
Generative Models 2: MLE, MAP and EM
Virtual Class

Dr. Jean Marc Odobez (https://www.idiap.ch/~odobez)
Samy Tafasca (https://www.idiap.ch/~stafasca)

2021-2022

EE613 - Machine Learning for Engineers

https://www.idiap.ch/~odobez
https://www.idiap.ch/~stafasca
https://www.epfl.ch/en/
https://www.idiap.ch
https://www.epfl.ch/en/

Outline
2/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Overview
3/54

Main points

Submissions were great overall - well done!

GMMs are a class of generative models, so we can use them to synthesize new
data samples

EM is a powerful algorithm to train GMMs for clustering or density estimation
tasks

K-means is a special case of GMMs which assumes that clusters have spherical
covariance matrices, and that samples are distributed uniformly across clusters

Initialization is important for EM. It can be set randomly, using K-means
centroids or prior knowledge

The EM can be extended to MAP estimation instead of ML estimation in order
to benefit from prior distributions and the bayesian framework.

Part I: Gaussian Mixture Models (GMMs) and Expectation
Maximization (EM)

Outline
5/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

GMM as a Generative Model
6/54

Exercice 1
Complete the sample function below which should use ancestral sampling to generate
new data points from a given gaussian mixture.

Solution

def sample(N, pis, mus, sigmas):
Number of Mixtures
K=len(pis)

Initialize x and z
x=np.empty((N, 2))
z=np.empty(N, dtype=np.int)

BEGIN SOLUTION
for n in range(N):

mixture=int(np.random.choice(K, size=1, p=pis)[0])
sample=mvn.rvs(mean=mus[mixture], cov=sigmas[mixture])
x[n]=sample
z[n]=mixture

END SOLUTION

return x, z

GMM as a Generative Model
7/54

Exercice 2
Using the sample function, complete the following function to generate a sample of
N = 400 synthetic data points from a 2-dimensional GMM with K = 3 components,
with known prior, mean, and diagonal covariance matrix. Assume π1 = 0.25, π2 = 0.5,

π3 = 0.25, µ1 = (−1, 0), µ2 = (1, 1), µ3 = (2, 2) and Σ1 = Σ2 = Σ3 =

(
1 0
0 1

)

Solution

def sampleMyData(N):

BEGIN SOLUTION
K =3
pis =np.array([0.25, 0.5, 0.25])
mus =np.array([[-1, 0], [1., 1.], [2., 2.]])
sigmas =np.tile([[1., 0.], [0., 1.]], (3, 1, 1))

x, z =sample(N, pis, mus, sigmas)
END SOLUTION

return x, z, pis, mus, sigmas

GMM as a Generative Model
8/54

Exercice 3
Complete the function SkLearnGMMfitting below. Use the GaussianMixture class
from the module sklearn.mixture to train a GMM on the synthetic data (which was
imported at the beginning of the lab). Initialize the model with K = 3 components,
mean vector µ using K-means, the mixing coefficients π with uniform values (i.e. equal

probability for each mixture) and the covariance with Σ1 = Σ2 = Σ3 =

(
0.25 0
0 0.25

)

Solution
All 4 required parts are grouped together in the function below.

def SkLearnGMMfitting(X, K):
BEGIN SOLUTION
pis =np.ones(K) /K
sigmas =np.tile([[0.25, 0.], [0., 0.25]], (K, 1, 1))
gmm =GaussianMixture(n_components =K, init_params ="kmeans", weights_init =pis,

precisions_init =np.linalg.inv(sigmas))
gmm.fit(X)
gammas =gmm.predict_proba(X)
piest =gmm.weights_
muest =gmm.means_
sigmaest =gmm.covariances_
END SOLUTION
return piest, muest, sigmaest, gammas

GMM as a Generative Model
9/54

Question 1
Compare the true parameters with the estimated parameters. What do you observe?
(comment on the mixture parameters, the mean, the covariances)

π1 π2 π3 µ1 µ2 µ3 Σ1

True 0.25 0.50 0.25 (-1.0, 0.0) (1.0, 1.0) (2.0, 2.0)
(
0.25 0
0 0.25

)
Pred 0.23 0.37 0.41 (-1.4, 0.1) (0.8, 0.4) (1.8, 1.8)

(
0.62 0.13
0.13 0.95

)
Solution

Mixing coefficients are somewhat different, especially for class 1 and 2.

