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ML and MAP Estimation

This laboratory notebook focuses on understanding the Maximum
A Posteriori (MAP) estimation principle, as compared to the more
traditional Maximum Likelihood (ML) case. This principle is
illustrated here using the multivariate Gaussian distribution as the
(data) likelihood distribution.

More precisely, the goal is to study the estimation of the
parameters of the mean (p) of such a distribution using this MAP
principle, as well as understand the effect of the parameters of the
prior distribution on the result.
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Exercise 1: ML Estimation

Complete the code in the following function to return the
Maximum Likelihood estimation of the parameters of a Gaussian.

Solution: Code

mean = np.mean(X, axis=0)
cov = np.cov(X.T, ddof=0)
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Exercise 2: MAP Estimation

Complete the code in the following function to return the

parameters of the posterior distribution over the mean of the data

distribution.

Solution: Code

priormean = priorparam[’mean’]
priorcov = priorparam[’cov’]
N, d = np.shape(X)

x_bar = np.mean(X,axis=0)
P_prior = np.linalg.inv(priorcov)
P_data = np.linalg.inv(CovData)

cov = np.linalg.inv(P_prior + N*P_data)
mean = np.matmul(cov, (np.matmul(P_prior, priormean) \
+ N*np.matmul (P_data, x_bar)))
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m the data (red points)

m the mean and covariance of the data (purple ellipse)

m the prior distribution on the mean (its mean and covariance;
cyan ellipse)

m the posterior distribution on the mean (its mean and
covariance; orange ellipse)

Visualization of data, prior and posterior

5]

2" dimension

v

-5 0 5 10 15 20
1** dimension



ML and MAP Estimation

Exercise 3: Studying the effect of the N value

Complete the code below. For each value of N, generate N
samples, compute the parameters of the mean posterior
distribution, and visualize the different distributions (the prior, the
posterior, and the data gaussian) using the 'utils.show_results’
function.

Solution: Code
for N in N_list:
X_new, CovData = generate_data(N, d)

posteriorparam_new = map_gauss_param(X_new, priorparam, CovData)

utils.show_results(X_new, priorparam, posteriorparam_new)
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Question 1a: Studying the effect of the N value

Observe the estimated means and covariances of the generate
data. Remember that all these datasets are sampled from the same
Gaussian distribution (run the above cell several times). For which
values of N do they fluctuate more/less. Explain.

Solution:

Although all datasets are generated from the same Gaussian, the
fluctuate quite a lot, especially for small values of N.



ML and MAP Estimation

Question 1b: Studying the effect of the N value

Visually, how does increasing N affect the values of yp, and ¥ ,7
Explain this with the help of the above equations.

Solution:

As N increases, we see that the mean of the posterior distribution
converges to the sample mean. We also see that the covariance of
the posterior distribution decreases.

For the covariance, as N increases, the weight of the NX ! term in
):;1 increases. This encourages Z;l to be more similar to NX 1.
And as ¥ is constant, NX ! increases and thus ¥, decreases.

For the mean, pp is a linear combination of 9 and X. So as N
increases, the weight of X increases. Note however they do not lie
on a straight line joining the prior mean to the sample mean.
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Exercise 3: Studying the effect of the data covariance

Complete the code below. For each value of N and the scaled ¥,
generate N samples, compute the parameters of the mean
posterior distribution, and visualize the different distributions (the
prior, the posterior, and the data gaussian) using the
'utils.show_results’ function.

Solution: Code

for N in N_list:
for s in scale:
CovData_new = CovData * s
X_new, _ = generate_data(N, d, CovData_new)
posteriorparam_new = map_gauss_param(X_new, priorparam, CovData_new)

utils.show_results(X_new, priorparam, posteriorparam_new)

NOTE: generate_data should also use CovData_new
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Question 2: Studying the effect of the data covariance

How does the value of the data covariance affect your observation
above? Explain with the help of the posterior equations.

Solution:

We see that the mean of the posterior converges more slowly to x
for increasing N. We also see that the covariance of the posterior
decreases more slowly for increasing .

For the covariance, as ¥ is larger, 3, is closer to ¥o. As N
increases, the weight of the N¥ ! term increases and this effect is
mitigated.

For the mean, as X is larger, the weight for pg is higher. As N
increases, the weight for X increases but the weight is smaller
compared to the previous observations due to the larger >.
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Exercise 4: Studying the effect of the data covariance

Complete the code below.

Until now we have assumed knowledge of the covariance ¥ used to
generate the data but this is often not true in real use-cases. One
possiblity is to use the ML estimate 2. Using X and Xy, for
each value of N generate N samples, compute the parameters of
the mean posterior distribution, and visualize the different
distributions (the prior, the posterior, and the data gaussian) using
the 'utils.show_results’ function.
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Solution: Code

# Using the known data covariance matrix
for N in N_list:
X_new, CovData = generate_data(N, d)
posteriorparam = map_gauss_param(X_new, priorparam, CovData)

utils.show_results(X_new, priorparam, posteriorparam)

# Using the ML estimate of the data covariance matrix
for N in N_list:
X_new, CovData = generate_data(N, d)
CovData_ML = ml_gauss_param(X_new) [’cov’]
posteriorparam_new = map_gauss_param(X_new, priorparam, CovData_ML)

utils.show_results(X_new, priorparam, posteriorparam_new)
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Question 3: Studying the effect of the data covariance

What do you observe when using the empirical covariance? Does it
reflect the 'Ground truth’ about the data (from which random
variable they have been generated)? In this view, to which extent
can 2,y serve as a good proxy for X7 Does the value of N matter,
and how?

Solution:
m The posterior uncertainty reflects the estimated covariance
(shape, size)

m Although the underlying distribution the data are coming from
is still the same

m So, X can serve as a proxy for X, especially as N increases
(where it converges to the underlying True covariance).

m Its value is of course very variable, esp. for small N.
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Exercise 5: Studying the effect of the prior covariance

Complete the code below. For each value of N and the scaled X,
generate N samples, compute the parameters of the mean
posterior distribution, and visualize the different distributions (the
prior, the posterior, and the data gaussian) using the

'utils.show _results’ function.

Solution: Code

priorparam_new[’mean’] = priorparam[’mean’]
for N in N_list:
for s in scale:
priorparam_new[’cov’] = priorparam[’cov’] * s
X_new, _ = generate_data(N, d)
posteriorparam_new = map_gauss_param(X_new, priorparam_new, CovData)

utils.show_results(X_new, priorparam_new, posteriorparam_new)
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Question 4: Studying the effect of the prior covariance

Visually, how does the value of the prior covariance affect the
posterior parameters 1 and X, for different values of N7 Explain
with the help of the posterior equations.

Solution:

We see that for a given N, py, is closer to p19 when X is smaller.
Also, ¥, is smaller when X is smaller. As N increases, 1, moves
closer to X and >, decreases.

For the covariance, as ¥ is larger, ¥, is closer to £%. As N
increases, the weight of the N¥ ! term further increases and ¥,
decreases.

For the mean, as X is larger, the weight for X is higher. As N
increases, the weight for X further increases.
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Question 5: Studying the effect of the prior covariance

Do you think that the prior is well set? From your observation
above, what would you choose for the value of 7

Solution:

The prior can be set in a better manner.

From the previous study, we can see that choosing a larger ¥
results in the pp being closer to X. Hence, we place more emphasis
on the data. Although this results in a larger value for X, this
effect is mitigated with a larger N.
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