Downloaded 10/15/13 to 128.178.5.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. CoNTROL
Vol. 13, No. 2, February 1975
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Abstract. The controllability subspaces of a pair (4, B), instrumental in the formulation of the
geometric theory of decoupling, are shown to have a natural analog in terms of the kernel of the singular
pencil of matrices (Al — A; — B). In addition the pencil of matrices leads directly to the multivariable
canonical form of Brunovsky.

The possible dimensions of controllability subspaces are shown to be completely determined by
a set of invariants of the pencil of matrices. The minimum dimension of controllability subspaces which
contain arbitrary subspaces of the image of B is ascertained, and a construction for such subspaces
is given.

1. Introduction. The theory of the decoupling of constant linear systems by
state feedback received a considerable boost with the advent of the geometric
theory of Wonham and Morse [10]. Their formulation relied heavily on the
concept of a controllability subspace (c.s.), that is, a vector subspace satisfying
certain restrictive conditions. Solvability of decoupling problems then became
equivalent to finding suitable sets of c.s.

At approximately the same time, the results of Wolovich and Falb [9],
Brunovsky [1], Popov [7], Kalman [6] and Rosenbrock [8] led to a definitive
canonical form for the input-state dynamics of time invariant linear systems.
Kalman [6] and Rosenbrock [8] sensed the relationship between this canonical
decomposition and Kronecker’s classical theory of pencils of matrices, while
Wonham and Morse [11] recognized that the decomposition was in terms of
controllability subspaces.

The purpose of this paper is two-fold. First we show there is a strong and
natural connection between controllability subspaces and elements in the kernel
of a singular pencil of matrices. Furthermore, the pencil of matrices leads easily
to the canonical form of Brunovsky. Then exploiting certain invariants of the
pencil of matrices, we are able to make definitive statements about the dimensions
of possible c.s., including the existence and uniqueness of c.s. of a given dimension.

In what follows, we shall be concerned with linear time invariant systems
whose input-state dynamics are described by either the difference equation

X+, = Ax, + Bu,,
or the differential equation

X(t) = Ax(t) + Bul(t),
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where x € R", a real n-dimensional vector space, and u € R™, with A and B real
matrices of appropriate dimensions. The algebraic structure of 4 and B which we
will develop is independent of the specific dynamics, and thus will apply equally
well to systems governed by either differential or difference equations. Further-
more, although we choose real vector spaces for concreteness, everything that
follows will hold for vector spaces over an arbitrary field.

Except where otherwise specified, we shall use upper case italic letters to
refer to linear transformations between vector spaces or their associated matrices.
Script letters will denote vector spaces or subspaces. Lower case italic letters will
indicate vectors while reals (field elements) will be represented by lower case
Greek letters. When appropriate, we shall also indicate the image of a map B
by #; and if b € 8, ¢ stands for the subspace spanned by b. Further, if A:R" — R"
is a linear map, and £ is A-invariant, we write A|Z to indicate the restriction of
A to the subdomain £. The dimension of a subspace £ is given by dim £.

The space of polynomials with coefficients in R" is denoted by R"[4]; note
that this is an R[4]-module. The degree of a polynomial u(4) is indicated by deg u(4).
We let m denote the set of integers {1,2, - -+, m}, and for an ordered set of scalars
vy, 0, v we let

vi=3Yv, jek.
i<i
If {-} is a set of vectors, we refer to the subspace spanned by the elements as
span { - }, and we indicate the jth standard unit vector (1 in the jth position, zeros
elsewhere) by e;. Finally the transpose of 4 is given by AT,

HUAZX>X,B<X,anddimZ =n,then {A|B} =B + AB + --- + A" ' B,
i.e., the space reachable under the action of A from inputs to 4. We say that
(A, B) is a controllable pair if {4|#} = Z. Following [10], a subspace ¥~ < % is
(A, B)-invariant if there exists a map F:R" — R™ such that (4 + BF)¥ < ¥". A
subspace Z is a c.s. of (4, B) if # is (A, B)-invariant and # = {4 + BF|% \ &}
for some F; that is, every element in £ is reachable under the action of 4 + BF
from inputs to Z N A.

2. Some preliminary results. In this section we show that the concept of a
controllability subspace for a pair (4, B) has an analog in terms of the kernel of a
particular polynomial matrix. Furthermore, certain invariants of this polynomial
matrix are shown to lead quite naturally to the canonical form for controllable
pairs developed in [1], [6], [7], [8] and [9].