Means and covariance matrices are sometimes close, but other times different.

One reason for this mismatch is that the true mixtures are too close to one another.

GMM as a Generative Model
10/54

Question 2
When you run the fitting several times (up to 7 times), can you observe the variability
(observe the graph)? Where does this come from? Which gaussians from the original
data are more affected by this variability? and why?

Run 1 Run 2

Solution

Variability comes from initialization conditions. Since the initial π and Σ are
fixed, the randomness stems mainly from the initial values of µ which are
estimated from k-means.

The gaussians that are most impacted are those corresponding to class 1 and 2,
since these classes overlap the most.

GMM as a Generative Model
11/54

Question 3
Running the code, but sampling N = 200 data points instead of 400, what would you
expect when fitting the resulting data? and vice-versa, when N = 800?

Solution
Given that the data actually follow a GMM model:

Less data is likely going to lead to a worse model (more variability in estimates,
including across runs)

Whereas more data should in theory produce better models

GMM as a Generative Model
12/54

Question 4
Running the code with K = 2 and K = 4, what do you think about the results ?

Solution

When K = 4, cluster 0 is well captured (more isolated from the rest), whereas 3
mixtures are split between the 2 other overlapping clusters.

Irrespective of the true number of mixtures that generated the observed data, a
GMM trained with any value of K will still produce a model. The right value of
K depends on the task, the metrics and the interpretation.

GMM as a Generative Model
13/54

Question 5
Running the code with K = 3, sampling N = 400 data points, but using as means
µ1 = (−3, 0), µ2 = (1, 1), µ3 = (4, 4), what can you observe in the subsequent fitting?

Solution

In this setting, the true gaussians are better separated, so the training leads to
more accurate estimation of the parameters and more stable results across runs.

GMM as a Generative Model
14/54

Goodfellow et al. 2016, p. 65 states:
A Gaussian mixture model is a universal approximator of densities, in the
sense that any smooth density can be approximated with any specific nonzero
amount of error by a Gaussian mixture model with enough components.

Exercice 4
Train a GMM on this synthetic data using K = 2 components and default values for
the rest of the parameters. Then use the ‘sample‘ function from above (Exercise 1) to
generate N = 400 data points from the learned distribution and visualize them.

GMM as a Generative Model
15/54

Solution

BEGIN SOLUTION
K =2
gmm =GaussianMixture(n_components =K)
gmm.fit(Xmoon)
N =400
X_gen, Z_gen =sample(N, gmm.weights_, gmm.means_, gmm.covariances_)
END SOLUTION

GMM as a Generative Model
16/54

Question 6
Comment on the results when K = 2.

Solution

Even if the true number of clusters in the data is 2, a GMM with 2 mixtures is
not able to learn this distribution simply because the true clusters have the shape
of a moon, which is very different from the ellipsoid shape of a gaussian.

GMM as a Generative Model
17/54

Question 7
Repeat the same experiment, but this time with K = 4, 6, 8. Comment on the result
again.

Solution

When we increase the value of K , we observe that the GMM gets better at
approximating the distribution.

It does so by approximating each portion of each moon by a gaussian.

This is akin to approximating the curve of a non-linear function with multiple
linear ones, each of them restricted to a local region.

GMM as a Generative Model
18/54

Question 8

a What will happen as K increases (think of extreme cases where K = N)? will the
fit be better? which general machine learning problem will arise?

b Thinking of the GMM learning as a typical data fitting problem (here optimizing
the data likelihood), and the value of K as a hyper-parameter, how could you
organize your data to decide on a good value of K?

Solution

a As we increase K to very high values, the model becomes very flexible (i.e.
complex), to the point where it can represent the training data perfectly.
The model captures not only the statistical regularities in the data, but also the
noise that may be present.
This is generally called over-fitting.

b There are many ways to choose a good value of K
Split the data into train and test partitions, then use the train partition to fit the
model and evaluate the log-likelihood. Then use the test partition to evaluate the
log-likelihood again and compare the two values. If the gap is large, then we are
likely overfitting.
Use cluster performance evaluation metrics such as the Silhouette score.

