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INVARIANTS AND CANONICAL FORMS UNDER
DYNAMIC COMPENSATION*
W. A. WOLOVICH AND P. L. FALB?

Abstract. This paper is concerned with the development of a complete abstract invariant as well as
a set of canonical forms under dynamic compensation for linear systems characterized by proper,
rational transfer matrices. More specifically, it is shown that one can always associate with any proper
rational transfer matrix, T(s), a special lower left triangular matrix, :7-(s), called the interactor. This
matrix is then shown to represent an abstract invariant under dynamic compensation which, together
with the rank of T(s), represents a complete abstract invariant. A set of canonical forms under dynamic
compensation is also developed along with appropriate dynamic compensation.

1. Introduction, The primary purpose of this paper will be to exhibit
invariants and a set of canonical forms for linear dynamical systems which are
equivalent under dynamic compensation. Critical to this purpose will be the
introduction of a special lower triangular matrix T(S) associated with any T(s) in
S and called the "interactor" of T. The role of the interactor in resolving the
closely allied questions of exact model matching and inverse systems is also
displayed.

Section 2 contains a precise description of equivalence under dynamic
compensation as well as some elementary properties of this notion. The interactor
T(S) is introduced in 3 and is shown to be an abstract invariant under dynamic
compensation in 4. The main results on invariants and canonical forms are also
established in 4 and some final observations are made in 5.

2. Dynamic compensation. We begin with some definitions.
DZVINITION 2.1. Let S be the set of all proper (p m) transfer matrices of full

rank r( min {p, m}) with first r rows, T(s), of rank r. Let S/, S_ be the subsets of
S given by

S+={T(s)SIT(s) ispm withm-p_->0},
S_={T(s)SIT(s) ispm withm-p<0and Tm(s)ofrankm},

respectively.
We observe that S+ f3 S_ and that S/ U S_ S.
DZFINITION 2.2. Let T(s) be a given p rn element of S. Then, any m k

transfer matrix T(s) in S is called a dynamic compensator of T(s).
The operation of T(s) can be represented in "open loop" form by the block

diagram of Fig. 1, where y(s) T(s) u(s) represents the (Laplace transform of the)
zero state dynamical behavior of the given system and u(s) T(s) v(s) that of the
compensator.

Since T(s)T (s) is again a proper transfer matrix, it is readily shown that T (s)
can be represented in terms of input dynamics and state feedback [1], [2]. More
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FIG.

precisely, if T(s)= R (s)P-l(s) with R (s) and P(s) relatively right prime polyno-
mial matrices [3], then there are polynomial matrices F(s), G(s) and L(s) such
that Tc(s)=P(s)P-l(s)L(s) is proper with Pc(s)=G(s)P(s)-F(s). Thus, the
operation of Tc (s) can be represented in "closed loop" form by the block diagram
of Fig. 2, with z(s) the (Laplace transform of the) partial state of the given system,
F(s)z(s) the state feedback "part", and G(s)-IL(s) the input dynamic "part" of

FI6.2

Tc (s) (see [ 1], [2]). Knowledge of the portions of a dynamical system which remain
unaltered (or invariant) under a particular form of compensation is ultimately tied
to a number of important questions of control system analysis and synthesis such
as model matching and decoupling.

DEFINITION 2.3. If TI(s) and T2(s) are elements of S, then Tl(s) and T2(s) are
equivalent under dynamic compensation if

T(s) Tc(S) T(s),
(2.4)

T(s) Tc(s) T(s)
for some Tic(S) and T2c(S) in S.

If T(s) and T2(s) are equivalent under dynamic compensation, we write
Tl(S)EdT2(s). It is clear that Ea defines an equivalence relation on S. The main
purpose of this paper is the characterization of the orbits of this equivalence
relation by the determination of invariants and a set of canonical forms.

The following elementary observations are required because we deal with
proper transfer matrices of different dimensions.

