
EE613: Lab on CNN with PyTorch

Olivier Canévet

December 22, 2023

1 / 9



Convolutional Neural Networks

2 / 9



Convolutional Neural Network

A convolution consists in computing sequentially a dot product between a signal of
size n and a filter of size f . The input signal is padded on both sides with p elements.
The filter is moved along the signal with a stride of s.

The convolved signal has the following number of elements:⌊
n + 2p − f

s

⌋
+ 1

where ⌊ ⌋ denote the ”floor” operation: ⌊2.3⌋ = ⌊2.8⌋ = 2.

https://github.com/vdumoulin/conv_arithmetic

3 / 9

https://github.com/vdumoulin/conv_arithmetic


Activation map size in LeNet5

class LeNet5(nn.Module):
def __init__(self):

super().__init__ ()
self.conv1 = nn.Conv2d(1, 10, 5, 1, 0)
self.conv2 = nn.Conv2d (10, 20, 5, 1, 0)
self.fc1 = nn.Linear (20*4*4 , 100)
self.fc2 = nn.Linear (100, 10)

def forward(self , x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2, 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2, 2)
x = x.view(-1, 4*4* self.n2)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = F.log_softmax(x, dim =1)
return x

Block name Input size Output size

Convolution by 10 filters of size 5× 5 1× 28× 28 10× 24× 24

ReLU (component wise operation) 10× 24× 24 10× 24× 24

2× 2 Max pooling with a stride of 2 10× 24× 24 10× 12× 12

Convolution by 20 filters of size 5× 5 10× 12× 12 20× 8× 8

ReLU (component wise operation) 20× 8× 8 20× 8× 8

2× 2 Max pooling with a stride of 2 20× 8× 8 20× 4× 4

4 / 9



A CNN on CIFAR10

CIFAR10 is a dataset of RGB images of size 32× 32. Here is a proposed network with
3 convolutional layers and 2 hidden layers for the MLP classifier:

class DeepLeNet(nn.Module):
def __init__(self):

super().__init__ ()
self.conv1 = nn.Conv2d(3, 32, 5, 1, 0) # 32 -> 28
self.conv2 = nn.Conv2d (32, 64, 3, 1, 0) # 14 -> 12
self.conv3 = nn.Conv2d (64, 128, 3, 1, 0) # 6 -> 4
self.fc1 = nn.Linear (2*2*128 , 200)
self.fc2 = nn.Linear (200, 200)
self.fc3 = nn.Linear (200, 10)

def forward(self , x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2, 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2, 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2, 2)
x = x.view(x.size (0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = F.log_softmax(x, dim =1)
return x

5 / 9



Hardware

6 / 9



Hardware

Graphics processing units (GPU) are very efficient at performing linear algebra
operations such as matrix-matrix multiplications, 3d rendering, video encoding and
decoding.

GPUs consist of a large number of computation units. The computation is distributed
among all the GPU cores which makes it faster than a CPU. However, a GPU have a
larger memory (RAM).

https://researchcomputing.princeton.edu/support/knowledge-base/gpu-computing

7 / 9

https://researchcomputing.princeton.edu/support/knowledge-base/gpu-computing


Efficient data transfert between CPU and GPU

To prevent the CPU to be idle when the GPU is processing the minibatch, and the
GPU to wait for the CPU to prepare the next minibatch, frameworks make the CPU
prepare minibatch N + 1 when the GPU is processing minibatch N:

In PyTorch, this is handled automatically with the following:

1 train_loader = torch.utils.data.DataLoader(
2 train_set , batch_size =100, shuffle=True ,
3 num_workers =8, pin_memory=True
4 )

https://aws.amazon.com/blogs/machine-learning/

best-practices-for-tensorflow-1-x-acceleration-training-on-amazon-sagemaker/

8 / 9

https://aws.amazon.com/blogs/machine-learning/best-practices-for-tensorflow-1-x-acceleration-training-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/best-practices-for-tensorflow-1-x-acceleration-training-on-amazon-sagemaker/


Using the GPU with PyTorch

By default, the tensors are created on the CPU.

x = torch.rand(10, 3, 32, 32)

The tensor can be moved to the (NVIDIA) GPU with:

x = x.to("cuda")

Or if you have an Apple M1 chip (with unified memory):

x = x.to("mps")

Even better is to create a PyTorch device to avoid hard coding:

device = torch.device(
"cuda" if torch.cuda.is_available () else "cpu"

)
x = x.to(device)

The tensor can be moved back to the CPU with

x = x.to("cpu")

Models (inheriting from nn.Module) are moved in-place:

model.to(device)

9 / 9


	Convolutional Neural Networks
	Hardware