Outline
19/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Implementation of EM for GMMs 20/54

Exercice 5
Complete the GMM_EStep function.

Solution

def GMM_EStep(X, pis, mus, sigmas):

N, D =X.shape
K =mus.shape[0]

gammas =np.zeros((N, K))

BEGIN SOLUTION
for n in range(N):

for k in range(K):
gammas[n, k] =(pis[k] *mvn.pdf(X[n], mean =mus[k], cov =sigmas[k],

allow_singular=True))
Normalization
gammas /=gammas.sum(axis =1).reshape(-1, 1)
END SOLUTION

return gammas

Implementation of EM for GMMs 21/54

Exercice 6
Complete the GMM_MStep function.

Solution

def GMM_MStep(X, gammas):
N, D =X.shape
K =gammas.shape[1]

mus =np.zeros((K, D))
sigmas =np.zeros((K, D, D))
pis =np.zeros((K,))

BEGIN SOLUTION
for k in range(K):

mus[k] =(X *gammas[:, k].reshape(-1, 1)).sum(axis =0)
mus /=gammas.sum(axis =0).reshape(-1, 1)

for k in range(K):
/!\ ddof = 1 by default which normalizes by N-1 instead of N
sigmas[k] =np.cov(X, rowvar =False, aweights =gammas[:, k], ddof =0)

pis =gammas.sum(axis =0) /N
END SOLUTION

return pis, mus, sigmas

Implementation of EM for GMMs 22/54

Exercice 8
Complete the GMM_EM function.

Solution

def GMM_EM(X, K, mus =None, sigmas =None, pis =None, kmeans_init =False, max_iter =50, tol
=0.1, verbose =True):

Initialization of the parameters (pi, mu, sigma)
...
Training
...
Loop
for iteration in range(1, max_iter +1):

for step in (’e’, ’m’):
BEGIN SOLUTION
if step ==’e’:

E-Step
gammas =GMM_EStep(X, pis, mus, sigmas)

else:
M-Step
pis, mus, sigmas =GMM_MStep(X, gammas)

END SOLUTION
Compute Lower Bound and Evaluate Log-likelihood
...

Break if log-likelihood change is lower than tol
...

return pis, mus, sigmas, history

Implementation of EM for GMMs 23/54

Bishop 2016, p. 434 states
Before discussing how to maximize this function [data log-likelihood], it is
worth emphasizing that there is a significant problem associated with the
maximum likelihood framework applied to Gaussian mixture models, due to
the presence of singularities. This will occur whenever one of the Gaussian
components ‘collapses’ onto a specific data point.

Question 9
Read the documentation of scikit-learn’s GaussianMixture class and explain how the
library handles the singularity problem.

Solution

Sklearn’s GaussianMixture class handles the singularity problem by adding a
non-negative regularization value to the diagonal of the covariance, which ensures
that the covariance matrices are all positive. This is controlled by the reg_covar
argument.

Outline
24/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Testing EM for GMMs on Synthetic Data 25/54

Question 10
Visually speaking, what does the E-step do ? What about the M-step ? Does this
behavior correspond to their definition?

E-step M-step

Solution

The E-Step changes the colors of the data points, which encode cluster
assignment. This correponds to computing new values for the responsibilities γ.

The M-Step changes the location and covariance matrix of the mixtures. It also
updates the mixing coefficients π, but this is difficult to see visually.

The visual interpretations seem to be aligned with the definitions of these steps.

Testing EM for GMMs on Synthetic Data 26/54

Question 11
What is the objective function that the EM tries to optimize ? From the experiments above
(run the algorithm several times), do you think the EM algorithm always converges to the
global optimum of that objective function ? Justify your answer.

Solution

The EM for GMM tries to (locally) maximize the incomplete data (i.e. X) log-likelihood,
by maximizing its lower bound defined as, L(q, θ) =

∑
Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
.

Maximizing the lower bound during the M-step corresponds to maximizing the expected
value of the complete data (i.e. X , Z) log-likelihood, under the posterior P(Z |X , θ).