LeMMA 1. If R is a c.s., then for every nonzero b e # (\ A&, there exists a matrix
F such that

(1) {A + BF|t} = A.
Moreover, F can be chosen to satisfy both (1) and
) (A + BFYb =0,

where r = dim £.

Proof. This is a special case of Theorem 4.2 in [10]. We are choosing F so
that £ is cyclic with respect to A + BF, with generator b, and so that (4 + BF)| %
is nilpotent.
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This last result leads to an interesting characterization of controllability
subspaces.

LEMMA 2. A subspace # = R" of dimension r is a c.s. if and only if there exist
x(A) € R"[A] and u() € R™[A] such that

(i) degu(d) = k and deg x(1) = k — 1, for some k = r;

(ii) (Al — A)x(4) = Bu(4);

(i) If x(A) = >, A" 'x;_,, then # = span {x;_,,i€k}.

Proof. Necessity. Suppose £ is a c.s. of dimension r. Let be # N % and F
be chosen to satisfy (1) and (2). Define

u(d) = i Au;e R"[A] and x(1) = ril Aix;
i=0

i=0

so that
Bu, = b,
u;=F(A+BFy "', 0<i<r-—1,
x; = (A + BFy™'"'b, 0<i<r-—1.

Then (i) is trivially satisfied ; (ii) follows by comparing coefficients of powers of 4,
and by using (2); (iii) follows from (1).

Sufficiency. Let u(1) e R™[2] and x(A) € R"[4] satisfy (i)—(iii). We shall demon-
strate that

(3) AR R + B
and that
@ A=W,

where #y = 0,and #; = (AW,_, + B) N\ R foriek.

The result will then follow from Theorem 4.1 in [10].

From (ii) it is easily seen that Ax; = x;_, — Bu;for 1 <i < k — 1, and that
Ax, = — Bug; thus (3) follows from (iii).

To demonstrate (4), define subspaces ., as

S, =span {X,_ 1, Xg_2, ", X_;} foriek.

Clearly, 4 < #;; moreover, from (ii) it is easily seen that &, = (AY;_, + B) N R
for.2 < i < k, whence it follows inductively that %, < #/ for all i € k. But clearly,
S = A, and (4) follows.

Remark 1. If a pair (x(4), u(1)) can be found which satisfies conditions
(i)-(ii1) of Lemma 2, and satisfies the additional condition that the coefficients in
x(4) are independent, then one can find a matrix F such that Fx;_; = u;_, for
all i € k. It then follows that x,_, € N £ is a cyclic generator for # with respect
to the matrix 4 + BF.

We have thus established a characterization of controllability subspaces in
terms of elements of ker (1I — A; — B), where the matrix (1I — A; — B) is to be
interpreted as representing an R[A]-module morphism: R™*"[1] - R"[A]. Ele-
ments in ker (A — A; —B) may in turn be characterized by the minimal column
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indices {v;,iem} and a fundamental series {zi(1), iem} associated with the
singular pencil of matrices (A — A; — B). These two sets are determined as follows
(see [5, Chap. 12]):

(i) Let v, be the least degree of all nonzero elements of ker (Al — A; —B),
and choose z,(1) e ker (A — A; — B) so that degz,(4) = v;;

(i1) For each i, 1 < i < m — 1, after having chosen {zj(l), jei} we define
v+, to be the least degree of all elements z(4) e ker (Al — 4; — B) such that z(4)
is not an element of the submodule generated by the set {z;(4), j€i}. Then choose
z;,1(A)eker (AI — 4; —B) so that degz;,,(4) = v;,, and so that z,, (1) is not
an element of the submodule generated by {z;(1), jei}.

We shall call the set {v;,iem}, so obtained, the set of Kronecker invariants
of the pair (4, B). Note that by the construction of this set, the v;’s are ordered as
0<v,=v,< - =<, The sets {v;,iem} and {z,(1),iem} enjoy other prop-
erties, which we now state.

