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Structure and Smith-MacMillan form of a rational matrix
at infinity

A, L G, VARDULAKIST, D. N.J. LIMEBEERT
and N. KARCANIAST

The use of special row and column operations in the reduction of a rational matrx to
its Smith-3Maedillan form at infinity i investigated. The connections between this
reduction procedure and the valuation approach are established, A graphical method
for finding the Smith=Mac)illan form of a rationa! matrix at infinity from its Bode
magnitude array, and some new results on realization theory for polynomial matrices
are presented.

1. Introduction

For the past decade it has been accepted that the most satisfactory definition
of the finite poles and the finite zeros of a rational matrix T'(s) is via its Smith-
MacMillan form. In order that the finite pole-zero structure of T(s) be pre-
served during the reduction process to the Smith—MaeMillan form, row and
column operations represented by polynomial matrices with no finite poles or
finite zeros (i.e. unimodular matrices) are used, It has been noted (Kailath
1980) that these (unimodular) operations will in general, destroy the pole—zero
siructure of T'(s) at infinity since they may have poles and zeros there.

If the pole—zero structure atb infinity is required, it i« usual to apply a
bilinear transform
et f
e i+ B

(y#0 and ad—py#0)

which has the effect of sending the point s=afy to #'=3x, and bringing the
point s=o0 to w= — 8]y where it may be studied in terms of the Smith-

MaeMillan form of T()
o e -+ 3
Plw)="T (*yw+ 5)

Usually the constants , B, v, 8, which may be chosen arbitrarily, are selected
so that the point s=a/y I8 a reqular point, i.e. there are no poles or zeros of
T'(s) there.

This type of approach to studying the point at infinity becomes difficult
to use if T(s) has dimension larger than say 3% 3, or if the individua! entries of
T(s) contain high powers of 5. Since the pole-zero structure at infinity 1s
important for a number of reasons such as studying the high gain and high
frequeney behaviour of systems, an improved caleulation procedure for finding
the Smith-MacMillan form of a rational matrix at infinity is sought.
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702 4. 1. 6. Vardulakis et al.

If a rational matrix 7'(s) is related to another rational matrix S(s) by
T(s)= P(a)S(s)@(s), (P(s), Q(s) square non-gingular rational matrices)

then T(s) and S(s) have the same Qmith-MacMillan form at s=s, (including
gy=oo) if P(s) and Q(3) have no poles or zeros there. (See Van Dooren ef al.
1979 for a proof.) This result means that one could also find the Smith-
MacMillan form at infinity using elementary operations it their matrix repre-
sentations have no poles or zeros at infinity, Such a set of elementary opera-
tions are represented by a special kind of square proper rational matrices having.
precisely this desired property.

It will be demonstrated in the sequel how these elementary operations may
be used to reduce a rational matrix to its Smith-MacMillan form at infinity,
The link between these operations and the valuation theory approach (Kailath b
1080, Verghese 1978, Verghese and Kailath 1981) is made clear. The authors
believe that the above approach to finding the Smith-MacMillan form at infinity =
is casier to uge than the valuation approach when the matrixis sparseand of large =
dimension. This is largely due to the rapid increase in the number of minors of =
different orders which have to be considered in the latter approach. '

Seetion 2 of the paper deals with notation and a number of definitions which
will be used during the ensuing analysis and discussion. _

Qection 3 introduces the aforementioned elementary (bi-proper) operations =
and then shows how these may be used to find the Smith-MacMillan form of a
rational matrix at infinity. It is shown that the Smith-MacMillan form at
infinity is a eanonical form for a suitably defined equivalence relation, A
graphical method of finding this canonical form from the Bode magnitude array
of T'(s) is also discussed. Whenever possible, arguments are illugtrated with
numerieal examples. Y

Section 4 presents some new results on the structure of quadruples =
(J, I, B, €) which are strongly irreducible (Verghese et al. 1979, 1981) realiza-
tions of polynomial matrices. It is shown that if a polynomial matrix has
more rows than columns (or is square) and it is column proper, or it has more
columns than rows (or is square) and it is roiw proper then a strongly irreducible =
realization may be written down. fs

2. Background mathematics and notation
Let & be the field of reals, B[s] the ring of polynomials with coefficients in
®, and R(s) the field of rational functions t(s) = afs)] Bls), a(s), Bs)ERs), Bls)#£0. =
A discrete valuation (Atiyah and Macdonald 1969) on R(s) is a mapping
5: R(s)—Zu{+ o) (Z: the ring of integers) such that