The EM has no convergence guarantee in general, and can get stuck in local optimums.
In practice, this can be seen by comparing the results of different runs.

Testing EM for GMMs on Synthetic Data 27/54

Question 12
Does the behavior of the two curves match what is describe in the course with respect
to the EM steps (section, why does EM work ?). What is the quantity that makes up
the difference between the log-likelihood and the lower bound after each M-step?

Testing EM for GMMs on Synthetic Data 28/54

Solution

The difference between the log-likelihood and the lower bound in general corresponds to
the KL divergence between the distribution q(Z) defined over the latent variables, and
the posterior distribution p(Z |X , θ) over latent variables, given the parameters. After the
M-step, this KL divergence represents the difference between p(Z |X , θold) and
p(Z |X , θnew).

After each E-step, the lower bound increases to match the log-likelihood (i.e. θ remains
fixed, but q changes) ⇒ KL divergence becomes 0. This can be seen on the plotted curve.

After each M-step, the lower bound increases, but the log-likelihood increases even more
(i.e. q remains fixed, but θ changes). The difference is a new non-negative KL divergence.

E-Step M-Step Evolution curve

Outline
29/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Comparing GMMs and K-means 30/54

This section is about comparing GMMs and K-means on two different datasets to
illustrate their behaviors and shortcomings:

Spherical Clusters

Ellipsoid Clusters

Spherical Data Ellipsoid Data

Comparing GMMs and K-means 31/54

Exercice 9
Train a GMM on the spherical dataset using the right number of components K = 4
and k-means initialization.

Solution

BEGIN SOLUTION
K =4
pis, mus, sigmas, history =GMM_EM(X_sphere, K, max_iter =50, tol =0.1, kmeans_init =True)
END SOLUTION

Exercice 10
Now train a GMM on the ellipsoid dataset using the right number of components
K = 4 and k-means initialization.

Solution

BEGIN SOLUTION
K =4
pis, mus, sigmas, history =GMM_EM(X_ellipse, K, max_iter =50, tol =0.1, kmeans_init =True)
END SOLUTION

Comparing GMMs and K-means 32/54

Question 13
Explain why both algorithms work similarly well on spherical data but only GMM
works well on the ellipsoid data.

Solution

K-means assumes isotropic clusters, whereas GMMs support gaussians with
flexible covariance matrices which can stretch in any direction.

This explains why a GMM would work on both spherical and elongated clusters
when K-means would only work well on spherical ones.

Comparing GMMs and K-means 33/54

Question 14
Regenerate the ellipsoid data using only N = 400 data points. Re-apply the Kmeans
clustering and GMM fitting on this data. What do you observe? According to you,
where does this come from?

Solution

With N = 400 : both algorithms fail on ellipsoid data. The GMM in particular
fails on two clusters.

This is likely happening because the smaller amount of data combined with the
k-means initialization leads the EM to get stuck in a bad local optima. Turning
off the k-means initialization can help overcome this problem.

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)

Outline
36/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Problem Description 37/54

The goal of this 3rd part is to apply GMMs to recognize the VFOA of a person, given
their head orientation. In particular, we explore both supervised and unsupervised
approaches in modeling the distribution of observed data points.

Context
Assume that a scene consists of a room with the Nao robot, a human and 2 paintings.
Nao is interacting with the human, commenting about the paintings and having a
Q&A session. It is assumed that there are 3 possible VFOA targets for the human:
Nao and the two paintings. The situation is illustrated in the following figure.

Problem Description 38/54

From the video that looks at the subject, we can extract the person’s head orientation
x = (x1, x2) , with x1 representing the pan angle (i.e. looking right or left), and x2 the
tilt angle (i.e. looking up or down). From this observation, we would like to know
whether the person looks at the robot, at the first painting, or at the second painting.

Model assumptions:
probability of looking at a focus z is modeled according to a categorical
distribution parameterized by π:

p(z = k|π) = πk

k ∈ {0, 1, 2} (k = 1 - looking at painting 1, k = 2, painting 2, and k = 0, looking
at Nao.
Given z, the probability of observing a head pose is given by:

p(x|z = k) = N (x|µk , σk)

where µk denotes the mean pose when looking at target k, and σk represents the
variability associated with target k.

