Introduction to Graphical Models Exercices

Dr. Jean Marc Odobez (www.idiap.ch/~odobez)

Outline

Exercice 1 : Party Animal

Exercice 2: Asbestos

Exercice 3 : Conditional independance

Exercice 4 : Chest Clinic Network

Exercice 5: Gaussian mean

Outline

Exercice 1 : Party Animal

Exercice 2 : Asbestos

Exercice 3 : Conditional independance

Exercice 4 : Chest Clinic Network

Exercice 5 : Gaussian mean

The problem

The party animal problem takes into account the following variables:

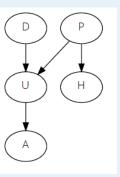
- P: been to party
- H: Got a headache
- D: Demotivated at work
- U: Underperform at work
- A: Boss angry

The distribution over these variables factorizes as:

$$p(P, H, D, U, A) = p(P)p(D)p(U|P, D)p(H|P)p(A|U)$$

a)Draw the graphical model corresponding to this problem.

$$p(P, H, D, U, A) = p(P)p(D)p(U|P, D)p(H|P)p(A|U)$$



b) Given that the boss is angry and that the worker has a headache, what is the probability that the worker has been to the party ?

We need to compute

$$p(P = T|A = T, H = T) = \frac{p(P = T, A = T, H = T)}{p(A = T, H = T)}$$

with

$$p(A = T, H = T) = p(P = T, A = T, H = T) + p(P = F, A = T, H = T)$$

We then just need to compute each required term.

b) Given that the boss is angry and that the worker has a headache, what is the probability that the worker has been to the party ?

$$\begin{split} \rho(P=T,A=T,H=T) &= \sum_{u \in \{F,T\}, d \in \{F,T\}} \rho(P=T,A=T,H=T,U=u,D=d) \\ \rho(P=T,A=T,H=T) &= \\ \rho(P=T)\rho(H=T|P=T) &\sum_{u \in \{F,T\}} \rho(A=T|U=u) &\sum_{d \in \{F,T\}} \rho(D=d)\rho(U=u|P=T,D=d) \end{split}$$

We can show that:

$$\sum_{U \in \{F,\,T\}} p(A = T | U = u) \sum_{d \in \{F,\,T\}} p(D = d) p(U = u | P = T,\,D = d) = \textbf{0.92282}$$

so that

$$p(P = T, A = T, H = T) = 0.2 \times 0.9 \times 0.92282 = 0.1661$$

b) Given that the boss is angry and that the worker has a headache, what is the probability that the worker has been to the party ?

$$p(P = F, A = T, H = T) = p(P = F)p(H = T|P = F) \sum_{U \in \{F, T\}} p(A = T|U = u) \sum_{d \in \{F, T\}} p(D = d)p(U = u|P = F, D = d)$$

We can show that:

$$\sum_{U \in \{F,\,T\}} \rho(A = T |\, U = u) \sum_{d \in \{F,\,T\}} \rho(D = d) \rho(U = u |\, P = F,\, D = d) = \textbf{0.66227}$$

so that

$$p(P = F, A = T, H = T) = 0.8 \times 0.2 \times 0.66227 = 0.10596$$

b) Given that the boss is angry and that the worker has a headache, what is the probability that the worker has been to the party ?

So the requested probability is:

$$p(P = T|A = T, H = T) = \frac{0.1661}{0.1661 + 0.10596} = 0.610$$

Outline

Exercice 1 : Party Animal

Exercice 2: Asbestos

Exercice 3 : Conditional independance

Exercice 4 : Chest Clinic Network

Exercice 5 : Gaussian mean

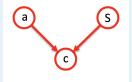
The problem

There is a synergistic relationship between Asbestos (A) exposure, Smoking (S) and Cancer (C). A model describing this relationship is given by

$$p(A, S, C) = p(C|A, S)p(A)p(S)$$

Is $A \perp \!\!\!\perp S$? Is $A \perp \!\!\!\perp S | C$?

