EE613: Lab on CNN with PyTorch

Olivier Canévet

December 22, 2023

Convolutional Neural Networks

2/9

Convolutional Neural Network

A convolution consists in computing sequentially a dot product between a signal of
size n and a filter of size f. The input signal is padded on both sides with p elements.
The filter is moved along the signal with a stride of s.

The convolved signal has the following number of elements:
2p—f
{n—i— P J 41
s

where | | denote the "floor” operation: |2.3| = |2.8] = 2.

https://github.com/vdumoulin/conv_arithmetic
3/9

https://github.com/vdumoulin/conv_arithmetic

Activation map size in LeNetb

class LeNet5(nn.Module):
def __init__(self):
super () . __init__ ()

self.convl = nn.Conv2d(1, 10,

5, 1, 0)

self.conv2 = nn.Conv2d (10, 20, 5, 1, 0)

self.fcl = nn.Linear (20%4x%4,
self.fc2

def forward(self, x):

nn.Linear (100, 10)

x = F.max_pool2d(F.relu(self.
x = F.max_pool2d(F.relu(self.
x = x.view(-1, 4*4*self.n2)

x = F.relu(self.fcl1(x))

x = self.fc2(x)

x = F.log_softmax(x, dim=1)
return x

100)

convi(x)), 2, 2)
conv2(x)), 2, 2)

Block name Input size Output size
Convolution by 10 filters of size 5 x 5 1x 28 x 28 10 X 24 x 24
ReLU (component wise operation) 10 x 24 x24 10 x 24 x 24
2 X 2 Max pooling with a stride of 2 10X 24 x24 10x12x12
Convolution by 20 filters of size 5 x5 10 x 12 x 12 20 x 8 x 8
ReLU (component wise operation) 20 x 8x 8 20 x 8x 8
2 x 2 Max pooling with a stride of 2 20x 8 x 8 20x 4 x 4

4/9

A CNN on CIFAR10

CIFAR1O0 is a dataset of RGB images of size 32 x 32. Here is a proposed network with
3 convolutional layers and 2 hidden layers for the MLP classifier:

class DeepLeNet (nn.Module):
def __init__(self):

super () . __init__()
self.convl = nn.Conv2d(3, 32, 5, 1, 0) # 32 -> 28
self.conv2 = nn.Conv2d (32, 64, 3, 1, 0) # 14 -> 12
self.conv3 = nn.Conv2d (64, 128, 3, 1, 0) # 6 -> 4
self.fcl = nn.Linear (2*x2%128, 200)
self.fc2 = nn.Linear (200, 200)
self.fc3 = nn.Linear (200, 10)

orward (self, x):

= F.max_pool2d(F.relu(self.convi(x)), 2, 2)
= F.max_pool2d(F.relu(self.conv2(x)), 2, 2)
.max_pool2d (F.relu(self.conv3(x)), 2, 2)
.view(x.size (0), -1)

.relu(self.fc1(x))

= F.relu(self.fc2(x))

= self.fc3(x)

= F.log_softmax(x, dim=1)

eturn x

X T

£
X
X
X
x =
X
X
X
X
r

Hardware

6/9

Hardware

Graphics processing units (GPU) are very efficient at performing linear algebra
operations such as matrix-matrix multiplications, 3d rendering, video encoding and
decoding.

GPUs consist of a large number of computation units. The computation is distributed
among all the GPU cores which makes it faster than a CPU. However, a GPU have a
larger memory (RAM).

copy data to GPU

memory

memory copy data from GPU

cores

cores

CPU

GPU

https://researchcomputing.princeton.edu/support/knowledge-base/gpu-computing
7/9

https://researchcomputing.princeton.edu/support/knowledge-base/gpu-computing

Efficient data transfert between CPU and GPU

To prevent the CPU to be idle when the GPU is processing the minibatch, and the
GPU to wait for the CPU to prepare the next minibatch, frameworks make the CPU
prepare minibatch N + 1 when the GPU is processing minibatch N:

Batch 1 Batch 2 BatchN
CPU Data - Data Data
Processing © Processing Processing
Time
Batch 1 Batch 2 . Batch N
CPU Data Data Data Data
Processing Processing _ Processing _[NRSNMl Processing
GPU idle
Time

In PyTorch, this is handled automatically with the following:

train_loader = torch.utils.data.DataLoader (
train_set, batch_size=100, shuffle=True,
num_workers=8, pin_memory=True

AW

https://aws.amazon.com/blogs/machine-learning/
best-practices-for-tensorflow-1-x-acceleration-training-on-amazon-sagemaker/

https://aws.amazon.com/blogs/machine-learning/best-practices-for-tensorflow-1-x-acceleration-training-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/best-practices-for-tensorflow-1-x-acceleration-training-on-amazon-sagemaker/

Using the GPU with PyTorch

By default, the tensors are created on the CPU.

x = torch.rand (10, 3, 32, 32)

The tensor can be moved to the (NVIDIA) GPU with:

x = x.to("cuda")

Or if you have an Apple M1 chip (with unified memory):

x = x.to("mps")

Even better is to create a PyTorch device to avoid hard coding:

device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
3{ = x.to(device)
The tensor can be moved back to the CPU with
x = x.to("cpu")
Models (inheriting from nn.Module) are moved in-place:

model.to(device)

9/9

	Convolutional Neural Networks
	Hardware

