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INVARIANTS AND CANONICAL FORMS UNDER
DYNAMIC COMPENSATION*

W. A. WOLOVICH AND P. L. FALBt

Abstract. This paper is concerned with the development of a complete abstract invariant as well as
a set of canonical forms under dynamic compensation for linear systems characterized by proper,
rational transfer matrices. More specifically, it is shown that one can always associate with any proper
rational transfer matrix, T(s), a special lower left triangular matrix, £1(s), called the interactor. This
matrix is then shown to represent an abstract invariant under dynamic compensation which, together
with the rank of T(s), represents a complete abstract invariant. A set of canonical forms under dynamic
compensation is also developed along with appropriate dynamic compensation.

1. Introduction. The primary purpose of this paper will be to exhibit
invariants and a set of canonical forms for linear dynamical systems which are
equivalent under dynamic compensation. Critical to this purpose will be the
introduction of a special lower triangular matrix ér(s) associated with any T'(s) in
S and called the “interactor” of T. The role of the interactor in resolving the
closely allied questions of exact model matching and inverse systems is also
displayed.

Section 2 contains a precise description of equivalence under dynamic
compensation as well as some elementary properties of this notion. The interactor
&r(s) is introduced in § 3 and is shown to be an abstract invariant under dynamic
compensation in § 4. The main results on invariants and canonical forms are also
established in § 4 and some final observations are made in § 5.

2. Dynamic compensation. We begin with some definitions.

DEFINITION 2.1. Let S be the set of all proper (p X m) transfer matrices of full
rank r(= min {p, m}) with first r rows, T,(s), of rank r. Let S, S_ be the subsets of
S given by ‘

S.={T(s)eS|T(s) ispxm withm—p=0},
S_={T(s)e S|T(s) ispxm withm—p<0and T,(s) of rank m},

respectively.

We observe that S, NS_= & and that S, US_=S.

DEFINITION 2.2. Let T(s) be a given p X m element of S. Then, any m Xk
transfer matrix 7T,(s) in S is called a dynamic compensator of T(s).

The operation of T,(s) can be represented in “open loop” form by the block
diagram of Fig. 1, where y(s) = T(s) u(s) represents the (Laplace transform of the)
zero state dynamical behavior of the given system and u(s) = T.(s) v(s) that of the
compensator.

Since T(s)T,(s) is again a proper transfer matrix, it is readily shown that T, (s)
can be represented in terms of input dynamics and state feedback [1], [2]. More
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0(s) ————f To(s) f—pd T(s) f———— y(s)

Fi1G. 1

precisely, if T(s)=R(s)P~'(s) with R(s) and P(s) relatively right prime polyno-
mial matrices [3], then there are polynomial matrices F(s), G(s) and L(s) such
that T.(s)=P(s)P.'(s)L(s) is proper with P.(s)= G(s)P(s)—F(s). Thus, the
operation of T,(s) can be represented in “closed loop” form by the block diagram
of Fig. 2, with z(s) the (Laplace transform of the) partial state of the given system,
F(s)z(s) the state feedback “part”, and G(s) 'L(s) the input dynamic “part” of

s + s . z(s V(s
v(s) L(S) ‘G*I(S) u()vpl(s) (s) R(S)‘)()

4

F(s) |

FI1G.2

T.(s) (see [1],[2]). Knowledge of the portions of a dynamical system which remain
unaltered (or invariant) under a particular form of compensation is ultimately tied
to a number of important questions of control system analysis and synthesis such
as model matching and decoupling.

DEerFNITION 2.3. If Ty (s) and T,(s) are elements of S, then Ty(s) and T,(s) are
equivalent under dynamic compensation if

Ti(s) Ty (s) = Tx(s),
T,(s) T (s) = Ty(s)

for some Ti.(s) and T,.(s) in S.

If Ty(s) and T»(s) are equivalent under dynamic compensation, we write
T1(s)E4T»(s). It is clear that E, defines an equivalence relation on S. The main
purpose of this paper is the characterization of the orbits of this equivalence
relation by the determination of invariants and a set of canonical forms.

The following elementary observations are required because we deal with
proper transfer matrices of different dimensions.

OBSERVATION 2.5. If T\ (s )E,T5(s), then Ty(s) and T5(s) have the same rank.

OBSERVATION 2.6. S, and S_ are stable under dynamic compensation (i.e., if
Ti(s)€ S, say, and Ti(s)E,T,(s), then T(s)e S.).