PrOPOSITION 1. Let (A, B)e R"*" x R"™™ be a controllable pair such that
rank B = m. Then the Kronecker invariants and the fundamental series, as deter-
mined above, satisfy:

(i) The set {v;,iem} is well-defined and unique;

(i) v; > 0,alliem;

(ii) Y Vi =15

(iv) {z{A), iem} is a set of free generators for ker (A — A; —B), and any
z(A)eker (AI — A; — B) can be uniquely written as

)= Y z(Ad)
itv;<degz()
for appropriate a,(A) € R[1] such that dego,(1) < deg z(1) — v;;

(v) The fundamental series {z,(1),iem} is not uniquely determined; however,
for each i such that v; < v,,,, the submodule ., % (submodule generated by
{z;(1), j e i}) is invariant with respect to the choice of fundamental series;

(vi) If each z(4) is partitioned as z, (1) = (sT(A); t7(A))", where t,(A) € R"[1] and
$;(4) € R"[A], then degs,(A) = v; — 1 and the collections of coefficients {t;, ,iem}
and {s;;0 < j £ v; — 1,iem} are bases for R™ and R".

Proof. See references [1], [6], or [7] for (i)iii); [2] and [4] for (iv); [5] for
(v); and [2, Thm. (4.5-22)] or [9] for (vi).

Now consider the pair (s;(4),t;(1)), as determined by z,(1). This pair of
polynomial vectors satisfies

ivi?

(I — A)s(3) = Bt,(3).

Thus, from statement (vi) of Proposition 1 and from Remark 1, it follows that
span {s;;,0 < j < v, — 1} is a c.s. generated by s We call this c.s. #;:

(5) R; £ span {s

iLvi—1°

ij90§jévi—‘l} foriem.

Since {s;;; 0 <j < v, — 1, iem} is a basis for R", it is clear that

ij
(6) R'=2® - ®2%,.

However, because the fundamental series {z,(1),iem} is not unique, the de-
composition of R" via (6) is not unique. In spite of this fact, there are certain
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properties of the decomposition (6) which are invariant with respect to the choice
of fundamental series {z,(1), iem}.

PROPOSITION 2. The subspaces ¥; =R, @ --- @ R, for which v; < v, are
invariant with respect to the choice of fundamental series {z,(1),iem}.

Proof. From Proposition 1, (iv)Hv), it is easily seen that when v, < v,,,,
span {s,;;0 < j £ v, — 1,ke i} is invariant with respect to the choice of funda-
mental series {z,(1), i em}. This proves the proposition.

PROPOSITION 3. The subspace ¥; = R, @ --- @ R, for which v; < v;, is the
maximal c.s. contained in the subspace A" (B + --- + A"~ 'A).

Proof. ¥ is obviously a c.s. and is contained in

L= ATB A+ -+ ATB).

Let ¥~ be a cs. larger than ¥;. Let P, denote the projection on #; and along
@jﬁ@j. Then clearly P;#” # 0 for some j > i, and since ¥” is a c.s. we must
have P;¥" = #;. Hence there exists an xe¥” such that x = zk’r O Sp, With
aj,, -1 #0. Buts;, ¢ for j > i, and as the s;; are a basis, clearly x ¢ %,
proving the assertion.

Finally, from the fundamental series {z,(1) = (s7(1);t7(A)", iem} we can
determine a feedback matrix F such that the fundamental series associated with
the controllable pair (4 + BF, B) is of a particularly simple form; this will then
lead to a “‘canonical” form for (4, B). We define F as follows. Since {s;;} is a basis
for R", there exists a matrix F such that

i ij 0sj=v,—1, iem.

It now follows easily that
(AI — A — BF)si(4) = BA"t;,, foreachiem.

This last relation completely specifies the maps 4 + BF:R"— R" and
B:R™ — R" with respect to the bases {s; ;} (in R") and {¢; ,} (in R™). That is,

Bti,vi = Sivi-1> iem,
while
sijo1 Hl1Sjsv—1, iem,
(A + BF)Si,j = o .
0 ifj =0, iem.

Thus, with nonsingular matrices S and G defined as

S =(51,0550,15"" 3515 =1552,05 "> Smy—1)
and
G Z(tl,vl;”';t

m,vm)a

it follows that
STIBG = (ey; ey w5 ey),
S~'(4 + BF)S = block diagonal (H,; ---; H, ),

where H, is k x k with ones on the superdiagonal and zeros elsewhere.
We shall refer to the pair (S™ (4 + BF)S, S”!BG) as the Brunovsky canon-
ical form for the pair (4, B). In the sequel it will be convenient to work with
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this canonical form. We note that the fundamental series associated with
(S" YA + BF)S,S"'BG) is
{zid) = (5T L] ) iem)
with
t,(1) = AV, iem,

s(A) =2 e+ - ey, iEm,

where &; is the ith standard unit vector in R™ For this choice of fundamental
series the subspaces #; < R" are given as

'%i=Span{ev’i"”"ev“?—v,~+l}’ iem.