According to this hypothesis, the probability of observing a head pose is given by:

p(x) =
∑
k

πkN (x|µk , σk)

In other words, we have a Gaussian Mixture Model (GMM).

Outline
39/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Supervised Learning Approach 40/54

Exercice 1
Complete the function learn_parameters_observable below.

Solution

def learn_parameters_observable(X, Z):
N, D =X.shape
K =len(np.unique(Z))

pis =np.empty(K)
mus =np.empty((K, D))
sigmas =np.empty((K, D, D))

BEGIN SOLUTION
for k in range(K):

mask =(Z ==k)
pis[k] =mask.sum() /N
mus[k] =X[mask, :].mean(axis =0)
sigmas[k] =np.cov(X[mask, :], rowvar =False, ddof =0)

END SOLUTION

return pis, mus, sigmas

Learning
pis_train, mus_train, sigmas_train =learn_parameters_observable(Xtrain, Ztrain)

Supervised Learning Approach 41/54

Question 1
Looking at the estimated gaussians, do their locations (i.e. means) correspond to what you
can expect in terms of head pose w.r.t the targets (1 corresponds to 5°) ? A person looking to
their right corresponds to a positive or negative pan angle?

Solution

Yes. An average pan of -25◦ (i.e. 25◦ to the right of the person) and an average tilt of
5◦ (i.e. 5◦ upwards) for the red cluster, seems reasonable for the average person looking
at Painting 1.
Remember that the gaze angle is not the head angle (usually, the head is turned half of
the needed gaze angle). The same reasoning can be applied to the remaining clusters.

Outline
42/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

Unsupervised Learning using EM 43/54

Exercice 4
Complete the learn_parameters_unsupervised function using the GMM_EM function.
Remember that we do not use Z1 and Z2 here, and that these will only serve to
evaluate our models.

Note: Since the learning is completely unsupervised, cluster numbers don’t have a
meaning. In other words, the same set of points can be assigned the label 0, 1 or 2,
depending on the initialization of the algorithm. We can reorder the cluster labels to
match their respective classes.

Solution

def learn_parameters_unsupervised(X, K, pis =None, mus =None, sigmas =None, max_iter =200,
tol =0.001, kmeans_init =True):

BEGIN SOLUTION
pis, mus, sigmas =GMM_EM(X, K, pis =pis, mus =mus, sigmas =sigmas, max_iter =max_iter,

tol =tol, kmeans_init =kmeans_init)
END SOLUTION

pis, mus, sigmas =utils.reorder(pis, mus, sigmas, mus_train)

Unsupervised Learning using EM 44/54

Question 3
Do you think that the learned gaussian means match what should be expected from a
semantic viewpoint? Explain your answer, noting how the interaction with the robot
can (negatively) affect parameter estimation.

Solution

The learned gaussians are mostly where we would expect them, except for Class 1
of Person 2 for which the gaussian doesn’t seem to represent the cluster well.
This is due to the lack of data in that class.

Depending on their interaction with Nao, a person may be focusing more on
certain targets compared to others, which can lead to a class imbalance issues.

Unsupervised Learning using EM 45/54

Question 4
Compare the performance of this unsupervised approach to what was obtained using
supervised learning. Explain these results.

Solution
We obtain:

Accuracy of Person 1: 85.98%

Accuracy of Person 2: 77.64%

The performance of Person 1 in the supervised case (∼ 82%) is lower than the
unsupervised case (∼ 86%). This can be explained by the fact that the data of
person 1 has a decent separation between the gaussians, so unsupervised learning
is producing better results than using training data coming from other people as a
supervision signal.

The performance of Person 2 in the supervised case (∼ 83%) is much better than
the unsupervised case (∼ 78%). The learned cluster means seem to be much
closer to each other and the gaussians overlap more. This can be explained by
the lack of data in Class 1 of this person. A better initialization that leverages
the training set of other people can improve the result.