OBSERVATION 2.5. If TI(S)EdT2(s), then Ta(s) and T2(s) have the same rank.
OBSERVATION 2.6. S/ and S_ are stable under dynamic compensation (i.e., if

T(s) S/, say, and Ta(s)EuTz(s), then T2(s) S+).
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OBSERVATION 2.7. If Tl(S) is a p m element of S_ and Tl(s)EaTE(S), then
T(s) is also a p m element of S_, and both TiC(s) and TE(S) are nonsingular.

3. The interactorsCr(s). Let T(s) be an element of S. We shall, in this section,
determine a unique nonsingular, lower left triangular polynomial matrix
associated with T(s) and called the interactor of T(s). The constructive procedure
which will be outlined is similar to that given by Silverman [4] in the case of state
space representations, although unlike Silverman’s algorithm, it does yield a
unique seT(s) for transfer matrix representations.

LEMMA 3.1. Let T(s) be an m m element of S. Then there is a unique,
nonsingular (m m), lower left triangular polynomial matrix 7.(s) of the form
(3.2)
where

(3.3) Hr(s)

(s) HT-(s) diag [srl, srm],

-1 0

h21(s) 1

_hml(S) hm2(S)
and hii(s) is divisible by s (or is zero) such that

(3.4) lim seT-(s) T(s) KT
oO

with K nonsingular.
Proof. We first prove the existence of such a set(s). It is well-known [2] that

T(s) can always be factored as the product R(s)p-l(s) with R(s), P(s) relatively
right prime polynomial matrices and P(s) column proper. Let Oi(P)= di,
1,. , m, denote the column degrees of P(s) and let Y.--1 d n. Now, det R(s) is
a nonzero polynomial of degree q (since T(s) is nonsingular) with q <- n (since T(s)
is proper). There are unique integers/zi, 1,. ., m, such that

(3.5) lim s"T(s)= z, i= 1,..., m,

where T(s) is the ith row of T(s) and - is both finite and nonzero. We define the
first row T(S)I Of T(S) by
(3.6) T(S)I.= (Sgl, 0,’’’, 0)
so that

(3.7) lim sca,(S)lT(S)= 1 Zl.

If z2 is linearly independent of :a, then we set

(3.8) seT-(s)2 (0, s’2, 0, , 0)
so that

(3.9) lim (s)2T(s)= 2 7"2"
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On the other hand, if ’2 and :1 are linearly dependent so that r2 a:l witha 0, then we let

(3.10) (s)2 s"l[(0, s", 0, , 0)-c l:T(S)d,
Where/z is the unique integer for which lim_,o (s)aT(s) is both finite and
nonzero. If is linearly independent of :, then we set

(3.11) :T(S)2 (S)2
and note that

(3.12) lim r(s)2T(s)=

is linearly independent of :1. If not, then aSCl and we let

(3.13) g(s)2 s "[(s)2-
where/z is the unique integer for which lim_,o (s)2T(s) is both finite and
nonzero. If and SOl are linearly independent, then we set :r(s)2 (s)2 and if
not, we repeat the procedure until either linear independence is obtained or
t+tz=n-q. In case/Xl+/.2=n-q, set ]’3=0, ,f, =0 and the corres-
ponding h 0. The remaining rows of :r(s) are defined recursively in an entirely
analogous manner. In other words, we obtain either (i) a matrix r(s) of the form
(3.2) such that (3.4) is satisfied or (ii) :r(s), :r(s), r _<-m, such that lim_,oo
r(s)iT(s) - with s, ., : linearly independent and 1 ]} n q. In case (ii),
we set[+ 0,. ., f, 0 and the corresponding h 0 to obtain :r(s). If r m,
then

(3.14) lim r(s)T(s)= Kroo

is nonsingular since the :i are linearly independent. If r < m, then tr(s)T(s)=
r(s)R(s)P-l(s) is a proper transfer matrix as each step produces a proper
transfer matrix. But then

(3.15)
so that

However,

(3.16)

O, (TR d <= di O (P)

i=1 i=1

degree (det sCrR) degree (det :r) degree (det R)
=n-q+q,

Note/zl +tz cannot exceed n-q as :1, are finite and nonzero.
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which implies Y’-i=l Oi(TR)--i=l i >=n. It follows that a =di and hence, that
r(s)R(s) is column proper with the same column degrees as P(s). Thus,

