
EE613: Lab on finetuning with PyTorch

Olivier Canévet

December 22, 2023

1 / 5



Convolutional Neural Networks

2 / 5



Finetuning a network in PyTorch

Finetuning a network consists of starting from a pre-trained network and continuing
the training on a slightly different task. It is useful when training on small data sets.

Some layers may or may not be frozen.

model = models.alexnet(weights="IMAGENET1K_V1")

for param in model.features.parameters ():
param.requires_grad_(False)

model.classifier [1] = nn.Linear (9216 , 128)
model.classifier [4] = nn.Linear (128, 128)
model.classifier [6] = nn.Linear (128, 10)

When training from scratch, we do not freeze the layers, because we want them to
learn.

Another example with ResNet:

model = torchvision.models.resnet34(weights="DEFAULT")
model.fc = nn.Linear (512, num_classes)

3 / 5



Smart weigh scale

The user interface would look like this:

– The customer puts the vegetable on the machine,

– The 3 highest confident results are displayed,

– A button to access the full list of items to select the right one if not in top-3.

4 / 5



Lab 6: Train and evaluate a smart weigh scale

Collect realistic data

Add more image distortions.

Same training procedure as in the lab: use pre-trained model, multiple epochs,
monitor learning rate, try several architectures, etc.

Evaluate the classifier with the top-k error (in PyTorch, torch.topk).

Perform constant data collection and annotation: use the customer choices as labeled
data to enrich the training set, and training store-specific classifiers (or even
machine-specific within the same store).

5 / 5


	Convolutional Neural Networks