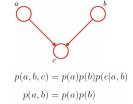
Graph



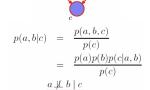
Is $A \perp \!\!\!\perp S$? Is $A \perp \!\!\!\perp S | C$? cf course: 3 canonical graph

Graph

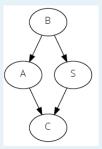
Is $A \perp \!\!\!\perp S$? Is $A \perp \!\!\!\perp S | C$?



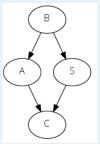
 $a \perp\!\!\!\perp b \mid \emptyset$



How could you adjust the model to account for the fact that people who work in the building industry have a higher likelihood to also be smokers and also a higher likelihood to be exposed to Asbestos?



How could you adjust the model to account for the fact that people who work in the building industry have a higher likelihood to also be smokers and also a higher likelihood to be exposed to Asbestos?



Adding the building node allows to have different statistics on whether people smoke or not (probability P(S|B)) or are exposed to asbestos (through the definition of P(A|B)).

Outline

Exercice 1 : Party Anima

Exercice 2 : Asbestos

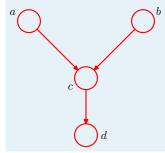
Exercice 3: Conditional independance

Exercice 4 : Chest Clinic Network

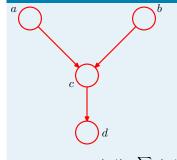
Exercice 5 : Gaussian mean

The problem

Consider the directed graphical model below, in which none of the variables is observed. Show that $a \perp \!\!\! \perp b$ (hint see how the demonstration was shown in the course for the canonical model 3).



The problem : Show that $a \perp \!\!\! \perp b$



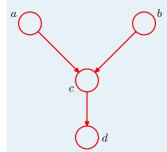
$$p(a,b) = \sum_{c,d} p(a,b,c,d) = \sum_{c,d} p(a)p(b)p(c|a,b)p(d|c)$$

$$p(a,b) = p(a)p(b)\sum_{c} \left[p(c|a,b)\sum_{d} p(d|c) \right]$$

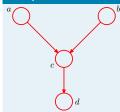
$$p(a,b) = \sum_{c,d} p(a,b,c,d) = p(a)p(b)\sum_{c} p(c|a,b) = p(a)p(b)$$

The problem

(Bonus. Not graded). Suppose now that we observe d. Show that in general $a \perp \!\!\! \perp b | d$.



The problem



We want to show that in general $a \not\perp\!\!\!\!\perp b|d$. First note that if we would have had to show that:

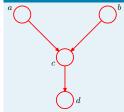
p is a distribution whose pdf factorizes according to the graph structure

$$\Rightarrow a \perp \!\!\!\perp b|d$$

this would mean that we would have to show that

for any distribution p, (p respects the graph $\Rightarrow p(a,b|d) = p(a|d)p(b|d)$).

The problem

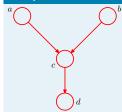


Thus, to show that the above does not hold, we have to show its negation which is defined as:

there exists at least one distribution such that

(p respects the graph AND the conditional independance does not hold). where the conditional independance does not hold means the observation of d makes the variable a and b dependent.

The problem

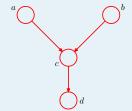


A class of such distribution is obtained by starting by using a distribution that follows the graph assumption (i.e. is defined by the local probability distributions), and for which we have (with c and d taking value in the same space),

$$p(d|c) = \delta_{c-d}$$
.

where δ_x is equal to 1 when x=0, and 0 otherwise. In other words, the probability of any (a,b,c,d) is zero whenever c and d are not the same. For such distributions, observing d is thus equivalent to observing c, which we know from the course makes the variables a and b dependent.

More gneral case



Intuitively, what is happening in the more general case is that observing d provides information about the variable c (for instance, in the first exercice, look from the numerical values of p(A|U) that the boss being angry bias the fact that the worker is underperforming towards true), or in other words, provides a soft evidence about the c value.

Outline

Exercice 1 : Party Anima

Exercice 2 : Asbestos

Exercice 3: Conditional independance

Exercice 4: Chest Clinic Network

Exercice 5 : Gaussian mean

This network concerns the diagnosis of lung disease (tuberculosis, lung cancer, or both, or neither). In this model, a visit to Asia is assumed to increase the probability of tuberculosis.