(3.17) lim (s)R(s)p-l(s)= gr

is nonsingular [2].
We now.prove uniqueness. Let seT-(s) Hr(s) diag [sI’, sI’] and r(.s)

/-]rr(s) diag [s’, ., s."] satisfy (3.4). Then, :rR and rR are column proper with
Oi(rR) Oi(P) O(rR). It follows [2] that

[:R][rR]-1 Hr(s) diag [s1-1, sr’-L"]/-ffAl(s),
[rR][s%R]-1= r(s) diag [s1-, s’-’"]/-ffl(s)

are both proper. Since H(s) and /rr(s) are of the form (3.3),)] =1 for i=
1,..., m. Now, both Hr(s) and /-]rr(s) are unimodular, lower left triangular
matrices with diagonal entries 1. Moreover, Hr(s)I (s)= U(s) is unimodular,
proper and satisfies lims_oo U(s)= L with L nonsingular. Since each hj(s) is
divisible by s (or is zero) and each fij(s) is divisible by s (or is zero), U(s)= I and
Hr(s) r(s). The proof of the lemma is now complete.

LEMMA 3.18. Let T(s) be a p x m element of S/ with p < m. Then there is a
unique p p matrix (s) of the form
(3.19)
where

(3.20) Hr(s)

r(s) Hr(s) diag [s’, .., s;-],

1 0 0

21(S) 1

Lhv(s) hpE(S)

and hii(s) is divisible by s (or is zero) such that

(3.21) lim (s)T(s)= Kr
---oO

with Kr of rank p.
Proof. Let T(s) R (s)e-l(s) with R (s), P(s) relatively right prime and P(s)

column proper. Then the p m matrix R (s) is of rank p and there are row vectors
rp/l," , r,, (with polynomial entries) such that

(3.22) Re(s)

R

Lr,,, J
is nonsingular and Te (s) Re (s)P-(s) is proper (i.e., is an element of S). By virtue
of Lemma 3.1, there is a e(s) of the form (3.2) such that lim_oo re(s)Te(s) Ke
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is nonsingular. Let

Xm-p m--p
(3 23) Te(S) l__--pp
where T(S) is a p X p matrix and X,j is an x/" matrix. Then T(S) is necessarily of
the form (3.19) and

(3.24) lim &(s)R(s)P-l(s)= KT
oO

with Kr of rank p. The uniqueness of SCTe (S) implies that T(S) is unique.
LEMMA 3.25. Let T(s) be a p x m e&ment of S, and let T (s) denote the

nonsingular matrix consisting of the first m rows of T(s). en there is a uniquep x p
matrix &(s) of the form

(3.26) T(S)=[’T-(S) 0 ]
where 7(s), T(s) are relatively left prime and 7e(s) is a nonsingular lower left
triangular matrix in Hermite normalform [3] with monic diagonal entries such that

(3.27) lim T(S) T(s) KT
s

with KT a constant matrix of rank m whose final p m rows are zero.
Proof. Let T(s)= R(s)P-(s) with R(s), P(s) relatively right prime. Then

(3.28) R(sl= LRp_(s)j

so that T,,(s)= R(s).P-(s). Since T(s) is nonsingular, R(s) is nonsingular. It
follows that there is a (unique) pair of polynomial matrices (s), yz(s) such that

(3.29) Rp-(s)Ra(s) y](S)yl(S),
where yl(S), y(s) are relatively left prime polynomial matrices and y2(s) is a
nonsingular lower left triangular matrix in Hermite normal form with monic
diagonal entries. However, (3.29) implies that

(3.30) e(s)R._m(S)-r(s)R(s) O.
Since (s) is unique by Lemma 3.1 and y(s)y(s) represents a unique
factorization (since the Hermite normal form of y2(s) is unique) of
Rp_(s)R(s), the matrix T(S) exists and is unique.

DEFINITION 3.31. If T(s) is an element of S, then T(S) iS called the interactor
of T(s).

We note that the interactor is defined for all proper transfer matrices in S.
We illustrate the construction of T(S) in the following two examples.