(2.4)
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OBSERVATION 2.7. If Ti(s) is a p X m element of S— and Ty(s)E;T,(s), then
T,(s) is also a p X m element of S_, and both T, (s) and T,.(s) are nonsingular.

3. The interactor &(s). Let T(s) be an element of S. We shall, in this section,
determine a unique nonsingular, lower left triangular polynomial matrix &r(s)
associated with T(s) and called the interactor of T(s). The constructive procedure
which will be outlined is similar to that given by Silverman [4] in the case of state
space representations, although unlike Silverman’s algorithm, it does yield a
unique &r(s) for transfer matrix representations.

LeMMA 3.1. Let T(s) be an m X m element of S. Then there is a unique,
nonsingular (m X m), lower left triangular polynomial matrix £r(s) of the form

3.2) &r(s) = Hr(s) diag[s, - - -, s'],
where
1 0 ... 0]
h21(S) 1 ... 0
(3.3) Hi(s)= |: : :
0
Lhml(s) hmZ(S) 1_

and h;(s) is divisible by s (or is zero) such that
(3.4) lim &7(s)T(s) = Kt

5§00
with K1 nonsingular.
Proof. We first prove the existence of such a &7(s). It is well-known [2] that
T (s) can always be factored as the product R (s)P~'(s) with R(s), P(s) relatively
right prime polynomial matrices and P(s) column proper. Let 9;(P)=d;, i=
1,- - -, m, denote the column degrees of P(s) and let Z:":l d; = n.Now, det R(s) is
anonzero polynomial of degree q (since T(s) is nonsingular) with g = n (since T(s)

is proper). There are unique integers u;, i =1, - - -, m, such that
(3.5 lim s“T;(s) =, i=1,---,m,
§—>00

where T;(s) is the ith row of T(s) and 7; is both finite and nonzero. We define the
first row &r(s), of &r(s) by

(3'6) §T(S)1-= (sula 0’ Tt O)
so that
(3.7 lirg) Er(hT(s)=¢& =m1.

If 7, is linearly independent of &;, then we set

(3.8) ér(s)2=(0,5",0,---,0)
so that

(3.9) }1_)!’2) ér(s) T(s) =& =1,
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On the other hand, if 7, and ¢; are linearly dependent so that 1-2=ai§1 with
ai #0, then we let

(3.10) Ex(s)2=5"(0, 5*2,0, - -, 0)—a1&r(s)1),

where w5 is the unique integer for which lim;..« EXs),T(s) = & is both finite and
nonzero. If 55 is linearly independent of &;, then we set

(3.11) érls), = E1ls),

and note that

(3.12) lim &r(s), T(s) = &;

§—>00

is linearly independent of &;. If not, then f; =i, and we let
(3.13) £1ls)o=s"Exs),— aiér(s)l,

where #% is the unique integer for which lim,_, f%(s)z T(s) = &5 is both finite and
nonzero. If £ and £, are linearly independent, then we set &r(s), = £4(s), and if
not, we repeat the procedure until either linear independence is obtained or
p,l-l—p.'2‘= n —q.1 In case u1+u'2°= n—gq, set f3=0,---,f,, =0 and the corres-
ponding h; = 0. The remaining rows of £r(s) are defined recursively in an entirely
analogous manner. In other words, we obtain either (i) a matrix &r(s) of the form
(3.2) such that (3.4) is satisfied or (ii) &r(s)y, * = * &€r(s),, r =m, such that lim,_
- &r(s);T(s) =& with &y, - - -, & linearly independent and Z; fi=n—gq. Incase (ii),
wesetf,+1=0, - -, f,, =0 and the corresponding h;; = 0 to obtain £7(s). If r =m,
then

&
&

(3.14) lim £(6)T(5)= | | =Kr
n

is nonsingular since the & are linearly independent. If r <m, then &r(s)T(s) =
Er(5)R(s)P'(s) is a proper transfer matrix as each step produces a proper
transfer matrix. But then

(3.15) 3 (¢érR)=d; =d; = 3,(P)
so that

;1 0;(érR) = ;1 1=y d=n.
However,

(3.16) degree (det £&2R) = degree (det &) = degree (det R)
' =n—q-+gq,

! Note pq + % cannot exceed n —q as &, % are finite and nonzero.
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which implies Y-, 8;,(£&rR) =Y~ d; = n. It follows that d; =d; and hence, that
&r(s)R(s) is column proper with the same column degrees as P(s). Thus,