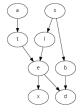
The involved variables are:

- x: positive X-ray
- d: Dyspnea (shortness of breath)
- e: either tuberculosis or lung cancer
- t: Tuberculosis
- I: Lung cancer
- b: Bronchitis
- a: visit to Asia
- s: Smoker

According to this model, the distribution factorizes as:

$$p(x, d, e, t, l, b, a, s) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(d|b, e)p(e|t, l)p(x|e)$$

$$p(x, d, e, t, l, b, a, s) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(d|b, e)p(e|t, l)p(x|e)$$

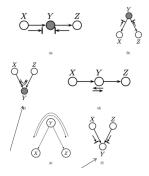


Next slides: figures shows in bold circles the nodes we are studying the conditional independance of - in blue: conditional variable (i.e. that are observed).

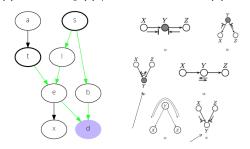
Note that in the questions, there could be an issue: when speaking about tuberculosis, we could wonder whether we should consider only the t node, or both the t and e nodes (since e is also characteristic of tuberculosis). Whichever you consider, the CI will be the same given their graph dependencies, so in practice, you may consider only the node t. The same applies for the lung cancer.

Reminder from the course: A path is blocked if two nodes on the path get independent, i.e. if it includes a node such that

- the arrows on the path meet head-to-tail at the node AND the node is in C
- the arrows on the path meet tail-to-tail at the node AND the node is in C
- the arrows meet head-to-head at the node AND neither the node nor any of its descendants is in C



a) tuberculosis (t) $\perp \!\!\! \perp$ smoking (s) | shortness of breath (d) ?

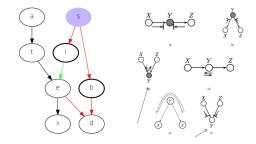


ANSWER: NOT TRUE.

There are two paths from node t to node s, none of them are blocking the path.

- For t-e-l-s, in e the arrow meet head-to-head and the observation d is in the descendant so does not bloc; in I, the arrow meets head-to-tail, not in d, so the path is not blocked.
- For t-e-d-b-s, e does not block, then head-to-head in d (not blocked), then in b, head-to-tail not in d. So this second path is not blocked.

b) lung cancer (I) ⊥⊥ bronchitis (b) | smoking (s) ?

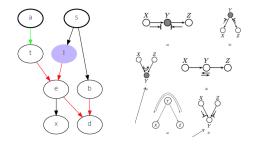


ANSWER: TRUE.

There are two paths from I to b.

- For I-s-b, we have a tail-to-tail in s, then it is blocked.
- For l-e-d-b, the path is blocked in d (head-to-head and node or descendant not in s).

c) visit to Asia (a) \perp smoking (s) | lung cancer (l) ?

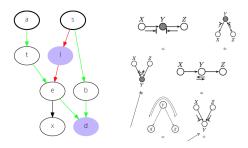


ANSWER: TRUE.

Two paths from a to s.

- a-t-e-l-s is blocked in e which is head-to-head with no descendent observed.
- Path a-t-e-d-b-s is blocked in d (head-to-head, and d not observed).

d) visit to Asia (a) ⊥⊥ smoking (s) | lung cancer (l), shortness of breath (d)



ANSWER: NOT TRUE.

There is a path which is not blocked (i.e. for which there is variable dependencies all along the chain). We have the same paths as in c).

Path a-t-e-d-b-s is not blocked: in t, e, and b, we have tail-to-head nodes with middle node not observed, so the path is not blocked. In d, head-to-head node, with d observed, so the path is not blocked.

Outline

Exercice 1 : Party Anima

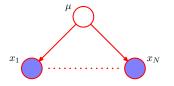
Exercice 2 : Asbestos

Exercice 3 : Conditional independance

Exercice 4 : Chest Clinic Network

Exercice 5: Gaussian mean

The problem



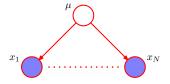
Consider the graphical model above, characterized by the following generative process:

$$\mu \sim \mathcal{N}(\mu|\mu_0,\Sigma_0)$$
 (1)

$$x_i \sim \mathcal{N}(x|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \forall i$$
 (2)

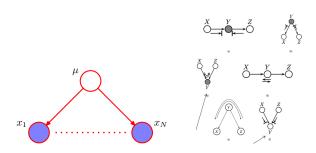
and let us denote $\mathcal{X} = \{x_i, i = 1 \dots N\}$, and $\Theta = (\mu_0, \Sigma_0, \Sigma)$.

