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Goal

This laboratory notebook focuses on understanding the Maximum
A Posteriori (MAP) estimation principle, as compared to the more
traditional Maximum Likelihood (ML) case. This principle is
illustrated here using the multivariate Gaussian distribution as the
(data) likelihood distribution.
More precisely, the goal is to study the estimation of the
parameters of the mean (µ) of such a distribution using this MAP
principle, as well as understand the effect of the parameters of the
prior distribution on the result.
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Dataset

The data is sampled from a Gaussian:

N samples

2 dimensions
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Exercise 1: ML Estimation

Complete the code in the following function to return the
Maximum Likelihood estimation of the parameters of a Gaussian.

Solution: Code

mean = np.mean(X, axis=0)

cov = np.cov(X.T, ddof=0)
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Exercise 2: MAP Estimation

Complete the code in the following function to return the
parameters of the posterior distribution over the mean of the data
distribution.

Solution: Code

priormean = priorparam[’mean’]

priorcov = priorparam[’cov’]

N, d = np.shape(X)

x_bar = np.mean(X,axis=0)

P_prior = np.linalg.inv(priorcov)

P_data = np.linalg.inv(CovData)

cov = np.linalg.inv(P_prior + N*P_data)

mean = np.matmul(cov, (np.matmul(P_prior, priormean) \

+ N*np.matmul(P_data, x_bar)))
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Visualization

the data (red points)

the mean and covariance of the data (purple ellipse)

the prior distribution on the mean (its mean and covariance;
cyan ellipse)

the posterior distribution on the mean (its mean and
covariance; orange ellipse)
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Exercise 3: Studying the effect of the N value

Complete the code below. For each value of N, generate N
samples, compute the parameters of the mean posterior
distribution, and visualize the different distributions (the prior, the
posterior, and the data gaussian) using the ’utils.show results’
function.

Solution: Code

for N in N_list:

X_new, CovData = generate_data(N, d)

posteriorparam_new = map_gauss_param(X_new, priorparam, CovData)

utils.show_results(X_new, priorparam, posteriorparam_new)
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Question 1a: Studying the effect of the N value

Observe the estimated means and covariances of the generate
data. Remember that all these datasets are sampled from the same
Gaussian distribution (run the above cell several times). For which
values of N do they fluctuate more/less. Explain.

Solution:

Although all datasets are generated from the same Gaussian, the
fluctuate quite a lot, especially for small values of N.



ML and MAP Estimation
12/24

Question 1b: Studying the effect of the N value

Visually, how does increasing N affect the values of µp and Σp?
Explain this with the help of the above equations.

Solution:

As N increases, we see that the mean of the posterior distribution
converges to the sample mean. We also see that the covariance of
the posterior distribution decreases.
For the covariance, as N increases, the weight of the NΣ−1 term in
Σ−1
p increases. This encourages Σ−1

p to be more similar to NΣ−1.
And as Σ is constant, NΣ−1 increases and thus Σp decreases.
For the mean, µp is a linear combination of µ0 and x̄ . So as N
increases, the weight of x̄ increases. Note however they do not lie
on a straight line joining the prior mean to the sample mean.
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Exercise 3: Studying the effect of the data covariance

Complete the code below. For each value of N and the scaled Σ,
generate N samples, compute the parameters of the mean
posterior distribution, and visualize the different distributions (the
prior, the posterior, and the data gaussian) using the
’utils.show results’ function.

Solution: Code

for N in N_list:

for s in scale:

CovData_new = CovData * s

X_new, _ = generate_data(N, d, CovData_new)

posteriorparam_new = map_gauss_param(X_new, priorparam, CovData_new)

utils.show_results(X_new, priorparam, posteriorparam_new)

NOTE: generate data should also use CovData new
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Question 2: Studying the effect of the data covariance

How does the value of the data covariance affect your observation
above? Explain with the help of the posterior equations.