3. Dimensions of controllability subspaces. We consider a controllable pair
(4, B) in the Brunovsky canonical form. As indicated in the previous section,
this form is compatible with a natural direct sum decomposition of the state
space into controllability subspaces %, i e m, with

’%j = span {evj—v,v+l’ T e\'}‘}’

where e; is the jth unit vector in the canonical basis for R". Denote the projection
on %, and along (—B#,ﬂj by P,, iem, and the set { jem|P,Z # 0} by M(%) for any
subspace Z. Then we have the following bound on the dimension of a c.s.

LEMMA 3. Let Z be a c.s. of the pair (A, B). Then dim # = max {v/|j € M(%)}.

Proof. Since # is a cs., # = {A + BF|# N &} for some appropriate F.
Further, we know that # may be singly generated by a be # N £. Pick such a
b= Ziem e, since the e, are a basis for 4. By the particular form of (4, B) it
is obvious that the c.s. Z is spanned by the columns of the matrix

%y
By
a Bi %
o By v 9y
e . . ’
%y P Vm
% Bu Vm Om

where only possibly nonzero elements have been shown. It is obvious that
P# = 0 iff the vf — v, + 1 through v} rows of W are identically zero. Thus if
P2 # 0, W must contain a nonsingular lower triangular submatrix of dimension
v; X v;, hence must have column rank =v;, which proves the lemma.

Remark 2. This lemma is the state space analog of Proposition 1 (iv).

The dimension of a c.s. may be similarly bounded from above.
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LeMMA 4. Let & be a c.s. of the pair (A, B). Then

dim# < Y
jeM(#)

Proof. Clearly P@ = 0 for i ¢ M(£). Then (}, M) P)# = 0 or equivalently
R < ket (Vi P) = Doy ;- Since the #;’s are independent, this latter
subspace has dimension iJeM( Vi and contains 9? proving the lemma.

THEOREM 1. Let V = {v,, -, v,} be the set of Kronecker invariants of the
controllable pair (A, B). Then there exists a c.s. # of dimension p iff
(7 max {v{v,eU} < p< Y v,

v,*SU

for some subset U of V.

Proof. Necessity. Let U = {v|ie M(%)}. Then the result is immediate from
the preceding two lemmas.

Sufficiency. Given a subset U = V and a p satisfying (7) we shall construct a
c.s. Z of dimension p by summing the c.s. £, possibly with some “‘overlap”. First
order the elements of U in decreasing size (v, , - - -, v; ) and define s as the smallest
integer such that n, = Z}. <, Vi, 18 greater than or equal to p. If p = n, then we may
construct a c.s. of dimension p by forming the direct sum of c.s. R, D DR,
If n, exceeds p, then for s > 2, we shall construct a cs. of the form #; @ ---
@ R;,_, D 2, where 2is a cs. of dimension p — #,_, obtained by “overlapping”
the cs. 2, and %, . Finally if n; > p and s = 2, then we shall construct a c.s.
of the form 2 above. Hence it suffices to consider only the cases p = 7, for some
s,0rn, <p<mn,.

To prove the first case we need only show how to form the direct sum of two
cs., say #;® #;. Consider the feedback which changes the (v¥,v¥ — v, + 1)-
element of 4 from zero to one. With this feedback, (4 + BF)"e,, = = ey; that is
the c.s. #; @ #; is generated by the generator of ;.

To prove the second case let p < v; + v;. By choosing feedback such that
the (v}, v — (p — v; — 1))-element of 4 is changed from zero to one, it is easily
seen that the resulting c.s. generated by ey is spanned by the set of p independent
vectors

{ev},, ev;?—1> Y ev;!—p+vj + e\:}’ ) ev’z‘-—v,-+1 + ev}—vi—vj+p+1’

evj—vi—vj+p9"‘» vEi— vJ+1}

and hence is of dimension p.