T(s)

Example 3.32. Let
1 1 1
+1 s+2 s+
0 1 1

s+3
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Then fl 1, f2=0 and :r(S)l=(S 0) so that lims_,o T(S)IT(S)=I
(1 1 1) Zl. Now, 2 (0 0 1) is linearly independent of 1 and so, r(s)2
(0 1). Thus,

s(s) o ,_oo o =K-

with Kr a constant matrix of rank 2.
Example 3.33. Let

1

T(s)= 14-11+3
1

Thenfl=l,f2=land’rl=(1 1),’2=(1 1).Sor(s)l=(S 0)and-2islinearly
dependent on :1 with 2 1. s. Thus, (s)2 s[(O s)-(s 0)] (-s s 2) and
lim_,oo -(s)2T(s)--1= (-2 -2)=-2. Sl. Since depends linearly on sex, we
continue by setting (s)2 s[(-s s 2) + 2(s 0)] (-s 3 +2s s3). Then 22
(6 8) is not linearly dependent on :1 and so,

Is 0]T(S)=
--S3+2s2

S
3

s-,oolim r(s)T(s) [ 16 81] =Kr
with Kr a constant matrix of rank 2.

4. Invariants and canonical forms. We begin with some lemmas.
LEMMA 4.1. Let T(s) be a p m element ofS/. Then there is a (not necessarily

proper) m p transfer matrix Or(s) such that (i) T(s)Or(s) Ip and (ii) Or(s)l(s)
is proper.

Proof. If p m, then let Or(s)= T-l(s). Since lims_oo r(s)T(s) Kr is non-
singular, lim_,o T-l(s)rl(s)=Kr is nonsingular. It therefore follows that
T-l(s)scl(s) is proper.

If p < m, we append m-p row vectors from the standard basis to T(s) to
obtain a proper nonsingular m m transfer matrix

T(s)](4.2) Te(s)= E

Then

0_](4.3) sere (s) r(s)
Om--p,p I ’m--p

Let Or(s) be the m xp transfer matrix consisting of the first p columns of T-el(s).
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Then T(S)OT(S)= Ip. Since Te-e l(s):Fel(S) is proper and

(4.4)
Te-el(S) lOT(S) *-m,m-p],

--1 [1(S) Op,m--p]r" (S) Im-p ]’Om-p,p

it follows that OT(S)-I(s) is proper.
THEOREM 4.5. Let Tl(S) be a p x m element of S/ and let T.(s) be a p x q

element of S+. Then there is an element T(s) of S such that

(4.6) Tl(s)T(s) Tz(s)

if and only if rl(s):l(s) is proper.
erooL If :r(s):)l(s is proper, then scrl (s) T2(s) [:r(s):(s)][r,_(s T2(s)] is

proper. Hence, T(s)=Or(s)T2(s)=[Or(s)r(s)][r(s)T2(s)] is proper. But
Tl(s)T(s) [Tl(S)OTl(S)]T:z(s) IpT2(s) T2(s).

On the other hand, if there is an element T(s) of S such that Tl(s)T(s)
-1T2(s), then T(S)T(s)=[Tl(S)Tl(s)]T(s) is proper. But T(S)T2(S)=

T(S)Iprl(s)=T(S)[T(S)OT2(S)]rl(s)=[T,(S)T(s)][OT2(S)rl(s)] is then a
proper transfer matrix.

It is of interest to note that Theorem 4.5 represents a direct resolution to the
question of existence of solutions to the well-known model matching problem,
which has recently been expanded somewhat and termed the "minimal design
problem".

COROLLARY 4.7. SeT(S) is an abstract invariant for Ed on S+.
Proof. Suppose that Tl(s)EaTz(s) with Tl(S) S+ (hence, by Observation 2.6,

-1TE(S) 6 S+). Then Theorem 4.5 implies that both TI(S)r(S) and :T.(S):T (S) are
proper p p transfer matrices. In view of the uniqueness part of the proof of
Lemma 3.1, it follows that s%(s)=

LEMMA 4.8. The invariant T(S) is complete on S+.
Proof. Let Tl(S) and TE(S) be elements of S+ such that SCTI(S) SCT(S). If G is a

constant m p matrix such that SCTG is nonsingular, then T(S)TI(s)G is a p xp
element of S with lims_,oo TI(s)TI(s)G TG nonsingular. Thus,
[T(s)TI(s)G]-1 is in S and so is

(4.9) Tic(S) G[75(s)TI(s)G]-1T2(S)T2(s).
Since T(S)= T(S), Tic(s)= G[TI(s)G]-ITg.(s) and

(4.10) TI(S) Tlc(S) [TI(s)G][TI(s)G]-IT2(s) Z2(s).