3t (s)ta(8)) = 8(F,(8)) + Slta(s)) (1)
5(t,(s) + ta(s)) = min {5{¢,(s)), 8(to(s))}  for all £,(s), fo(s)ER(s) [2_}

3(0): =+ ()
Now if t(s)=als)/Bs)R{s) and we take
8(t(s)) : = deg Bls) — deg afs) =qeZU{+ w0} (4).

it is clear that the function &(-) defined in (4) satisfies (1), (2) and (3) (where ==
deg (0) 1= —c0), and it therefore serves as a discrete valuation on R(s). %
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A H{s)eR(s) is now defined to be a proper rational funection if 8({(s)) =0,
i.e. if deg B(s) = deg al3). It is clear that the set of proper rational functions
R,.{5) endowed with the operations of addition and multiplication is a commu-
tative ring with unity element (the real number 1) and no zero divisors.  B.(8)
is therefore an integral domain.

The units in Ry, {s) are those proper rational functions #(s)eR,.(s) for which
there exists a f'(s)eR, (s} such that t(s)'(s)=1. This implies  that
1{s) = «(8)[ B(8)ER (8} 18 a unit if and only if deg ofs)=deg 8(s) and therefore
S{t(s))=0. The units in [ {s) we call bi-proper rational functions.

Let t(s) = afs)/B(s)eR(s) and write

2(s)_als)
Als) Bls)

from which it is seen that every H{s)eR(s) can be written as a product of a unit
u(s) in R, {s) and a factor s~ where g = &{f(s)).

t(8)= ste—1=u(s)s~ 9, (g=deg B(s)—deg als)) (D)

Example |

(a) Let t(s)=(s+ 1)/s(s + 2)(s + 3), then 8(t(s))=83—1=2=q and {t(s) can be
written as : {(s)=[s(s + 1)j{s+2)(s + 3)](1/s%).

(b) If f(s)=(s+2)s+ 3)/(s+ 1), then 3(t(s)) =1 — 9= —1=¢ and (s) can be
written as: H(s)=[(s+ 2)(s + 3)/s{s + 1} ]s.

Now for every pair {,(s), to(s}#0 of rational functions there exists a proper
rational function p(s)eR,, (s} and a rational function r{s)sR(s) such that

ty(8) =1,(s)pls) +7(8) (6)
and either r(s)= 0 or else 3(r(s)) < dltsls)). In particular we have
(i) if gy = 6(t;(8)) = Slla(8)) =42 and t;(s)=ugls)s . i=1,2, then
pls) =ty M) ()8 s
and r(s)=0, and
(ii) if g, <qs then p(s)=0 and rls)=1£,(8).

Definition 1 |

Given two rational functions ¢,(s), lo(s) #0 then we say that t,(s) is divisible by
to(s) if (¢, (8)) = 8(1a(s)). (Note that if #;(s) 18 divicible by t,(s) then the
“ quotient ' p(s) is proper and the division is ‘ exaet ', i.e. r(s)=0.)

Example 2

(a) Let t,(s)=s% 8(h(s))= —2=q, la(8)=4%, B({s(8))=—3=0¢s Then {,(s)=
s2=1,(8)p(s) = s%(1/s) where S(pls))=5(1/s)=1, i.e. pls) is proper.

(b Let fy(s)=1/s+1, 8(t,(s)) =1=1q, and to(s) =8, S{lyl8))=—3=g; 80O that
qy>qa WVriting fy(s)=Ts/(s+ 1) ](1/8) = wy{s)s™™ and ly(s) =1 8%=1y(s)s™% then
pls) =1y~ (s, (8)s~ @9 =[s/(s + 1)](1fs%) =1/(s + 1)s*.

We now note that for the integral domain of proper rational functions
Rpl8) the diserete valuation defined in (4) serves as a ‘ stathm * (MacDuffee
1033) (or * degree ') and so (6) describes as Kuclidean division algorithm, Thus
R, (s) is a Fuelidean ring and therefore a principal ideal ring.

Ip2
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Consider now the set R, »*™m(s) of pxm matrices with elements in B (s).
A matrix T(s)eR,, =" (s) is called u proper rational mairiz. Forp=m, Ry, P =P(s) A8
is u ring. The units in &, 7*(s) are those p x p proper rational matrices Uls) 288
for which there exists a p x p proper rational matrix ['(s)eR,,»*P(s) such that — =
U(s)U'(s)=1,. The units [(s)eR,, =P (s) we call R, (8)-unimodular or hi-proper
rational matrices, g

It can easily be proved (MacDuffee 1933, Ch. 3, Thim. 20.1) that U{s)e®R,, P*P(s) :
is a biproper matrix if and only if det U(s) is a unit in B, (s} (i.e. a bi-proper
rational function). It can also be verified that U(s)eR, *?(s) is a bi-proper
rationnl matrix if and only if lim U{(s)= E eRP*? where det Eiy#0.

