : Set of nodes connected to —
node ¢ by an edge

 Degree of a node : It is the sum of the weights of the
edges incident to node

Di=Y» W; Y
JEN; )
* Degree matrix: A diagonal matrix containing the
degree of each node

—_ O
—_ O = <

Dij:<ZjWij’ i =7 D=

0, otherwise
\ b

O O N
o o
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The graph Laplacian matrix

 The combinatorial Laplacian is defined as:

2 -1 -1
L=D-—-—W L=1|-1 2 -1
-1 -1 2
- Symmetric -
- Off-diagonal entries non-positive ¢
- Rows sum up to zero L1=0

e |t is a positive semi-definite matrix:
- For each function f : V — R, where f; is the value on the i node of the graph:

N N
fTLf=fT(D—W)f:E:Diz']"}2 - Z JiliWis

1,7=1
- E : N
1,7=1
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Connection to continuous

 Graph Laplacian: A discrete differential operator

(L@ =Y Wi(fi = f5)
JEN;
 The Laplace operator:

- A second-order differential operator: divergence of the gradient Af=V*f

0 0
- The gradient is defined as: V= (8_xfl’ s %)
N
0* f
Finally, the Laplacian is: Al = Z Ox?

 The Laplacian matrix is the graph analogue to the Laplace
operator on continuous functions!
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lllustrative example

 Example: Unweighted grid graph

-
. .
''''''''

[F(z0 + Ly0) — F(@0,0)] — [f (z0 y0) — £(0 — 1,30)
 [F@ouyo + 1) — F(o,y0)] — [f (2os o) — F(@ouyo — 1)
82f (92f

~ w(xo,yo) + 8—y2($073/0) = (Af) (@0, yo)
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Signal on the graph or graph signal

A function f:V — RY that assigns real values to each vertex of
the graph

It is defined on the vertices of the graph G = (V,&, W)

Often represented as a vector f € R"  where f(i) is the signal
value at node 1

The ordering of the vector follows the ordering of the adjacency
matrix

Dr Dorina Thanou
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In this lecture...

e How can we infer useful information from graph structured data”

TRX2
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O @ ’dcpx1

GSH2 .,HYR}O -7 @ CPX2

- Machine learning (ML)/ - Actionable
‘URE2 GAnO Inference on graphs knowledge

HSP104 YD1 GLN3.

HSP42 '.’ . .
QT ST supss e.g., node/graph classification,
O signal inpainting/denoising, link prediction
sIs1Q SUP45
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Outline

* Traditional ML on graphs

Graph-based feature engineering

 Recent ML on graphs

Feature learning on graphs
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Graph-structured features/embeddings:
A high level overview

 Hand-crafted features: Capture some structural properties of the graph, followed
by some statistics (signatures)

 Graph kernel methods: Design similarity functions in an embedding space

Spectral features: Capture the graph properties through spectral graph theory

Model-driven

Learned features: Learn graph features directly from data by designing models
based on meaningful assumptions

Unsupervised (shallow) embeddings: Learn features based on different ways
of preserving information from the original graph (often without node attributes)

Graph neural network features: Learn features from the data using a well-
designed family of neural networks (often with node attributes)

Data-driven

: : Graph Representations for Biology and Medicine - EE626
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Traditional ML pipeline on graphs

e How can we learn useful information from graph structured data?

TRX2
1
OTRX
OGSHI Ao\
" LGPX1
l-:;} FD
GSH2 @O~ @ CPX2 Graph-
- based - ML model - Actionable
‘uaez GAT1 features knowledge
o O
HSP104 YD1 GLN3
SP42 . .
H P4 ’0 ¢ . .
O HSP82O "~SSA1 SUP35 e.g., node/graph classification,
Q signal inpainting/denoising
SIS1 Q) SUP45
O Nam7
PABIO

X,¢ = (X, 0) mp [(¢(X.0) mp Y
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Traditional ML pipeline on graphs

 Feature engineering is a way of extracting meaningful information

from graphs
Feature engineering

Graph-

Data based .
Train data
(graphs) - features -
Test data - ML model

4

Performance

4
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Traditional ML pipeline: Input

e |nput:
e Graph: G=V,E, W)

TRX2
R-pm™~ * Graph with attributes: G, X
GSH1 ok Y
@- . /AGPX1
e
GSH2 'HYR}O @ CPX2
’E’REz GAT1
o O
HSP104 vh)1 ~ GLN3
@
H5P46 HSP82 ’."~§SA1
SUP35
Q
SIS1Q SUP45
O - NAm7
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X, G
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Traditional ML pipeline: Features

e Should reveal important information regarding
the graph structure

* Key to achieving good model performance

iy * Features can be defined at different scales
[Saties - At a node, edge, sets of nodes, entire graph level
gb(X, g)  The choice of the features depends on
- the end task
prior knowledge on the data
Graph R tati for Biol d Medicine - EE626
E P F L rap epresenta I(E)r:SDg:inaIOT(?]ga%gL\ edicine .