Outline
46/54

Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
1. GMM as a Generative Model
2. Implementation of EM for GMMs
3. Testing EM for GMMs on Synthetic Data
4. Comparing GMMs and K-means

Part II: Maximum A Posteriori (MAP) Estimation

Part III: Modeling the Visual Focus Of Attention (VFOA)
1. Problem Description
2. Supervised Learning Approach
3. Unsupervised Learning using EM
4. MAP Adaptation

MAP Adaptation 47/54

Exercice 5
Train 2 GMMs on person 1 and person 2 using the mean µ = mus_train for
initialization. You can use Kmeans initialization for the rest of the parameters.

Solution

BEGIN SOLUTION
pis_init_mean1, mus_init_mean1, sigmas_init_mean1 =learn_parameters_unsupervised(X1, K,

max_iter =200, tol =0.001, kmeans_init =True, mus =mus_train)
pis_init_mean2, mus_init_mean2, sigmas_init_mean2 =learn_parameters_unsupervised(X2, K,

max_iter =200, tol =0.001, kmeans_init =True, mus =mus_train)
END SOLUTION

Evaluate Performance
preds_init_mean1 =predict_label(X1, pis_init_mean1, mus_init_mean1, sigmas_init_mean1)
preds_init_mean2 =predict_label(X2, pis_init_mean2, mus_init_mean2, sigmas_init_mean2)

We obtain:

Accuracy of Person 1: 85.37%

Accuracy of Person 2: 85.16%

MAP Adaptation 48/54

Question 5
Compare the performance of this new initialization with k-means initialization. What
do you observe? Why are the results different? Which person was most impacted?

Solution

We get a big boost in performance for person 2 (85.16% vs 77.64%) and a slight
degradation for person 1 (85.37% vs 85.98%). Person 2 is more affected because
Class 2 and Class 3 are better captured (from the initialization) and less affected
by the lack of data in Class 1.

Generally speaking, informed initialization improves performance.

MAP Adaptation 49/54

Unfortunately, the observations of a test person can be noisy, and different persons
may use, on average, different head poses to look at the same targets (e.g. depending
on whether they wear glasses). In addition, during an interaction, people may look
more or less at different targets, which means we can not necessarily expect a good
balance of samples per class.

To address these issues, we can use a prior on model parameters and let the model
adapt their values based on the evidence (i.e. test person data) available. This is
especially beneficial when we have very little or no data for a particular class, in which
case, the prior we set on the gaussian for that class can still provide sensible results.

The MAP adaptation does not affect the Estep. In the Mstep, EM maximizes the
function Q(θ, θold) + log p(θ|Θ), where Θ are the parameters defining the prior
distributions.

For covenience, we use conjugate distributions for the priors:

For the categorical distribution over z, the conjugate is a dirichlet ditribution:
Dir(π|α).

For each of the mixtures, we assume a known covariance, and use a gaussian as
the conjugate prior over the mean: p(µk |βk) = N (µk |µk0,Σk0)

MAP Adaptation 50/54

The GMM parameters are π = {πk}k , µ = {µk}k and Σ = {Σk}k .

Again, we assume that the value of Σ is known, and π and µ are random variables
with prior distributions:

Dirichlet Prior on π parameterized by α - i.e. Dir(π|α)

Gaussian Prior on µ parametrized by β = (µ0,Σ0) - i.e. N (µ|β).

We have to specify α and β and the initial value of Σ, but the rest will be learnt in the
M-step. This should produce the values πMAP , µMAP and Σnew.

As a refresher, we also write down the following formulas (cf. part 2):

µnew
k =

1
Nk

N∑
n=1

γnkxn and Σnew
k =

1
Nk

N∑
n=1

γnk (xn − µnew
k)(xn − µnew

k)>, Nk =
N∑

n=1

γnk

We also have
πMAP
k =

αk + Nk − 1∑K
j=1(αj + Nj − 1)

where α are the parameters of the prior. And µMAP is given by:

µMAP
k = µkp = Σkp

(
Σ−1

k0 µk0 + NkΣnew−1
k µnew

k

)
, where Σ−1

kp = Σ−1
k0 + NkΣnew−1

k

Recall that βk = (µk0,Σk0) are the parameters of the prior.

MAP Adaptation 51/54

Exercice 6
Complete the GMM_MStep function below, which performs the M-step of MAP.