=

In system theoretic terms the above equivalent conditions imply that if
AyeRma, BpeRm®, CyeRPXT, EeRP is a canonical {minimal) realization 5
of a bi-proper rational matrix U (s)eR, =7(s) then Az — ByE, ' Cy, ByEy, :
~CyEp~Y, Ey™' represents a minimal realization of the wnique inverse
[7'(s) = U(s)-1eR,,»*2(s) of ['(s).

"y h.’.!-l.."_-:;g'.-ﬁi-iiéfl_'."p.'_h"- e T -

£2s ot el doni

3. Smith-MacMillan form of a rational matrix at infinity

As in standard discussions on the classical Smith form (Gantmacher 1959},
we begin by introducing three elementary column or row operations on &
rational matrix T(s)eRr=m(s). These are :

I{a). Interchanging any two columns of T(s). This is achieved by multi-
plying 7'(s) on the right by the m x m bi-proper rational matrix

..1. 7
b
(Fiizaees A ~ TOW i
T = : (7} T
l =
T 0 - row j
1
L 1]
pru el j

1(b). Interchanging only two rows of T(s) by multiplying on the left by
the p % p bi-proper rational matrix 7', which has exactly the same structure as &
o &

2(a). Multiplying column i by a bi-proper rational function (unit) u(s)eR, (8). :
This is achieved by multiplying T'(s) on the right by the m xm bi-proper
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* rational matrix

Trals)= u(s) gt (8)

col i

a unit ; by multiplying 7'(s) on the left by the

2(b). Multiplying row i by
,(8) which has exactly the same structure

p*p bi-proper rational matrix 7'y,
an element t(s)eR’,(s) of column a2

3(a). Adding to column i a multiple by
« m bi-proper rational

._ ~ This is achieved by multiplying 7'(s) on the right by the m
 matrix T'py(s) given by

I

— FOW i

T qals) = (%)

1 — oW f

ts)

L 9
s 3(h). Adding torow i a multiple by an element {(s) of row j » by multiplying
~ (s) on the left by the pxp bi-proper rational matrix

- 1
T o H .sr}
1 :
T'als)= (T (9')
1
i
& kil
vol i ol i

entary operations, and their

These row and column operations we call elem
Hed elementary matrices,

_matrix representations given by (7), (8), (M or (9" are ca
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We can now state

Theorem 1 3

Let T(s)eRrxm(s), rank aco T'(s) = min (p, m). Then by means of left
elementary operations, T'(s) can be brought to one of the following upper right
triangular forms RS

!11[3} 112{‘3} o EU,{S] tlm{‘g]
0 faafs) .- ays) - L) (p<m) (10}
0 0 i bl Ginldd

[ ta(s)  tals) o tyal(8) ]

8 bl e dele)

: ] . (p=m) (10)- 2588
{ | S E
|0 0 .. 0

where if [ty8), fap(s) <o trop xlS) fials), O oo 017 is the kth column of (10) or b
(10Y, k=1, 2, ..., min (p. m) then either :

tals)=0 foralli=1 2, ... k-1

8y lpls)# 0 forsomei=1,2, ..., k—1
i Bltuls)) > Sltyls)) for each such i

Similarly, by means of right elementary operations T'(s) can be brought to
one of the following lower left triangular forms i

1(8) i e BE o B

Ing(8)  laals) ... U . 0 (p<m) (11

'!n].{‘g} 't;i*;','l[‘g} LELE IJJ;IJ{.‘?} by l}
i ') DU | B
tyls)  faals) o U

- : : (p=zn) unf._'
!”'1.['!} E”'“_{S} i‘m,,.,f,-‘.i] -

L 'Eplli‘g} 't_u‘ll:#:' e f;m;{s} -

where if [E(8) leal8) ooos fpoaf8)s Bl $), U oo 0] is the kth row of (11} or [ll}',_.:
k=1, 2, ..., min (p, m) then either

E-kj[ﬂ}=ﬂ fﬂrﬂ.uj=l. 2,“.,k—l
oL ty(s)#£0 for some j=1,2, ... k=1

R B(tyl8)) > Bltyls))  for each such
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Ly by vow operations, The

We only indicate how 1o obtain (10) or
lar rensoning and column

triangular forms (1 1jor (11} can be obtained using simi

operations.
Assume that the first

Among these elements ¢
position (1,1) by & TOW permutation.
t(8), tals)s oo tals) of the first column ©