Traditional ML pipeline: Learning
tasks

* The features are given as input to an
ML model

 Examples: logistic regression, SVM,
neural networks, etc.

* Training phase:
MLmodel | mEmp| | eTonen  Given a set of graph-based features,
train a model f that predicts the
correct Y

e.g., node/graph classification,
signal inpainting/denoising

* Testing phase:

% * Given a new node/link/graph,
compute its features, and give them
as an input to f to make a prediction

f(o(X,G)) mmp

e Graph Representations for Biology and Medicine - EE626
P .- I Dr Dorina Thanou 19
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Extracting information at different
levels

Node feotures

Edge, features

G;r‘a\ph features

== = Graph Representations for Biology and Medicine - EE626
= P I— I Dr Dorina Thanou
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Node level features

* Typically useful for node classification/clustering tasks

* Aim at characterizing the structure and position of a node in the
network

e Graph Representations for Biology and Medicine - EE626
P .- I Dr Dorina Thanou
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Common node level features

Dg =3

* Node degree

s,
* Node centrality I

.. o._;‘. >

b%7 i\ . Color: Betweenness

5" % .

b v .' —1/3
e Clustering coefficient
®

G raphlets GV =2 Possible graphlets:
GDV(vy) = [1,2,0] : j A
GDV(v) =[3,2,1]  GDV(vy) )1
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From node level to graph level
task

Node feotures

]

Edtje features

G;r‘apln features

How can we design features that characterize the structure of the
entire graph”?

Dr Dorina Thanou
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lllustrative example:
Graph classification

e Common assumption: Graphs with similar structure have similar
label

Training data Test data

O el )
Class 1
/3—0—\ Class -1

Class ?

O Class 1 I
Class 1 %
1 ‘1 ; ) Class ?

Class -1 Class -1

Graph Representations for Biology and Medicine - EE626
I Dr Dorina Thanou 24

1L
U
I



Graph level features

 Bag of nodes

» Graphlet kernel [ > = = 6(0)= (1,630

XO l Graphlet kernel

O O K(G1,92) =< ¢(G1), #(G2)

e The Weisfeiler-Lehman kernel é /\ 3

3 4
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2 2
(3,45 (4,345)
@
(2,5) (2,4)
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Limitations of hand-crafted graph
features

 Hand-engineered features are defined a priori: no adaptation to
the data

e Designing graph features can very often be a time consuming and
expensive process

* Not easy to incorporate additional features on the nodes

* More flexibility can be achieved with an end-to-end learning
pipeline

Graph Representations for Biology and Medicine - EE626
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Graph representation learning

* Intuition: Optimize the feature extraction part by adapting it to
the specific instances of the graphs/data

Learned

Actionable
h ML ]
mp | orap —> model | W e

features

e.g., node/graph classification,
signal inpainting/denoising

Feature Learning

G = oG) = f($(G) = Y

P Graph Representations for Biology and Medicine - EE626
=
L
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Graph representation learning

* Intuition: Optimize the feature extraction part by adapting it to
the specific instances of the graphs/data

Learned components

8 ™
Learned
Actionable
ma)| | oaph | s | MLmodel | | EEEp
features knowledge
- y

e.g., node/graph classification,
signal inpainting/denoising

Feature Learning

G = oG) = f($(G) = Y

P Graph Representations for Biology and Medicine - EE626
=
L
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Graph representation learning: basic
pipeline

 Feature learning is a way of extracting data-adaptive graph
representations

Feature learning

Data Graph-based feature

(graphs) - Train data - learning

Learned

Test data —— ezt

Performance
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Learning features on graphs

e | earned features convert the graph data in a (low dimensional)
latent space (i.e., embedding space) where hidden/discriminative
information about data is revealed

