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in slate -space description Tls)= SI- A with Ed

and considering only Tls) we can
"

compute
" the invariant polynomials of
Tls )
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meaning that we compute the invariantpole of A .
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Equivalence throng Unimodular matrices
Unimodular matrices are square matrices non,
whose inreok are polynomialmatrices .
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. Smithtown

By elementary row operations (rap. column)
an nx n polynomial matrix Als)

can be brought to upper for lower )
triangular form .
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Definition : Elementary unimodular matrices
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Smith decomposition
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Algorithm .
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STEAL. Find the lowest degree polynomial ins
in the 1st column

do Psi EdoPk ,
tf k

Steph Bring the j thfine) (rep . column)
in the first row .

STEPI.ae polynomial division on the

element of the 1st column by dividing
them with the lowest degree entry found
in STEP / .

Pu , Is ) = Pj, 1st tr, Is )
do rn

,
1st E do Pj, Csl

~
-

O

-



" '

Repeat STEPS I -2-3 until the first
column looks like

" '

s
STEP 4 do STEPS 1-2-3 on the first row
-
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using matrices Si
, 52,53 .
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war.Steps do step, 1 to 4 with the

→ until [
"

och .

.

.

is obtained
.

'

iii.i:*
to have

for 44eyohgina.nu/ar canonical

and

first column
Tingle,TyT,
-

(hook least
order polynomial

among allelements
- of the matrix )

and brinjtofintposilim. )



Definition the resulting (equivalent'Y'tem)
diagonal matrix is called the 5mith
form of the original polynomial matrix .
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. decoupling zeros
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Zero
, poles, i-d. z .
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3.1 . I- d. Zero,
3. I consider the matrix

inputdecoupig
IT U ) i-d

.

and compute its Smith Form using the
algorithm .

collect all the zeros of the diagonal
entries in the Smith Form .

iii.* o) I → His

Ps are the input - decoupling zeros

3.2 oulput-dngz.es (o-d. Z . )
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Consider in transposed form

Perform on ft -VT) a Smith decomposition

using the algorithm to achieve

and compute the zeros of every Ii to get the
set of output- decoupling zeros i

. Yi )
3.3 input output decoupling zeros
#4-o-d. z . )

Remove the { Pi ) from (T U )
to get (T, U

, )
-

ie
. apply the unimatrices obtained
to bring the (T u) to Smith form

by inverting them using the identity
in the diagonal instead of the d 's

extend the Unimodular matrices so that

they can apply on PCs)
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TW is therefore obtained

⇒ compute the 5mith Form of IT - Vi)
and compute the zeros of the diagonal entries
of the resetting Smith- Form .

→ Lois
Remore the fi ) from the {ti )
to find the input - output decoupling
Zeros

. ( i- o-d z . ) .

{ Sit = Hit - toil

3.42 tens

Simply compute the Smith -Form of PCs)
Let the zeros of the diagonalentries of
the Smith form be { Mi )

:
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