Remark 3. The constructions used to prove sufficiency have an analog in the
context of Lemma 2. Let [s7(4); t7(1)]" be the ith free generator of ker [AI — 4 ; — B],
that is, £, is the span of the coefficients of s;(4). Then for any k = 0 it is easily
seen that

(AL — A)(W*s,2) + s;(0) = Bk,(2) + t,(2).

When k = v;, the spans of the coefficients of 1*/s,(4) + s;(4) yield the c.s. Z; D R;.

For 0 <k < v, = < v, the span of the coefficients of /l" {4) + sf4) is a cs. of
dimension v; + k of the form 2 in the proof of Theorem 1. It should be clear that
these constructions are not unique. We may replace A* by a(4), any polynomial
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of degree k, and achieve controllability subspaces, albeit possibly different ones,
of the appropriate dimensions.

Theorem 1 indicates that the possible dimensions of controllability subspaces
of a pair (4, B) are directly determined by the Kronecker invariants of (4, B). If
one considers the Kronecker invariants to be represented by line segments of
length v,

L il
I v

then the theorem states that the corresponding dimensions of possible c.s. are
given by the lengths of line segments obtained by joining together some of the
above line segments, with the possibility of integral overlap, for example,

Vi V2 Vi Vi
|— | S— 1 ] I |
| T ] or

etc.

Furthermore we have the following corollary.

COROLLARY 1. If for some jem — 1, v;,; > v¥ + 1, then there exists no c.s.
of dimension p, where p is any integer satisfying vi < p <v;,,.

Proof. This follows directly from Theorem 1, as any subset of the set
U = {v]i < j} clearly fails the upper bound in (7), while if U includes any elements
v, for k > j, it likewise fails the lower bound in (7).

For example, if the Kronecker invariants of (A4, B) are (1,2, 5), then c.s. of
dimensions 1, 2, 3, 5, 6, 7, 8 exist, whereas no c.s. of dimension 4 exists.

The constructions of Theorem 1 and Remark 3 are suggestive of the unique-
ness of c.s. of certain dimensions. Indeed, we have the following.

COROLLARY 2. Let # be a c.s. of dimension p. Then R is the unique c.s. of
dimension p iff p = v¥ <v;,, for some jem — 1. In particular, if v, # v, then
R, is the unique c.s. of dimension v;.

Proof. Sufficiency. Assume dim# = p = v¥ <v;,,. By Lemma 3, PZ =0
for i>j, so #< N, ker P, =D, ;% Since dim (P, _; &, = v we must
have 2 = P, <; Z.. However, regardless of the nonuniqueness of the set of c.s.
2, , the subspace @D, <; 2 is unique by Proposition 2, since v;,; > v;.

Necessity. We will show that if there exists any c.s. of dimension p such that
either p # v¥ or p = v§ « v;,, for any jem, then there are, in general, many
different c.s. of identical dimension.

Consider first the case p # v¥ for any jem. Assume there exists a c.s. of
dimension p. Define s to be the largest integer such that v¥ < p,andletq = p — v¥.
Then by Remark 3 following Theorem 1 it is clear that given the polynomial
vector

U, (2) = 2T Q) + 22t () e+ 29,() + oty 4 (2)
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for any nonzero a € R, the span of the coefficients of the corresponding x,(4) is
a c.s. of dimension p. Further, since g < v, ,, it is clear that for « # f, both non-
zero, the spans of the coeflicients of x,(4) and x,(1) differ.

Now assume p = v¥ for some jem, but v¥ = v;,,. Clearly the polynomial
vector

uo(A) = 2It,0) + 226, () + -+ + t,(1)

has an associated x,(4), the span of whose coefficients is givenby 2, @--- @ %,,
a c.s. of dimension p. However, the polynomial vector

u(A) = 2i-it2) + i“f-ztj_l(i) + oty (A) + at; 4 (A),

where o € R, has an associated x,(1) whose coefficients span a different c.s. of
dimension p. Further, if o # f, then the c.s. associated with u (1) differs from that
associated with uy(2).

Note that we have shown that for systems defined over the reals (or any
other uncountably infinite field), if there exists more than one c.s. of a given
dimension, then there exists an uncountable number. In the example with
Kronecker invariants, 1, 2 and 5, the c.s. of dimensions 1, 3 and 8 are unique,
while there are nondenumerably many c.s. of dimensions 2, 5, 6 and 7.