Sllyy(s)) < Bltn() T=2 30 P

column of T'(s) contains at lenst one non-zero element,

hoose one of least valuation 8(*), and then bring it to
This means that for the elements

f the resulting matrix we will have

50 we can write
tals) =tn{s)pals) T e TR
a multiple by py(s) of row 1

with pi(8)ER,(s). e now subtract from row i
i the resulting matrix will

for alli=2, ..., p. After this step the first column o
be: [ty (s} 0... 0]

Now consider the remaining (p
and column) ; and employ gimilar arguments to those

matrix having the form

— 1y {m=1) matrix (ignore the first row
above to reduce it to a

r tu{ﬁ] tlﬁ[.s} Elﬂr\‘s} L Elrrl.r\'s} i
U Faal8)  lagl8) «o tal8)
(12)
0 i 133{5:1 fzm{.‘g]
|_ U [.l t_ui}.{'ﬂ} e f‘””.‘{#.] o

In the second column two situations may arise, These are:

(i) 8(laals)) < 8(t1al5))s in which case t,4(8) can be written as tya{8) = taals)P2al8),

12) by Pagl8)ER;,(5) and

further.

Continning in this w
form.

From Theorem 1 we obtain

Corotlary |

as the product of a finite numbe

(i1) S(taals)) > lf1al#]), in which ecase

Pl 8)ER,(8) and so by multiplying row 2 of (
subtracting it from row 1 we Lprive at o matrix having the form
[ tyls) 0 hals) ti(8) ]
b fals) (s tamls)
(13)
v U tnls) Pa,alS)
|0 0 ta(8) oo LanlE) ]

we cannot reduce this column any

ay we arrive at a rational

If T(s)eR,"""5) is a bi-proper rational matrix the
¢ of elementary matrices.

matrix having the desired

| o

n it may be vepresented
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Proof
By Theorem 1 T(s) may be brought to the form

f“l:s]l 513[3] f].y';ﬁ'}
Po=| 0 dul) o @ (14)
0 0 .. D) ?7.__

by left elementary operations, Since T'(s) is a bi-proper rational matrix and
the elementary matrices used to reduce T(s) to T(s) are bi-proper rational
matrices, T(s) is also bi-proper rational, i.e. det P(s) = F1q(8)f30l(8) +o- Eppls) I8 2
bi-proper rational funetion. Since the clements fy(s) of T(s) arve proper =
rational - functions, the above implies that {,,(s), iep are bi-proper rational
functions and so 8(f;(s))=0, forall i=1, 2, ..., p. =
Now from Theorem 1 we have that either (i) f(s)=0foralli=1, 2, ..., k-1
or (if) 8(i(s)) > (Fls)) for some i=1,2, ..., k1. But since 8(f;(s))=0 forall
i=1,2, ..., p, (i) implies 8(/;(s)) <0, ie. {..(s) is non-proper, which is a contra:"
diction since T(s) is proper, in fact bi-proper. Hence case (ii) cannot arise.
Thus T'(s) has the form : T'(s)=diag (Fra(8), -oor £,,(80), i€, it s equal to.a 5
product of elementary matrices of type 2, and hence T'(s) can be reduced to the =
unit matrix I, by means of left elementary operations of type 2. Then, iR
conversely, the unit matrix /,, can be transformed to T(s) by means of elemen- e
tary operations whose matrices are T,%, ..., T1,,”, which proves the result.

3.1, Equivalence al infinity
Definition 2 ;

Let (7',(s}), Ta(s))eR?=7{s) x resmig), Then T,(s) and T',(s) arve called
equivalent (af infinity) if there exist bi-proper rational matrices T, (8)ER,P*P(8)
and Tg(s)eR,,"*"(s) such that '

T T ()T gts) = T.(s) “5.}_.?

(learly (15) defines an equivalence relation on Rrxmis), (l1.e. a aubse_t--'
£® = @mrxm(s) x BP*m(s) which has the properties of reflexivity, symmetry and
transitivity) and if T'y(s) and T'y(s) are equivalent (at infinity) we denote this by
writing :

(T(s), Tels)es ™ or by Ty(s)~ Tols) (&™)

The &*-equivalence class : [7'(s)]s or the orbit of a fixed T[S}ER"’"“‘{S}'_E
is the set o

[T(s) ] = (T {s)eRMM(s) | Tis)= T, (T (8) T Rpis) where Tl.[S}E[FI,”W“{s),
Tnis)eR,,,"*"(g) are bi-proper rational matrices}
= (T ()ERP=m(8) |(T(s), T(s))ed ™ = RI7(S)