3 3 3 3
1 2 e, ©23
1'5/ \1'2 1 €13 3 G123 .
3 rem—_2 3 0 e Cs6 0
0.8 0 46 0 G G
0.3 4 6 7 e " €as {4,5,6} 1
® (] L 4
4 1\ 9 5 «®9 e‘ 34 G
1\/ (? 6()\2 e ° ” egr o
' 1578 -3 -3 3 3
5 | 0.0 15 30 0.0 1.5 3.0 0.0 1.5 30 0.0 1.5 3.0
Node embedding Edge embedding Subgraph embedding Graph embedding
Original space Embedding space

How can we learn the embedding space?

e Graph Representations for Biology and Medicine - EE626
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Supervised
graph representation learning

e |earn low-dimensional embeddings for a specific downstream
task, e.g., node or graph classification

Learned
—> graph mm) | ML model —> ML task
features
e.g., nhode/graph classification,
signal inpainting/denoising
s Graph Representations for Biology and Medicine - EE626
ﬁ P l- L Dr Dorina Thanou 30



Supervised
graph representation learning

e |earn low-dimensional embeddings for a specific downstream
task, e.g., node or graph classification

Joint learning

~ )
Learned
- graph - ML model - ML task
features
\_ _J

e.g., nhode/graph classification,
signal inpainting/denoising

Graph Representations for Biology and Medicine - EE626
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Unsupervised
graph representation learning

 Representations are not optimized for a specific downstream task

- They are optimized with respect to some notion of “closeness” in the graph
- The notion of “closeness” defines the design of the embedding algorithm

e Potentially used for many downstream inference tasks

Learned embedding vector Example of tasks

1. Node/graph classification
2. Node/graph clustering

—> 3. Link prediction
4. Visualization
S. ...
== e Graph Representations for Biology and Medicine - EE626
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Embeddings on graphs: Definition

e Given an input graph G = (V,£, W), and a predefined
dimensionality of the embedding d << |V|, the goal is to convert G
(or a subgraph, or a node) into a d—dimensional space in which
graph properties are preserved

w Learning algorithm

g Embedding vector/Representations

* Graph properties can be quantified using proximity measures on
the graph (e.g., K—hop neighborhood) ”'

Graph Representations for Biology and Medicine - EE626
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[llustrative example: Node
embeddings

V1 76

Original network ¢ Embedding space Y

What is the similarity in the graph that should be preserved in the
embedding space?

simg(v1,v2) ~ simy (Y7, Y5)

e Graph Representations for Biology and Medicine - EE626
P .- I Dr Dorina Thanou 33
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Example: Laplacian Eigenmaps

* Intuition: Preserve pairwise node similarities derived from the
adjacency/weight matrix

simg(vi,v;) = Wi;

 Measure similarity in the embedding space using the mean
square error

simy (Y3, Y;) = ||Y: = ;|3

e Impose larger penalty if two nodes with larger pairwise similarity
are embedded far apart

[(stmg(vs,vj), simy (Y, Y;)) = simg(vi,v;) - simy (Y, Y;)

- 2
= Wi;[|Ys — Y[
== e Graph Representations for Biology and Medicine - EE626
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Laplacian Eigenmaps - algorithm

 Compute embeddings that minimize the expected square distance
between connected nodes

. 2
Centered embeddings YeRNXK E Wz’j Hifz — Y} ”
| (2,7)€E

Uncorrelated
) L=D-W

embedding coordinates

min tr(YTLY) Graph smoothness
YERNXK . YT1=0:. Y TY =Ty

|l  Lagrangian

min tr(Y'LY — (Y'Y — Ig)D)
YERNXK.YyT1=(

l} Gradient

LY =YD = |u; = (x2(¢), ..., xx+1(2))

Laplacian Eigenmaps: K first non-trivial eigenvectors of the

La p I aC| a n ' [Belkin et al, 2003, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Comp.]
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Application of node embeddings:
Node clustering/Community

* The karate-club example

- Compute node embeddings
- Apply any clustering algorithm (e.g., K-means) on the learned embeddings

AR . A &= |
K A= - Node - Clustering o ., ¥ ®
" embeddings algorithm ¥ ot

e.g., K-means

0. \'
s
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Learning unsupervised embeddings on
graphs: A (partial) taxonomy

3§ N

Distance- Matrix Skip-aram
based factorisation P-g

Laplacian A (Graph A 4 A

i DeepWalk
eigenmaps Factorization eepiva
Isomap HOPE Node2vec
Locally Linear LINE

! GraRep

Embeddings

. > ) U J Y,
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Summary so far

 Feature learning on graphs is a data-driven (and ofter more
flexible) alternative to designing hand-crafted features

* Unsupervised learning on graphs provides representations i.e.,
embeddings, that are not adapted to specific tasks

e Different assumptions lead to different ways of preserving
information from the original graph in the embedding space (e.qg.,
weight matrix, random walks...)