4. Minimal dimension controllability subspaces. In § 2 a characterization of
controllability subspaces in terms of the free generators of the kernel of the
singular pencil of matrices [A1] — 4; — B] was developed. Using this represen-
tation, requirements on the possible dimensions of c.s. were derived in § 3. In
this section we wish to explore c.s. constrained to contain, or cover, a given sub-
space; in particular we will construct minimal dimension c.s. covering subspaces
of &.

Consider an element be %. If # is a c.s. containing b, then by Lemma 1,
there exists a feedback map F such that

R = span{b,(A + BF)b, ---, (A +BF)"—lb},

and (4 + BF)"b = 0. Combining this fact with the characterization of c.s. in
terms of the pencil of matrices, we may view any c.s. # containing b as the span
of a trajectory generated by driving b to zero. Clearly then, the minimal dimension
c.s. containing b are in 1-1 correspondence with the spans of the trajectories
arising from driving b to zero in a minimal number of steps, ie., the spans of
trajectories {b,(A + BF)b, - - -} that contain a minimal number of nonzero vectors.

It should be noted that driving a vector x to zero in r steps implies the con-
struction of an input string {u, _,, -- -, u,} such that if

X,_;=x and x,_,_, =Ax,_, + Bu,_,, l<iZr,
then x_; = 0. If x € 4, this is of course equivalent to finding (1) = }*/_, 2'u; and
x(2) = Y723 Alx; such that Bu, = x and (Al — A)x(4) = Bu(4). It surely suffices
to find a feedback map F such that if

X,_;=x and x,_,_, =(4 + BF)x 1<isr,

r—i»

then x_, = 0.
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If we wish to drive an element b € £ to zero in a minimal number of steps, it
seems natural that the span of the trajectory excluding b should be independent
of 4. This is indeed the case.

LEMMA 5. Let be B. If there exists a feedback map F and a trajectory
{b,(A + BF)b, ---, (A + BF)""'b} such that )_, a(A + BF)b, 0, ., is an ele-
ment of B for 1 £r < n — 1, then b may be driven to zero in r or fewer steps.

Proof. Wewriteb = Y_ (4 + BF)’b and assume without loss of generality
that «, = 1. Since B has full rank there exist unique elements #i and u such that
it = B~'b, u = B~ 'b. Consider the input string u,, r — 1 = i = 0, defined by

U,_y =Fb + o,_qu,

u,_, =F(A + BF)b + a,_Fb + a,_,u,

uo=F(A + BFY ‘b +a,_,F(A + BFY *h + --- + a;Fb — 1.
Now let x,_; = b, and consider the sequence generated by the recursion

X,_j—1 = AX,_; + Bu 1Zir.

r r—i’

Then it follows that
x_,=(A+ BFYb+o,_,(A+BFy " 'b+ --- +a, A+ BF)b—b=0,

and hence b may be driven to zero in r steps.

Note that Lemma 5 implies that for b e 4, if Z is a c.s. of minimum dimension
containing b, then # (| # = 4. It is now natural to ask: What is the minimum
dimension of a c.s. covering an element x € Z? For x € 4, we can easily answer
this query.

Recall that M(Z) was defined as the set {jem|P;Z # 0} for any subspace Z.

LEMMA 6. Let be B. Then the minimum dimension of a c.s. containing b is
given by u = max {v;|je M(4)}.

Proof. If # is a c.s. containing b, then by Lemma 3, dim £ = p. Now con-
sider the trajectory (b, Ab, ---, A"~ 'b), where A4, B are assumed in the Brunovsky
canonical form. Since b = Z}.GMW Vjew and A" ey =0, it follows that A*b = 0,
yielding a covering c.s. of dimension p.

We now can turn our attention to the case where we desire to cover an
arbitrary subspace of 4. As we shall need a minor construction, we first prove a
lemma to motivate that construction.

LeMMA 7. Let b, and b, be elements of # such that M(¢,) N M(4,) = &, and
denote max {v|je M(4)} by p;, i€2 Then if R is a cs. covering b, and b,,
dimZ = u, + u,.