Solution

def GMM_MStep(X, gammas, alpha, beta):
...
BEGIN SOLUTION
pis_map =gammas.sum(axis =0) +alpha -1
pis_map /=pis_map.sum()
END SOLUTION
Sigma New & mu New
...
Mu MAP
for k in range(K):

priormean =beta[’mus’][k]
priorcov =beta[’sigmas’][k]
N_k =np.sum(gammas[:, k])
P_prior =np.linalg.inv(priorcov)
P_data =np.linalg.inv(sigmas_new[k])
BEGIN SOLUTION
cov_p_k =np.linalg.inv(P_prior +N_k *P_data)
mus_map[k] =np.matmul(cov_p_k, (np.matmul(P_prior, priormean) +N_k *np.matmul(

P_data, mus_new[k])))
END SOLUTION

return pis_map, mus_map, sigmas_new

MAP Adaptation 52/54

Exercice 7
Complete the GMM_MAP function below, which performs MAP estimation.

Solution

def GMM_MAP(X, K, alpha, beta, mus =None, sigmas =None, pis =None, kmeans_init =False,
max_iter =50, tol =0.1, verbose =False):

Initialization of the parameters (pi, mu, sigma)
...
Training
...
Loop
for iteration in range(1, max_iter +1):

for step in (’e’, ’m’):
BEGIN SOLUTION
if step ==’e’:

E-Step
gammas =GMM_EStep(X, pis, mus, sigmas)

else:
M-Step
pis, mus, sigmas =GMM_MStep(X, gammas, alpha, beta)

END SOLUTION
Compute Lower Bound and Evaluate Log-likelihood
...

Break if log-likelihood change is lower than tol
...

return pis, mus, sigmas, history

MAP Adaptation 53/54

Question 7
Compare the classification results obtained through MAP against those obtained in the
supervised, or in the fully unsupervised settings. What would influence your choice when
setting the parameters α (i.e. Dirichlet prior) and β (i.e. Gaussian prior) ?

Solution
pis_map1, mus_map1, sigmas_map1, _ =GMM_MAP(X1, K, alpha, beta, pis =pis_train, mus =

mus_train, sigmas =sigmas_train)
pis_map2, mus_map2, sigmas_map2, _ =GMM_MAP(X2, K, alpha, beta, pis =pis_train, mus =

mus_train, sigmas =sigmas_train)

Supervised Cheating Unsupervised Mean init MAP
P1 81.91% 86.18% 85.98% 85.37% 84.35%
P2 83.54% 87.80% 77.64% 85.16% 83.94%

We are slightly worse compared to training-based initialization, but better otherwise.
MAP won’t necessarily improve performance when the data is good, but it will definitively
improve and avoid spurious and non meaningful results when some data are missing.
In general, this is a good strategy to exploit when dealing with such cases.

This is a small dataset, we can achieve better results with more data from more people.

The variance of the gaussians reflects, for a given person, the expected spread of head
poses when looking at a target, and should be set accordingly (e.g. from training data).

The dirichlet prior should reflect how fast we want to adapt to new data in terms of
classes and hence impact the estimated means.

The prior means is usually used as initialization (cf previous questions).

Thank you for your attention!
Dr. Jean Marc Odobez (https://www.idiap.ch/~odobez)
Samy Tafasca (https://www.idiap.ch/~stafasca)
Idiap Research Institute, Martigny, Switzerland

EE613 - Machine Learning for Engineers

https://www.idiap.ch/~odobez
https://www.idiap.ch/~stafasca
https://www.epfl.ch/en/
https://www.idiap.ch
https://www.epfl.ch/en/

	Part I: Gaussian Mixture Models (GMMs) and Expectation Maximization (EM)
	1. GMM as a Generative Model
	2. Implementation of EM for GMMs
	3. Testing EM for GMMs on Synthetic Data
	4. Comparing GMMs and K-means

	Part II: Maximum A Posteriori (MAP) Estimation
	Part III: Modeling the Visual Focus Of Attention (VFOA)
	1. Problem Description
	2. Supervised Learning Approach
	3. Unsupervised Learning using EM
	4. MAP Adaptation