 The choice of what structure information to preserve depends on
the application

= Graph Representations for Biology and Medicine - EE626
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Limitations of the (discussed)
node embedding algorithms

e Usually transductive not inductive
- Learned embedding models often do not generalize to new nodes

* Do not incorporate node attributes

* |ndependent of downstream tasks

* No parameter sharing:
- Every node has its own unique embedding

Graph Representations for Biology and Medicine - EE626
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Graph neural networks (GNNs)

e Adifferent way of obtaining ‘deeper’ embeddings inspired by deep
learning

* They generalize to graphs with node attributes

TRX2

Q TRX1
GSH1 o ".O
Q- "écpm
GSH2 "HYR-}O =g GPX2 - - Actionable
Graph neural networks knowledge
URE2  GaT1
O o ®
HSP104 YD1 GLN3
HSPA2 icha) "~.~§5A1 €.g., nqde/grgph class_ifi_cation,
O OSUP35 signal inpainting/denoising
SIS1 Q) SUP45
PAB1 () O=ona
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Graph neural networks (GNNs)

e Adifferent way of obtaining ‘deeper’ embeddings inspired by deep
learning

* They generalize to graphs with node attributes

Learned components
TRX2

Q TRX1
GSH1 o ".O
Q- "écpm
GSH2 "HYR-}O =g GPX2 - - Actionable
Graph neural networks knowledge
URE2  GaT1
O o ®
HSP104 YD1 GLN3
HSPA2 icha) "~.~§5A1 €.g., nqde/grgph class_ifi_cation,
O OSUP35 signal inpainting/denoising
SIS1 Q) SUP45
PAB1 () O=ona
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GNNs: A growing trend

ICLR Keyword Growth 2018-2020

graph neural network

adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning

bert :
w2019
continual learning e mmm 2020

0.0000 0.0025 0.0050 0.0075 0.0100
% of keywords

50 MOST APPEARED KEYWORDS (2023)

reinforcement learning
deep learning
representation learnin
graph neural networ!
transformer
federate learning
self-supervised learning
contrastive learning
robustness
generative model
continual learnin
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transfer learnin
diffusion mode
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language model
computer vision
knowledge distillation
) _vision transformer
offline reinforcement learning
optimization
) _ fairness
_differential privacy
semi-supervised learning
unsupervised learning
deep reinforcement learning
machine learning
interpretability
meta-learning
adversarial robustness

multi-agent reinforcement learnin

large language mode
optimal transport

data augmentation
few-shot learning
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] nIE
adversarial attac
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time series
model compression
natural Iangua,ge,gro,cessm
distribution shi
neural architecture search
. attention
image classification
adversarial training
active learning
sparsit
deep neural networ

o
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100
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150

200
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Computing embeddings from

* A naive approach:

- Embed graph and node attributes into a Euclidean space
- Feed them into a deep neuralae‘(e.g., MLP)

Input layer

®
[} a e
c?) SRS a ‘@. I | o 1
s\ / o | B (8 .~
C?)-_—c'n\./ g—(l) al . \A):« m
LI ) =)
2 D= s t m 5
«“ o~ T o
a » , . | o o
/-{
: m
Gra:t":r‘i’glt:':er;we Node embedding Node attributes Predicted labels

* |ssues with that:
- Computationally expensive
- Not applicable to graphs of different sizes

- Not invariant to node ordering: if we reorder nodes the representations will be
different

Can we do better? Yes!

Dr Dorina Thanou
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Good priors are key to learning

e We build intuition from classical deep learning algorithms
 CNNSs exploit structure in the images

Translation invariance Composability
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CNN architecture: lllustrative

 CNNs hierarchically aggregate (through convolution) and pool
(i.e., subsample) images along pixel-grid

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/File:Typical _cnn.png

Graph Representations for Biology and Medicine - EE626
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How can we extend CNNs on graphs?