The problem



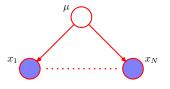
Using d-separation, state whether $x_i \perp \!\!\! \perp x_j \mid \boldsymbol{\mu}$ holds true or not.

Similarly, do we have $x_i \perp \!\!\! \perp x_j$ in general?



- When the mean is observed/given, we have a tail-to-tail node that is observed, so the x observations are independent, i.e. $x_i \perp \!\!\! \perp x_j \mid \mu$.
- When the mean is not given, we have a tail-to-tail node that is not observed, and thus the observations are not independent.

Without computation and exploiting the course, state what is the type of the distribution of $p(\mu|\mathcal{X})$?



cf. course: as all involved CPD are gaussians, then any distribution on the graph is gaussian, including $p(\mu|\mathcal{X})$.

consider an arbitrary DAG over D variables, where each local CPD is expressed as a linear gaussian distribution. Then, the distribution over all components is a Gaussian.

(slide 45)

Suppose now that the x are one dimensionnal, so that $\mu_0 = \mu_0$, $\Sigma_0 = \sigma_0$, $\Sigma = \sigma$. Compute analytically the parameters defining the distribution

$$p(\mu \mid \mathcal{X}) = p(\mu \mid x_1, \dots, x_N)$$

The type of the distribution of $\mu|\mathcal{X}$ is:

$$p(\mu|\mathcal{X}) = \frac{p(\mu,\mathcal{X})}{p(\mathcal{X})}$$
 Bayes' law
$$= \frac{p(\mu) \prod_n p(x_n|\mu)}{\prod_n p(x_n)}$$
 From the graph

 $\prod_n p(x_n)$ is constant with respect to μ so

$$p(\mu|\mathcal{X}) \varpropto p(\mu) \prod_n p(x_n|\mu)$$

so $p(\mu|\mathcal{X})$ is a gaussian distribution as a product of gaussian distributions.

We have

$$\begin{split} \rho(\mu) \prod_{n} \rho(x_{n}|\mu) &= \frac{1}{\sqrt{2\pi\sigma_{0}^{2}}} \exp\left[-\frac{1}{2\sigma_{0}}(\mu - \mu_{0})^{2}\right] \prod_{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{1}{2\sigma}(x_{i} - \mu)^{2}\right] \\ &= \frac{1}{\sqrt{2\pi\sigma_{0}^{2}}} \left[\frac{1}{\sqrt{2\pi\sigma^{2}}}\right]^{N} \exp\left[-\frac{1}{2\sigma_{0}}(\mu - \mu_{0})^{2} - \sum_{n} \frac{1}{2\sigma}(x_{i} - \mu)^{2}\right] \end{split}$$

We can find the mean of this distribution f by solving

$$\frac{\partial f}{\partial \mu} = 0$$

Since $(ke^{u(t)}))' = ku'(t)e^{u(t)}$, solving $(ke^{u(t)}))' = 0$ is equivalent to solving u'(t) = 0. So here, we solve

$$\left| \frac{\partial}{\partial \mu} \left| -\frac{1}{2\sigma_0} (\mu - \mu_0)^2 - \sum_n \frac{1}{2\sigma} (x_i - \mu)^2 \right| \right| = 0$$

We have

$$-\frac{1}{\sigma_0}(\mu-\mu_0)+\frac{1}{\sigma}\sum_n(x_i-\mu)=0$$

which lead to

$$\mu = \frac{\sigma_0 \sum_n x_i + \sigma \mu_0}{\sigma + N\sigma_0}$$

Thank you for your attention!

Dr. Jean Marc Odobez (www.idiap.ch/∼odobez) Idiap Research Institute, Martigny, Switzerland

