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Using enumerate in Python

To compute the value of a polynom given a list of coefficients ci ,

P(x) =
D∑
i=0

cix
i

we can use an explicit counter:

for i in range(len(coefficients) + 1):
y += coefficients[i]*x**i

Or, we can use an additional counter:

i = 0
for c in coefficients:

y += c*x**i
i += 1

enumerate does both:

for i, c in enumerate(coefficients):
y += c*x**i
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Python unpacking

Unpacking consists in extracting values from a tuple/list into single variables.

point = (2, 1, 3) # A point in 3d
x, y, z = point
print(f"{x=} {y=} {z=}")

prints

x=2 y=1 z=3

This makes code more readable:

points = [ (2, 1, 3), (7, 2, 1), (4, 6, 5) ]

for x, y, z in points:
# Do something with x, y, and z

instead of

for i in range(len(points)):
norm(points[i][0], points[i][1], points[i][2])
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Single element tuples require a comma

If you do

x = 2 * (1 + 2)

it is obvious that one is not creating a tuple.

Same in

x = 1 * (1 + 2)

which could be written as:

x = (1 + 2)

Python makes the difference between a math operation and the instantiating of a
tuple with an extra comma.

mean = (0.1307, )
mean = 0.1307, # Also works
# mean = (0.1307) # This is a float
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Object-oriented programming

A class is a template to create objects encapsulating data (attributes) and functions
(methods) related to a specific concept.

class Person:
def __init__(self, name):

"""Constructor"""
self.name = name

def introduce(self):
"""Print the name"""
print("My name is", self.name)

We can create an instance of class Person and call its functions:

p = Person("James")
p.introduce()

– A class is a type (e.g. type list, dict, Person)

– An object (or class instance) is a variable

– A method is a function of a class
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Static methods for a class in Python

A static function is defined within a class and does not operate on the
instance-specific data. It is usually used for utility functions related to the class.

class Person:
def __init__(self, name, birth_year):

self.name = name
self.birth_year = birth_year

@staticmethod
def calculate_age(birth_year):

current_year = year = datetime.datetime.today().year
age = current_year - birth_year
return age

def introduce(self):
print(

"My name is", self.name,
"and I am", Person.calculate_age(self.birth_year)

)

calculate_age is a static method: it belongs to the class itself, and not to the object.

age = Person.calculate_age(2000) # Function called on the class
p. = Person("James", 2000)
p.introduce() # Function called on the object
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Class inheritance

In object-oriented programming, class inheritance allows to create new types (the
derived class or child class) from an existing one (the base class or the parent class).

Inheritance allows the derived class to:

– reuse the code of the parent class,

– modify the behaviour of the methods of the parent class,

– add new functionalities.
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Example of class inheritance I

We start from a base class

class Person:
def __init__(self, name):

self.name = name

def introduce(self):
return f"My name is {self.name}"

which we can use

p = Person("James")
print(p.introduce())

9 / 18



Example of class inheritance II

We can derive a new class

class Student(Person):
def __init__(self, name, student_id):

super().__init__(name)
self.student_id = student_id

Here, class Student inherits method introduce.

s = Student("Jane", 123456)
print(s.introduce())

which prints

My name is Jane
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Example of class inheritance III

We can also override an existing method as well as adding new methods to the class:

class Student(Person):
def __init__(self, name, student_id):

super().__init__(name)
self.student_id = student_id

def introduce(self):
# We can the parent method a well: super().introduce()
return f"I am {self.name} and my ID is {self.student_id}"

def study(self, subject):
return f"I study {subject}"

Now

s = Student("Jane", 123456)
print(s.introduce())
print(s.study("history"))

now prints

I am Jane and my ID is 123456
I study history
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Gradient descent
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Optimization

In many optimization problems, we want to find the best set of values according to
some criterion. This is usually framed as optimizing an objective function.

In machine learning, we want to find the best set of parameters for a model. (linear
regression, logistic regression, neural network, etc.)

For instance, we would like to find the best line (slope and intercept) that best fit the
data points, i.e. to minimize the distance between the points and their fitted value on
the line.
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Gradient descent
In machine learning, we define a loss function, which reflects how bad a model is at its
task.

– MSE loss: the distance between a predicted value and the target value,

– cross-entropy loss: used for classification

Many optimization problems do not have an analytical solution that can be easily
computed.

However, starting from parameters randomly selected, gradient descent iteratively
updates the parameters of the model to decrease the loss:

wt+1 = wt − η∇L(wt)

w

bL
o
ss

Source : Alexander Amini, Daniela Rus, Massachusetts Institute of Technology, adapted by M. Atarod/Science
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Gradient descent variants in 2d

The goal of the lab was to study different gradient descent algorithms on a 2d
example, here the Rosenbrock function:

f (x , y) = (1− x)2 + 2(y − x2)2
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z = f (x , y) loss: L =

∑
n ℓ(f (xn;w), yn)

exact gradient computation estimation on a mini-batch of samples
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Comparison of gradient descent methods

Although it was not clear from this 2d example that Adam and momentum improve
over standard gradient descent, for large neural networks, it is usual the case.
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How to choose the initial learning rate

The loss computed over several training samples is an approximation of the expected
risk, and reflects how bad the model is at its task: we want it as small as possible.

Therefore, we try to find a learning rate which decreases the loss as fast as possible,
without diverging.

for optim in "sgd" "adam"
for seed in 10 11 12

for lr in 0.0005 0.001 0.005 0.01 0.05 0.1 0.5
run_experiment(method=optim, seed=seed, lr=lr)
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Changing the learning rate while training

A large learning rate decreases the loss a lot at the beginning but may not be able to
“enter” narrow valleys. The learning rate can be decreased at some point, when the
loss or the accuracy are reaching a plateau.
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