* Desirable properties

- Convolution: how to achieve translation invariance

- Localization: what is the notion of locality

- Graph pooling: how to downsample on graphs

- Efficiency: how to keep the computational complexity low

- Generalization: how to build models that generalize to unseen graphs

Graph Representations for Biology and Medicine - EE626
I Dr Dorina Thanou
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GNN model: schematic overview

* Applicable to most state-of-the-art architectures

e mmp )
a
Transformed graph Prediction
Graph and node attributes (node/edge embeddings) (node, edge, graph level)
/
g,X G,H Y

GNN blocks

(graph convolution, pooling, nonlinearity) Classification layer

 We apply permutation invariant functions on local neighbourhoods
of the graph

Graph Representations for Biology and Medicine - EE626
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First GNN architectures

;i Spectral ,
G graph CNN  PAICHY TIGraNet
Gori et al. GNN Bruna et al. Niepert ChebNet Khasanova et al. MoNet SGN GIN
Scarselli et al. Defferrard et al. MPNN  Monti et al. Wu et al. Xu at al.
et al. Gilmer at al.
\/ \4 \ \4 v \4 M A \ M
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019
A A A A A
Spatial-based methods
S 1stChebNet  GraphSAGE . GAT CansGAN
Spectral-based methods |, ;. Kipf et al. Hamilton atal.  Velickovic at al. Xinl;i ol

e Recent trends

- Spectrally-inspired architectures: GraphHeat (Xu'19), GWNN (Xu’19), SIGN
(Frasca’20), DGN (Beaini’20), Framelets (Zheng'21), FAGCN (Bo'21)

- More expressive GNNs: higher order WL test (Maron’19, Morris’20), physics-
inspired GNNs (Chamberlain’21), and many more!

Graph Representations for Biology and Medicine - EE626
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The basic GNN: a spectral viewpoint

* Typical GNN architectures consist of a set of graph convolutional
layers, each of which is followed by elementwise nonlinearity

§(L)h©® g1 (L)A
. Nonlinearity . Nonlinearity Predictive
- 0 (0) 1 1 - #
M L) ‘L(e.g., ReLU)J - g5 (L)t {(e.g., ReLU)J - { task J
RO = x g, (LAY g, (L)Y

* By learning the parameters of the each convolutional filter, we
learn how to propagate information on a graph to compute node
embeddings

Graph Representations for Biology and Medicine - EE626
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The Fourier transform

* One of the most fundamental notions in signal processing/
analysis

A mathematical transform that decomposes functions depending

on space or time into functions depending on spatial or temporal
frequency

vvvvv

..................

How can we define the Graph Fourier transform for graph structured data?

Graph Representations for Biology and Medicine - EE626
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A notion of frequency on the graph

 The Laplacian L admits the following eigendecomposition: Lx, = A¢xe

d?
one-dimensional Laplace operator: —— . graph Laplacian: L
! BRI |
eigenfunctions: e/“* " eigenvectors: X/

. N B

Crassical FT () =[[ ™) e | araph 71: /() = (v ) =[O0

f@) = 5 [ Fer o F) =3 F(Exali

FT: Fourier Transform
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Graph Fourier transform

 The eigenvectors of the Laplacian provide a harmonic analysis of
graph signals

““’ ““Q ““Q
*e *el N
e N @ Q. . 6@ e 0., - g
....... .“" .'0,...5.“:“ ) “‘ ....'.'.“‘Q
O L@ O
@) Q) @) ® O @)
Low frequency High frequency >
X1 Lxi = A X5 Lxz = Ao XNLXN = An
N
: r _ _ T _
Graph Fourier Transform: fe) =< f,xe >= E fn)x; (n), £=1,2,...N
n=1

e By exploiting the orthonormality of the eigenvectors, we obtain:
N

Inverse Graph Fourier Transform: f(n) — f()\e)Xe (n), Vn ey
(=1

Dr Dorina Thanou
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Towards a convolution on graphs:
A spectral viewpoint

* Key intuition: Convolution in the vertex domain is equivalent to
multiplication in the spectral domain

* Recall that: The graph Fourier transform of a graph signal x is
defined using the eigenvectors and the eigenvalues of the

Laplacian matrix ( L = yAy? )
* \We define convolution on graphs starting from the multiplication in
the GFT domain