(3.17) lim &7(s)R(s)P~'(s) = Kr
is nonsingular [2]. )

. We now !prove uniqueness. Let &7(s) = Hr(s) diqg [s/ -+, s™] and &(s)=
Hy(s) diag[s", - - -, g’ =] satisfy (3.4). Then, £&7R and &R are column proper with
9;(&érR) = 9;(P) = 0;(£7R). 1t follows [2] that

[&RIER]T " = Hy(s) diag[s"7h, - - -, P 1A7(s),
[E:R1[£R] " = Hy(s) diag [s" 7, - - -, P ImJHT (s)

are both proper. Since Hy(s) and Hy(s) are of the form (3.3), f;= f, for i =
1, -, m. Now, both Hr(s) and HT(s) are uniquular, lower left triangular
matrices with diagonal entries 1. Moreover, Hy(s)H7'(s) = U(s) is unimodular,
proper and satisfies lim,.,. U(s)=L with L nonsingular. Since each hj;(s) is
divisible by s (or is zero) and each ﬁij(s) is divisible by s (or is zero), U(s) = I and
Hy(s) = H(s). The proof of the lemma is now complete.

LemMA 3.18. Let T(s) be a p X m element of S with p<<m. Then there is a
unique p X p matrix &r(s) of the form

(3.19) &r(s) = Hr(s) diag[s”, - - -, s™],
where
1 0 ... 0
h21(S) 1 ... 0
(3.20) Hy(s)= : :
hpl(S) hpz(S) R |
and h;(s) is divisible by s (or is zero) such that
(3.21) lim &7(s)T(s) = Kr
with Kr of rank p.

Proof. Let T(s) = R(s)P~(s) with R(s), P(s) relatively right prime and P(s)
column proper. Then the p X m matrix R(s) is of rank p and there are row vectors
Ip+1, " * * > Im (With polynomial entries) such that

R

rp+l

(3.22) R.(s)=
rm

is nonsingular and T, (s) = R, (s)P"(s) is proper (i.e., is an element of S). By virtue
of Lemma 3.1, there is a &1, (s) of the form (3.2) such that lim;.,« &7, (s) T, (s) = K,



INVARIANTS AND CANONICAL FORMS 1001
is nonsingular. Let

(3.23) & (s)= | ET(8)_ _E__ _Qp,zn:p__]

where £7(s) is a p X p matrix and Xj; is an i X j matrix. Then &7(s) is necessarily of
the form (3.19) and

(3.24) lim &7(s)R(s)P"(s) = Kr
§—>00
with K7 of rank p. The uniqueness of &1, (s) implies that £r(s) is unique.
LemmMA 3.25. Let T(s) be a p Xm element of S, and let T,,(s) denote the
nonsingular matrix consisting of the first m rows of T(s). Then there is a unique p X p
matrix &é7(s) of the form

(326) trlo)=| 0 O ]

—v1(s)  va(s)
where y1(s), y2(s) are relatively left prime and v,(s) is a nonsingular lower left
triangular matrix in Hermite normal form [3] with monic diagonal entries such that

(3.27) lim &r(s)T(s) = Kr
with Kr a constant matrix of rank m whose final p —m rows are zero.
Proof. Let T(s) = R(s)P'(s) with R(s), P(s) relatively right prime. Then

R,.(s) ]
3.28 R(s)= [ m
(3.28) O
so that T,,,(s) = R,.(s)P"'(s). Since T,,(s) is nonsingular, R, (s) is nonsingular. It
follows that there is a (unique) pair of polynomial matrices y;(s), y2(s) such that

(3.29) Ry m ()R (5) =72 (8)y1(s),

where y;(s), y.(s) are relatively left prime polynomial matrices and y,(s) is a
nonsingular lower left triangular matrix in Hermite normal form with monic
diagonal entries. However, (3.29) implies that

(3.30) Y2($)Rp—m () = y1()R,n (s) = 0.