Similarly, there is a Tec (s) is S with T(s)T2 (s) Tl(S) and so, TI(s)EdT2(s).
We note that Theorem 4.5 has a number of interesting consequences, such as

Corollary 4.7, as well as the following corollaries.
COROLLARY 4.11. Let T(s) be an element of S/. Then T(s) has a proper right

inverse Tri (S if and only if T(S L
Proof. T(s)Tri(S)--I if and only if :T(S)sC)-(S) is proper. But i(s)=Ip and

seT(s) is proper if and only if SeT(S)= I.
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COROLLARY 4.12. Let T(s) be an element of S_. Then T(s) has a proper left
inverse if and only if w’ (S) I (where T’(s) is the transpose of T(s)).

We return now to our study of invariants and canonical forms.
DEFINITION 4.13. If T(s) S, let pr denote the rank of T(s), and let S_, q

{T(s)S_lPw--q}.
LEMMA 4.14. T(S is an abstract invariant ]:or Ed on S_.
Proof. Suppose that Tl(S)EdT2(s) with T(s), T2(s) in S_. Then, clearly,

T(s)EdT(s) and so, by Corollary 4.7, T,(S)=T,(S).
By virtue of Observation 2.7, since [-72(s),722(s)]T(s)Tl(S)=

[-7(s), 72(s)]T2(s) O, we have

(4.15) -721(s)R1 (s) + 722(s)Rlp- (s) 0.

But then 7](s)72(s)= 7(S)7l(S) are both relatively left prime factorizations
of the same transfer matrix with both 22(s) and 72(s) lower left triangular
matrices in (unique) Hermite normal form with monic diagonal entries. Thus,
Y22(S) Yl2(S) and Tx(S)= T2(S).

LEMMA 4.16. T(S) is complete on S_, q.
Proof. Let Tl(S) and Tz(s) be elements of S_, q such that T(S) T(S). en

T,(S) T, (S) and
-1T,(s)=[T,(s)Ta(s)] [T,(s)Tg(S)]

(4.17) (s)r2q(s)
is an element of S. But

T,(S)TI(s)T,c(s)= [T.(S)Tlq(S)]0 (s)Tq(s)

[’T;(S)] T2o(S

(4. 8) (s)T(s)= &, (s)T(s)

and so, Tl(S)Tl(S)= Tz(s). Similarly, there is a T(s) in S with T2(s)Tz(s)=
Tl(S) and so, T(s)EaT2(s). We now state the main result of this paper.

THZORM 4.19. Let be the function on S given by

(4.20) (T(s)) (o, &(S)).

en is a complete abstract invariantfor equivalence under dynamic compensa-
tion.

Proof. By virtue of Observation 2.5, Corollary 4.7 and Lemma 4.14, is an
invariant.

As for the completeness of , it will be sufficient in view of Lemmas 4.8 and
4.16 to show that if (Ta(s))= (Tz(s)), then either Ta(s) and Tz(s) are in S+ or
Tl(S) and Tz(s) are in S_. Suppose that O(Tl(S))= (Tz(s)) and that (say) Tl(S) isa
pl x ma element of S+ and Te(s) is a P2 x m2 element of S_. enPT Pl ma and
PT m2 <P2. But Pl mz <pz and so the pax pa matrix T(S) could not equal the
pz x p2 matrix T(S). Thus, the theorem is proved.
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It is important to note that this theorem establishes the fact that any two
dynamical systems (with transfer matrices in $) are equivalent under dynamic
compensation if and only if their transfer matrices have equal rank and their
interactors are equal.