Solution:

We see that the mean of the posterior converges more slowly to x̄
for increasing N. We also see that the covariance of the posterior
decreases more slowly for increasing N.
For the covariance, as Σ is larger, Σp is closer to Σ0. As N
increases, the weight of the NΣ−1 term increases and this effect is
mitigated.
For the mean, as Σ is larger, the weight for µ0 is higher. As N
increases, the weight for x̄ increases but the weight is smaller
compared to the previous observations due to the larger Σ.
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Exercise 4: Studying the effect of the data covariance

Complete the code below.
Until now we have assumed knowledge of the covariance Σ used to
generate the data but this is often not true in real use-cases. One
possiblity is to use the ML estimate ΣML. Using Σ and ΣML, for
each value of N generate N samples, compute the parameters of
the mean posterior distribution, and visualize the different
distributions (the prior, the posterior, and the data gaussian) using
the ’utils.show results’ function.
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Solution: Code

# Using the known data covariance matrix

for N in N_list:

X_new, CovData = generate_data(N, d)

posteriorparam = map_gauss_param(X_new, priorparam, CovData)

utils.show_results(X_new, priorparam, posteriorparam)

# Using the ML estimate of the data covariance matrix

for N in N_list:

X_new, CovData = generate_data(N, d)

CovData_ML = ml_gauss_param(X_new)[’cov’]

posteriorparam_new = map_gauss_param(X_new, priorparam, CovData_ML)

utils.show_results(X_new, priorparam, posteriorparam_new)
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Using the known data covariance
matrix

Using the ML estimate of the data
covariance matrix
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Question 3: Studying the effect of the data covariance

What do you observe when using the empirical covariance? Does it
reflect the ’Ground truth’ about the data (from which random
variable they have been generated)? In this view, to which extent
can ΣML serve as a good proxy for Σ? Does the value of N matter,
and how?

Solution:

The posterior uncertainty reflects the estimated covariance
(shape, size)

Although the underlying distribution the data are coming from
is still the same

So, ΣML can serve as a proxy for Σ, especially as N increases
(where it converges to the underlying True covariance).

Its value is of course very variable, esp. for small N.
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Exercise 5: Studying the effect of the prior covariance

Complete the code below. For each value of N and the scaled Σ0,
generate N samples, compute the parameters of the mean
posterior distribution, and visualize the different distributions (the
prior, the posterior, and the data gaussian) using the
’utils.show results’ function.

Solution: Code

priorparam_new[’mean’] = priorparam[’mean’]

for N in N_list:

for s in scale:

priorparam_new[’cov’] = priorparam[’cov’] * s

X_new, _ = generate_data(N, d)

posteriorparam_new = map_gauss_param(X_new, priorparam_new, CovData)

utils.show_results(X_new, priorparam_new, posteriorparam_new)



ML and MAP Estimation
21/24



ML and MAP Estimation
22/24

Question 4: Studying the effect of the prior covariance

Visually, how does the value of the prior covariance affect the
posterior parameters µp and Σp for different values of N? Explain
with the help of the posterior equations.

Solution:

We see that for a given N, µp is closer to µ0 when Σ0 is smaller.
Also, Σp is smaller when Σ0 is smaller. As N increases, µp moves
closer to x̄ and Σp decreases.
For the covariance, as Σ0 is larger, Σp is closer to 1

NΣ. As N
increases, the weight of the NΣ−1 term further increases and Σp

decreases.
For the mean, as Σ0 is larger, the weight for x̄ is higher. As N
increases, the weight for x̄ further increases.
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Question 5: Studying the effect of the prior covariance

Do you think that the prior is well set? From your observation
above, what would you choose for the value of Σ0?

Solution:

The prior can be set in a better manner.
From the previous study, we can see that choosing a larger Σ0

results in the µp being closer to x̄ . Hence, we place more emphasis
on the data. Although this results in a larger value for Σp, this
effect is mitigated with a larger N.



Thank you for your attention!

Dr. Jean Marc Odobez (https://www.idiap.ch/~odobez)
Dr. Michael Villamizar (https://www.idiap.ch/~mvillamizar/)
Anshul Gupta (https://www.idiap.ch/~agupta/)
Idiap Research Institute, Martigny, Switzerland

https://www.idiap.ch/~odobez
https://www.idiap.ch/~mvillamizar/
https://www.idiap.ch/~agupta/

	Part 2: ML and MAP Estimation