(z % g)(t) = / b x(t — 7)g(T)dr rxg=xg(A)x" = =g(L)x

— 00 ’
FT @ ; ﬁ IGFT

— . . E X T N
(Txg)(w)=2w)-gw) + (2xg)(N)=((x"z)og)(N) ©FT
Classical convolution Convolution on graphs
E P F L Graph Representa’[i(I)Dr:st(c))rrirl;%ai]o_:_?]gtja):1 (a)llr}d Medicine - EE626 o



Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal = with a spectral filter §(-) is performed in the graph
Fourier domain

GFT

IGFT

vz !?(A)XTZU Xﬁ(A)XTle
Low-pass ‘ High—pac—z ‘ ‘L@E

Convolution on graphs is equivalent to filtering!
zxg=xg(A)x" z=g(L)x

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013

cPr-L
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A spatial interpretation of graph

convolution

* |f we approximate the filter with polynomials of the Laplacian, we

get a spatial mterpretatlon on the graph

$>l<g:§ L xzzekLk$:Zeka
k=0 k=0

e Note that:

K=1

20 — I
z1 = Lzg il
za= ¥
20 = Lzy = L%z <+@+gy3/0
(1o
av
O
ZK:LZK_l :°--:LKZ() @/

e Graph convolution can be computed recursively by exchanging
iInformation in a local neighborhood (i.e., message passing)

* The kernel g(-) does not depend on the order of the nodes:

permutation invariant!

Dr Dorina Thanou
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The receptive field of graph
convolution

* Node embeddings are based on local neighborhood propagation

 Due to the irregular nature of the graph, there is no fixed size
neighbourhood

* The degree Kof the polynomial defines the receptive field of each
node

=]
.‘ o -
L -»

- & » ‘0
' - e "
.’. ‘ - o~ .’ b
~. :.' :~ = ..
=3 ’_g
Receptive field on an image Receptive field on a graph
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Spectral approaches in one slide

e Convolution is defined in the graph Fourier domain
rxg g =xg(0)x" x

. _ T
 Spectral GCNN: g(A) =0 ;,> rxg=x0x w

K K
. ChebNet: GV = 60 mmh zig=Y 0T(Da
k=0 k=0

K =1 > X *x (g = (6)0 — (91D_1/2WD_1/2)£C

e GCN:

e Parameters 6 are learned through the network
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Graph Convolutional Networks

 Main intuition: Design a scalable architecture with first-order
approximation of spectral graph convolution

gxx~box+0,(L—In)x =0z — 91D_1/2Wp_1/233

@ 0 =0, = —0,

~ ~ A~

S oD~ 2W D2y

e A convolutional layer is defined as:

Rl O(D_l/QWD_1/2hl9l+1)

Learned parameters

e Graph Representations for Biology and Medicine - EE626
P .- I Dr Dorina Thanou

I

Y



GCN architecture

* Very often, it consists of two GCN layers

Hidden layer Hidden layer
- 3 - A
o . o] . . e}
[ ® ® ®
o o
Input ¢ ¢ e Output
s N @ o - ~
A o
. > o LT RelU | o /" ReLU X
)\ o ® " e U =" e U _’_’ 1% o ®
= v\ ® o () ® o a(-) o
~ ~/ \ coe y,
h =X . .
« * o« °
o ®
\ ’ J . ° J
hl—l—l _ O'(D_l/ZWD_l/zthH_l)
[Kipf et al., Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017]
s Graph Representations for Biology and Medicine - EE626
= P l- I Dr Dorina Thanou



Each layer increases the receptive

 Each layer increases the receptive field by K hops

e Example: K =1

Layer 0 Layer 1 Layer 2

e Graph Representations for Biology and Medicine - EE626
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The basic GNN: a spatial viewpoint

* Consists of a set of graph convolutional layers, each of which is
followed by elementwise nonlinearity, i.e., A" = g(2)

Wh(O)ggo Wh(l)egl
0) 5(0) Nonlinearity 1) o(1) Nonlinearity Predictive
M‘ Wh®, -L(e.g., ReLU)J m) Who, -{(e.g., ReLU) |"""==P| MLP | mm) | Tk
L0 — x WO SRS

e Each layer increases the receptive field by 1-hop neighbors

e Graph Representations for Biology and Medicine - EE626
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Towards a graph convolution:

A spatial viewpoint

* Key intuition: Generalize the notion of convolution from images
(grid graph) to networks (irregular graph)