Since £r,,(s) is unique by Lemma 3.1 and vy5'(s)y;(s) represents a unique
factorization (since the Hermite normal form of +y,(s) is unique) of
Rp—m(s)R L(s), the matrix &r(s) exists and is unique.
DerFmNiTION 3.31. If T(s) is an element of S, then &;(s) is called the interactor
of T(s).
We note that the interactor is defined for all proper transfer matrices in S.
We illustrate the construction of £;(s) in the following two examples.
Example 3.32. Let

1 1 1
s+1 s+2 s+3
T&=149 1 1

s+3
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Then fi=1, fo=0 and {é7(s);=(s 0) so that lim,.o &r(s)iT(s)=¢&=
(1 1 1)=7.Now,7,=(0 0 1)islinearly independent of &; and so, &r(s), =
(0 1). Thus,

ér(s)= [0 (1)] and shjng(s)T(s) [ ! 1]=KT

with K, a constant matrix of rank 2.
Example 3.33. Let

11

s+1 s+2
=147

s+3 s+4

Thenfi=1,f,b=1land7,=(1 1),7,= (1 1).Soér(s)1=(s 0)and 73] is linearly
dependent on &; with 1Ty = 1- &.Thus, £i{(s), =s[(0 s) (s 0]=(=s*> s*and
limy 0 E1(s),T(s) = §2 =(-2 ——2) = —2 & . Since &, depends llnearly on ¢y, we
continue by setting £5(s), =s[(—=s*> s3)+2(s 0)]=(-s> +2s*> s°).Thené:=
(6 8)is not linearly dependent on ¢&; and so,

ér(s)= [ —s3+2s? .?3]’

liﬂ Er(s)T(s)= [ ; ;] =Kr

with K+ a constant matrix of rank 2.

4. Invariants and canonical forms. We begin with some lemmas.

LemMA 4.1. Let T(s) be a p X m element of S... Then there is a (not necessarily
proper) m X p transfer matrix 0r(s) such that (i) T(s)0r(s) = I, and (ii) 0r(s)ET (s)
is proper.

Proof. If p=m, then let O0r(s)= T (s). Since lim_, o &r(s)T(s) = Ky is non-
sm ular, hmww T '(s)é7'(s)=K7' is nonsingular. It therefore follows that

T '(s)£7 () is proper.

If p <m, we append m —p row vectors from the standard basis to T(s) to

obtain a proper nonsingular m X m transfer matrix

@.2) r.o=["].
Then

§T(S) 0 m—
4.3 = pm=p|
@3) er)=[ g7 ]

Let 67(s) be the m X p transfer matrix consisting of the first p columns of T2 ' (s).



INVARIANTS AND CANONICAL FORMS 1003
Then T(s)0r(s) = I,. Since T;l(s)fil(s) is proper and
T, (s)=[0r(s) *_mm-p);
gil(s) _ [f;l(s) Op,m—p] ,

Om ~p-p I, m-—p

(4.4)

it follows that 61(s)é7 (s) is proper.
THEOREM 4.5. Let Ty(s) be a p X m element of S, and let T,(s) be a pxq
element of S.. Then there is an element T(s) of S such that

(4.6) T1(s)T(s) = Ta(s)

if and only if £r,(s)€7.(s) is proper.

Proof. 1f £r,(s)£T, (s) is proper, then &r, (s) To(s) =[5, ()€, ()1 ér,(s) To(s) ] is
proper. Hence, T(s)=0r,(s)Ta(s)=[0r,(s)é7,(s))[ér,(s)Tx(s)] is proper. But
T1(s)T(s) =[T1(s)07,(s)]T>(s) = I, T>(s) = T(s).

On the other hand, if there is an element T(s) of S such that Ti(s)T(s) =
T,(s), then ¢£r,(s)To(s)=[ér,(s)Ty(s)]T(s) is proper. But &g(s )ET(s) =
Er ()T (5) = Er, () Ta(5)01,(5) €2 (5) = [€r,(5) Ta(s)[0r,(5)€ 75 (s)] is then a
proper transfer matrix.

It is of interest to note that Theorem 4.5 represents a direct resolution to the
question of existence of solutions to the well-known model matching problem,
which has recently been expanded somewhat and termed the “minimal design
problem”.

COROLLARY 4.7. &1(s) is an abstract invariant for E; on S..

Proof. Suppose that Ty(s)E,T,(s) with T;(s) € S (hence, by Observation 2.6,
T»(s) € S.). Then Theorem 4.5 implies that both &7, (s)&7.(s) and &r,(s)€74(s) are
proper p X p transfer matrices. In view of the uniqueness part of the proof of
Lemma 3.1, it follows that &r,(s) = &1,(s).

LEMMA 4.8. The invariant &é4(s) is complete on S...