Proof. If # contains b, and b,, then # contains c.s. which may be generated
by b, and b, respectively (by Lemma 1). Then it follows that for some F,, F,,

span {b,,(A + BF;)b,, -, (A + BF))" 'b,,b,, -+, (A + BF,)""'b,} = &.
Recalling that {s;, _,, iem} is a basis for %, we may write

b, = Z Y1jSjvj—1 and b, = Z V28v-1-

jeM(¢y) jeM(é62)
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Since the lemma obviously follows for u; = u, = 1, we may assume that for
some i, y; > 1. Now for y; > 1 we have

®) (A + BF)b, = 3 VisSimg=2 T 2 %1Ske—1 # 0

jeM(é) kem
for some o, k em. Note that the second term on the right is an element of %
and represents the arbitrary nature of the feedback map F;. Continuing, we have
for y, > r,

) (A + BE)'b; = Z VijSjvj—r—1 T Z Z LipSkyi—r+1-p) 7 0
jeM(4:) per kem
for some & ,, kem, per, where s, ; £ 0for j < 0. Comparing the forms of elements

from (8) and (9), it follows from the hypothesis M(4,) N M(4,) = & and the fact
that {s,;;0 <j < v, — 1, iem} is a basis for R", that the vectors

{b,,(A + BF)b,,--+,(A + BF )" 'b,,b,, -+, (A + BF,y**"'b,}

are independent, and hence £ is of dimension =y, + u,.

COROLLARY 3. Let b, and b, be elements of # such that M(¢,) N M(¢,) = &.
If ¥ and ¥, are minimal dimension covering c.s. for b, and b, respectively, then
Y1 N ¥, =0and ¥] ® ¥, is a minimal dimension c.s. covering span {b,,b,}.

Proof. The proof follows immediately from Lemmas 6 and 7.

THEOREM 2. Let 9 = % and {b,,---,b,} be a basis for & such that
M) N M) = for i#j, i, jek. Then if R is a cs. covering &, then
dim # = ), w;- Furthermore, if ¥ is a minimal dimension c.s. covering b,, i€k,
then {v;, i€k} is an independent set of subspaces, and ¥; @ --- @ ¥, is a minimal
dimension c.s. containing &.

Proof. First we note that any 2 < 4 has such a basis. Let {d,, ---, d,} be
any basis for & and let D be a matrix whose columns are given by the d;, i€k,
with respect to the basis for %, {s;, _,; iem}. Then by applying elementary
column operations, it is possible to transform D to a matrix D, whose columns
are a basis for D and have the desired property (only one nonzero entry per row).

By expanding the argument of Lemma 7 to the case where for appropriate
Fy, - F,

span{b,,---,(4 + BF,)" 'b,---, b, -+, (A + BE)" " 'b} = &,

it is straightforward to show that # contains a subspace of dimension ) u;.
Furthermore, it is clear that Ziek ¥ is a c.s. covering &, hence

dim Z“//,) > Y p =) dim7;,
iek iek iek
which implies that the ¥, i€ k, are independent subspaces.

Remark 4. It has been noted by one of the reviewers that the results of
Theorem 2 are encompassed by Theorem 2.1 of [11]. That is, finding an (A4, B)-
invariant subspace #~ of least dimension such that #~ contains & is equivalent
to finding a c.s. of minimal dimension containing 2 when & < 4.
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5. Conclusions. The description of controllability subspaces in terms of the
kernel of the singular pencil of matrices (A1 — A; — B) extends the notion of a
c.s. presented in [10], and provides a basic link between c.s. and structural prop-
erties of linear systems. In addition, the pencil of matrices presents an alternative,
and algebraically appealing determination of the canonical form of Brunovsky.

In §3 we showed how the Kronecker invariants completely specify the
dimensions of possible c.s. It is to be noted that, generically, all the Kronecker
invariants will be either [n/m] or [n/m] 4+ 1, where [a] is the largest integer not
greater than g, in which case there should be considerable freedom in the con-
struction of c.s. (see [3] and/or [7]). However, the results of that section allow one
to ascertain that particular systems are structurally not decoupleable by state
feedback, which strengthens the results of [10].

The ideas on minimal dimension c.s. developed in § 4 are interesting in terms
of limiting the effect of a system input, and in the dual sense of observability sub-
spaces, for the determination of limited order observers. The general problem
suggested in that section, finding minimal dimension c.s. containing arbitrary
subspaces of &, remains an open issue subject to further investigation.
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