DEFINITION 4.21. A subset C of S is called a setofcanonicalformsforS under
Ea if, for each T(s) in S, there is a unique CT(s) in C with T(s)EdCT(s).

Let C/ {rl(s)lr(s) S+} and

r(s)C_= 7"-m<S7";,(S).S- 17"ssS-.

We then have the following theorem.
TH.OXZM 4.22. If C C+ (.J C_, then C is a set of canonicalforms [or S under

E.
Proof. If T(s) S+, we set

To(s) G[r(s)T(s)G]-1,
where G is any mp constant matrix such that :TG is nonsingular. Then
T(s)T(s)=r(s) and T(s)=r(s)T(s)- so that T(s)Ear(s)-.

If T(s S_, we set

Tc(s) T(s)rm(S)
so that T(s)Tc(s)= CT(S) and T(s)= Cr(s)Tc(s)- (i.e. T(s)EaCT(S)).

Example 4.23. Let T(s) be the element of S given by
1

s+2

2
s+3

T(s)
1

(s +:Z)(s +3)
2s+7

(s+2)(s +3)

and let T.(s) be the element of S given by
1

s+l

s2+6s+7
(s + )(s + 3)

T2(s)
s+4

(s + 1)(s + 3)
3s+10

(s + 1)(s + 3)

s+l
s+3

1
s+3

1
s+3

1
s+l

1
s+l
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Are Tl(S) and T2(s) equivalent under dynamic compensation? Since both Tl(S)
and T2(s) are of rank 2, we need only examine :TI(S) and SCT2(S). Since

and

1 0

-,oo 0 2 s+l 0
+3 s

1
0

s-,oo 0 1 s2+6s+7 1

we have :rl,.(s) T2,.(S). To determine the remaining rows of r(s) and scr(s),
we note that

Tl(S)=[Rll(s)]
[R12(s)j

P-I(s)’

[-R22(s Pa(s),

where

1 s+l’ R12(s)-- 2 -1 s+3

and

s+3R21(S)
S
2 +6s + 7 s+l 3s+10 1

P2(s) [(s + 1)(s0 + 3)

respectively. Thus,

Rz(s)R-(s

1 1
s+l s+
2s+l 1
s+l s+

(8)11(8),

R2z(s)R(s)
1 1

s+l s+
2s+1 1
s+l s+

"y-g(S)’Y21(S),



INVARIANTS AND CANONICAL FORMS 1007

where

T12(S)= T22(s)= [s + l ]
[-11]T(s)= Ta(s)= 2 0

and

(s) (s)

In other words, TI(S)EaTa(s).

s 0 0 0

1 0

-1 s+l

0 -1

The uniquea dynamic compensator, Tic (s), which equates the two systems is
now given by (4.17), i.e.,

Tic(S)-- Tl(S) Taq(s)
s+2 0
+1
+3 s+3
+1 s

and Crl(s)= Cr2(s), the canonical form for both Tl(s) and Ta(s) is given by

c,(s)= C(s)= -1
S2+S
2s+l
$2+3S

s+l

1
s+l

5. Concluding remarks. We have now exhibited a complete abstract
invariant, O(T(s))=(pr, set(s)) for transfer matrix equivalence under dynamic
compensation; i.e. we have shown that for systems characterized by full rank,
proper transfer matrices, the rank and the interactor determine equivalence under
dynamic compensation.

The relevance of this observation with respect to the question of exact model
matching and proper right inverses was also shown.

In establishing completeness, explicit expressions are obtained for the requis-
ite dynamic compensators. We further determined a set of canonical forms for the

2 One can readily establish that the dynamic compensators which equate two equivalent systems
in $_ are unique.
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class of systems considered and developed the explicit compensators which
produce the canonical forms.

Subsequent investigations will build on the results presented here, and will
employ the interactor to resolve numerous related questions; e.g. the develop-
ment of complete abstract invariants for system equivalence under state feedback
compensation, the derivation of new and direct procedures for (dynamically and
triangularly) decoupling systems via both dynamic and state feedback compensa-
tion, and more efficient resolutions to model matching via both stable and minimal
order compensation (the minimal design problem).
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