Proof. Let Ty(s) and T,(s) be elements of S, such that &7,(s) = &5,(s). If Gisa
constant m X p matrix such that £z, G is nonsingular, then &r,(s)T1(s)G isap Xp
element of S with limg,o &n(s)T1(s)G =¢&r,G  nonsingular.  Thus,
[é1,(s)T1(s)GT " is in S and so is

(4.9) Tyc(s) = G&r,(s) Ti(s) G €, (s) Tals).
Since &r,(s) = &r,(s), Tic(s) = G[Ti(s)G] ' T(s) and
(4.10) Ti(s) Ty (s) =[Ty(s) G T1(s)G] ' Ta(s) = T(s).

Similarly, there is a T, (s) is S with T,(s)T5.(s) = T1(s) and so, T1(s)E;T,(s).

We note that Theorem 4.5 has a number of interesting consequences, such as
Corollary 4.7, as well as the following corollaries.

COROLLARY 4.11. Let T(s) be an element of S.. Then T(s) has a proper right
inverse T,(s) if and only if &r(s) =1

Proof. T(s)T,;(s)=1 if and only if £&(s)&7 " (s) is proper. But &(s) =1, and
&r(s) is proper if and only if &r(s) = I.
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COROLLARY 4.12. Let T(s) be an element of S—. Then T(s) has a proper left
inverse if and only if £, (s) =1 (where T'(s) is the transpose of T(s)).

We return now to our study of invariants and canonical forms.

DerINITION 4.13. If T(s) € S, let pr denote the rank of T(s), and let S—, q =
{T(s)e S_lor=4q}.

LEMMA 4.14. £1(s) is an abstract invariant for E; on S_.

Proof. Suppose that Ty(s)E Tx(s) with Ty(s), To(s) in S_. Then, clearly,
T1m($)E4T,,,(s) and so, by Corollary 4.7, &r,,.(s) = ér,,. (5).

By virtue of Observation 2.7, since [—7y21(s), Y22(s)]1Ti(s) T1c(s) =
[=721(5), ¥22(5)]T2(s) = 0, we have

(4.15) —Y21(8)R1m () + ¥22(8)R1p—m(s) = 0.

But then 2, (s)y21(s) = yle (s)y11(s) are both relatively left prime factorizations
of the same transfer matrix with both y,,(s) and y;2(s) lower left triangular
matrices in (unique) Hermite normal form with monic diagonal entries. Thus,
¥22(s) = y12(s) and &r,(s) = én,(5).

LeMMA 4.16. &1(s) is complete on S_, q.

Proof. Let Ty(s) and T,(s) be elements of S_, g such that &1, (s) = &r,(s). Then
§qu (S) = §T2q (S) and

Tlc (S) = [fT]., (S ) qu (s)]_l[szq (S) T2q (S)]

@i = T1q(s) Toq(5)
is an element of S. But
e OTOT,, )= OO 7)1y 0)
64 10
(4.18) =¢én,(s) To(s) = €, () To(s)

and so, Ti(s)Ty.(s)= T»(s). Similarly, there is a T,.(s) in S with T,(s)Tr.(s) =
Ti(s) and so, T,(s)E;T,(s). We now state the main result of this paper.
THEOREM 4.19. Let ¢ be the function on S given by

(4.20) U(T(s)) = (pr, £r(S)).

Then ¢ is a complete abstract invariant for equivalence under dynamic compensa -
tion.

Proof. By virtue of Observation 2.5, Corollary 4.7 and Lemma 4.14, ¢ is an
invariant.

As for the completeness of ¢, it will be sufficient in view of Lemmas 4.8 and
4.16 to show that if ¢(T;(s)) = ¢(T5(s)), then either Ty(s) and T,(s) are in S, or
Ty(s) and T,(s) are in S_. Suppose that (T (s)) = ¥(T>(s)) and that (say) Ti(s) is a
p1X myelement of S, and T,(s) is a p, X m, element of S_. Then pr, = p; =m; and
P, = My < p,. But p; = m, < p, and so the p, X p; matrix &r,(s) could not equal the
P2 X py matrix &r,(s). Thus, the theorem is proved.
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It is important to note that this theorem establishes the fact that any two
dynamical systems (with transfer matrices in S) are equivalent under dynamic
compensation if and only if their transfer matrices have equal rank and their
interactors are equal.

DEeFINITION 4.21. A subset C of S is called a set of canonical forms for S under
E, if, for each T(s) in S, there is a unique Cr(s) in C with T(s)E;Cr(s).

Let Cy={¢7 ()| T(s) € .} and

C—={[:rp-m<s)ff;%(ls(i)f;.i(s>]'””ES‘} ‘

We then have the following theorem.