 Example of a single CNN layer with 3x3 filter

- Fixed neighbourhood
6
0y + o0

- Canonical order across neighbors

—>
6y
® G
8
Animation from V. Dumoulin zz.(l+1) = Z le)zz(l)
1=0

Can we exploit similar structure for graph data?
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Towards a graph convolution:

A spatial viewpoint

* Key intuition: Generalize the notion of convolution from images
(grid graph) to networks (irregular graph)

 Example of a single CNN layer with 3x3 filter

- Fixed neighbourhood
6
0y + o0

- Canonical order across neighbors

—>
6y
® G
8
Animation from V. Dumoulin zz.(l+1) = Z le)zz(l)
1=0

Can we exploit similar structure for graph data?
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Spatial graph convolution

 Main issue: We cannot have variable number of weights; it
requires assuming an order on the nodes
LD =3 9<1> (l)

e Solution: Impose same filter weights for all nodes JEN;

(l+1) Z o), (l)

FjEN;

.

AT =902 1 N7 g0
JEN;

Update embeddings by exchanging information with 1-hop neighbors

Graph Representations for Biology and Medicine - EE626
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Message Passing Neural Network

 Main intuition: Each node exchange messages with its
neighbors and update its representations based on these

mesSages

* The message passing scheme runs for T time steps and updates
the representation of each vertex based on its previous
representation and the representation of its neighbors

l—|—1 2 : N/
@hz7 h‘j? e’L]

FjEN;

i LU m )
Learned differentiable functions!

[Gilmer et al, Neural Message Passing for Quantum Chemistry, ICML, 2017]
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MPNN - Example

* At each iteration, the embeddings are updated as follows:

it =04nY + 6Lnk + 6L hk

Rt = 6L R + 6L RL + 0L RL + 0L R
At = oLnk + 0L nt + 6LhL + 6t
At =6 R, + 0 R + 0L nh + 0l ht
hit! = 0L Rt + 0L nl, + 0L he

hitt = @ hL + 6L hl

* The output of the message passing is:

lma,:n lmaac lma,:n lmax lma,a: lmam
{hl ) h2 y h3 ) h4 Y h5 y h6 }

e Graph Representations for Biology and Medicine - EE626
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Comparison between spatial and
spectral design

e Spectral convolution: Generalizes the notion of convolution by
following a frequency viewpoint

e Spatial convolution: Generalizes the notion of convolution by
following a spatial viewpoint

e Strong links exist between both; The practical difference usually
relies on the receptive field

- Spectral approaches: Every layer can ‘reach’ K-hops neighbors
- Spatial approaches: Each layer can ‘reach’ 1-hops neighbors

Dr Dorina Thanou 65
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A summary of the GNN landscape

e Convolutional GNNs:

h; = Qb(Xi,jE@Niw(Xj))

* Message passing GNNs:
h’i — X’i) D X’MX
6(Xiy @ V(X X;)
e Attentional GNNs:

hi = ¢(Xi, @ Xy, X;5) (X))

JEN; Functions to be learned!

* Depending on how these functions are instantiated, different
architectures are obtained

[Slide inspired from P. Veli¢kovic]
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How to use GNNs?

 GNNs typically provide embeddings at a node level
* These embeddings can be used for learning a downstream task

Node
classification

7 N

[ yi = f(hs)
-
- Graph
= ]

classification

\ Yg = / (,?Vhi)
1
g, X g, H
Link prediction
GNN-based
embeddings
Yij = [ (s, hy, Wij)

s Graph Representations for Biology and Medicine - EE626
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Useful resources

* Toolboxes
- https://github.com/rusty1s/pytorch _geometric
- https://github.com/dmic/dg|
- https://github.com/deepmind/jraph
- https://github.com/tensorflow/gnn

 Datasets
- DGL datasets: https://docs.dgl.ai/api/python/dgl.data.html

- PyG datasets: https://pytorch-geometric.readthedocs.io/en/latest/modules/
datasets.html

- OGB datasets: https://ogb.stanford.edu
- https://chrsmrrs.github.io/datasets/

- https://chrsmrrs.github.io/datasets/
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Summary

 Machine learning on graphs/networks requires developing new
tools that extract information (i.e., features) from complex
structures

 Graph-based features (i.e., embeddings) can be designed based
on some prior, or learned from data

* Graph neural networks: A very active area of research

Different architecture designs, most of them can be categorized as
convolutional, message passing, attentional

e A variety of applications, especially in science and biomedicine!
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