THEOREM 4.22. If C= C,U C_, then Cs a set of canonical forms for S under
E,.
Proof. If T(s)e S, we set

T.(s) = Gl&r(s)T(s)G1 Y,

where G is any m Xp constant matrix such that &G is nonsingular. Then
T(s)T.(s)=£7 (s) and T(s) = £7'(5)T.(s)™" so that T(s)Euér(s)™".
If T(s)e S_, we set

T.(s) = Ty (s)é7n(s)

so that T(s)T.(s) = Cr(s) and T(s) = Cr(s) T, (s)7* (i.e. T(s)E Cr(s)).
Example 4.23. Let T(s) be the element of S given by

1
s+2 0
2 s+1
s+3 s+3
Tl(s)= >
1 1
(s+2)(s+3) s+3
2s+7 1

L(s +2)(s+3) s+3
and let T,(s) be the element of S given by

1
s+1 0
s’ +6s+7 1
(s+1)(s+3)
T,(s)=
s+4 1
(s+D(s+3) s+1
3s+10 1

(s+D(s+3) s+1]



1006

W. A. WOLOVICH AND P. L. FALB

Are Ty(s) and T,(s) equivalent under dynamic compensation? Since both T(s)
and T,(s) are of rank 2, we need only examine &r,(s) and &,(s). Since

0
lim[s 0] s+2 _[1 0]
$—>00 0 1 2 S+1 0 1
s+3 s+3
and
1
lim[s O] s+1 =[1 O]
o0l 1] | s*+65+7 11
(s+1)(s—3)

we have &r, 2(s) = &r,2(s). To determine the remaining rows of £r,(s) and &r,(s),

we note that

1211(5)] —1
Ti(s =[ Pi(s),
6)=| 1P
R21(S)] -1
Ty(s =[ P57 (s),
2= | o [P )
where
1 0 ] __[O 1] _[s+2 0 ]
R11(S)—[1 s+1)’ Rix(s)= 2 1) Pi(s)= 1 543
and
_ s+3 0 ] _[ s+4 1]
Rz‘(s)"[s2+6s+7 s+10 Raals) = 3s+10 1)
P2(s)=[(s+1)(s+3) 0 ]
0 s+171
respectively. Thus,
1 1]
_ s+1 s+1 _
Rix(s)R11(s) = el 1 = ¥12(8)v11(s),
s+1 s+1
[ 1 1]
_ s+1 s+1 _
Ra(s)R3i(s) = 2s+1 1 =22 (5)y21(5),
L S+1 S+1_
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where
_ _[s+1 O]
’le(s)—-’)'zz(s)—[ -1 1)
-1 1
yu®=ru= [, o
and
s 0 0 0
1 0 0
én(s)=én(s) =
1 -1 s+1 O
-2 0 -1 1

In other words, T1(s)E;T,(s).
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The unique” dynamic compensator, T;.(s), which equates the two systems is

now given by (4.17), i.e.,
Tlc(s):' Tqu(S)Tzq(S)

s+2 0

| s+1

T |s+3 s+3|°
s+1 s+1

and Cr,(s) = Crp,(s), the canonical form for both T;(s) and T5(s) is given by

I
s
0 1
-1 1
Cr(s)=Cpy(s)= s stil
2s+1 1
Ls2+3s s+1]

5. Concluding remarks. We have now exhibited a complete abstract
invariant, Y(T(s)) = (pr, £&r(s)) for transfer matrix equivalence under dynamic
compensation; i.e. we have shown that for systems characterized by full rank,
proper transfer matrices, the rank and the interactor determine equivalence under

dynamic compensation.

The relevance of this observation with respect to the question of exact model

matching and proper right inverses was also shown.

In establishing completeness, explicit expressions are obtained for the requis-
ite dynamic compensators. We further determined a set of canonical forms for the

% One can readily establish that the dynamic compensators which equate two equivalent systems

in S_ are unique.
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class of systems considered and developed the explicit compensators which
produce the canonical forms.

Subsequent investigations will build on the results presented here, and will
employ the interactor to resolve numerous related questions; e.g. the develop-
ment of complete abstract invariants for system equivalence under state feedback
compensation, the derivation of new and direct procedures for (dynamically and
triangularly) decoupling systems via both dynamic and state feedback compensa-
tion, and more efficient resolutions to model matching via both stable and minimal
order compensation (the minimal design problem).
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