We can now state
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Theorem 2 (Smith-MacMillan form of a rational matrix at infinity)
= Let T(syeBP<m(s) with rank g T8y =r. Then T(s) iz equivalent (at
~ infinity) to a diagonal matrix having the form

< .

o O

ST;ﬂ:ﬂ = 1!3“’"1 . {15]

O ‘.l,l'.sﬂ'Ir

where
1= 3@',;?.—0 (17}

! 324 Z 2 >0 {18}

Proof
Among all the elements t;,(s) of T'(s) that are not equal to zero we choose one
- which has least valuation 8(+) and by suitable permutations of rows and columns
- we bring this element to position (1, 1). We now write 1 #,(8) =1y (s)s™™
~ where wu,,(s) is bi-proper and g;; = 8(ty,(s)). Multiplying the first row or column

& o T(s) by gy (8)7) (operation of type 2) brings the first row or column of the
| resulting matrix T(s) = [i;{s}] to

3 [§7911, tya(8)87T0, s ty (880 ] (19)
i or
; (8790, gy (8)8790, .oy ”plt.'g:"?_q"lT (20)

- respeetively, where wu;(s) are bi-proper and gy, = 8(1;(8)) = qus =2, m or
g =08als) = 1=2, ..., P :

3 Now writing :  f;(8)= !.:”[3}3'%:-..5—‘?113:1,{.5}, j=2, ..., m, where Puyls) =
iy (s)sm - aleR, (8), we see that by column operations of type 3, ie. by
- subtracting from the jth column (j=2, ..., m) the first multiplied by pyls),
- we can reduce the first row of T(s) to the form [s~2, 0, .., 0]. Similarly, with
~ row operations of type 3 and similar arguments the first column of the resulting
*natrix can be reduced to the form [s7®, 0, ..., 0]7.

The resulting matrix T'(s) will have the form

g {0 0
Tis)= 0 frsl8) v fanl®)

i:l { p,.[s} e Ey(8)
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e
S et

As t(s) in (9) and (9)" has a non-negative valuation (by definition), and since
the valuation of a product and the valuation of & sum obey (1) and (2) respec-
tively, we observe that 8(s 1) < B(fy(s)) for i=2, ..., pand j=2, ..., . This
menns that we never have to consider the possibility of generating a term with
a lower valution than that of s~ <A

This is illustrated by the following example :

LA

1 O] 879 upsn L H g8 ™0
t1s) || ugsmm  ngesTU B Ugg8 93 4 U(8)ST thggy T3 H(8)10y 8012 :
We know that :
(@) B(t(s))> 0 -

(b} S(s~911) < min {8(ity 57912}, 1y s7), Bt 408 922)
i

By applying the rules governing the properties of the valuations of sums and
products we have that

(a9} < min { 8wy 2 Hajs T4, B(ttand 932 + 1{8)1t 287 91) |

which shows that we can never generate u term with valuation less than = =
3(s~am). e

It is now easy to see that the reduction process may be continued to the
cecond row and column and so on until (16) is obtained. The above in con-

junction with Corollary 1 proves Theorem 2. 3

In view of Theorem 2 and the arguments in the introduction regarding the -
infinite poles and the infinite zeros of a rational matrix, we can now state :

Definition 3 :

If p, is the number of g;'s in (17) with g;>0. ick then we say that 7'(s)
has p, poles at infinity, ench one of order g;> 0. Also if z, is the number of
G/s in (18) with §; > 0 then we say that T(s) has 2z, zeros at infinity, ench one of =
order ¢; > 0.

The above reduction process using elementary operations will now he
illustrated with an example.

Erample 3
Let
| i
Tis)=
41 1

(1. Bring the least valuation element to position (1, 1). This is achieved as
follows
01 1 0 s+ 1 1




Structure of rational malriz af infinity

02, Multiply the first column by the unit /(s + 1)

s+1 17[sfs+1) O § 1
I n;}_[ o 1| lapesny o

03. Add — /s times column one to column two

8 11r —1/s s 0
L,’[a+l] G]_G 1 ]— slfa+1) rlf[s+1}]

04. Add — 1/(s+1) times row one to row two

1 0 & U e 0
—1/(s+1) l]\:sf[a+1} —1/{s+1) i 0 —1f(s+1)

05. Multiply column two by the unit — {8+ 1)/#

£} U 1 i g 0
l:ﬂ u-l_."[s-b-l}] 0 —(s+1)s 5 0 ]."3:l

one infinite zero of order 1.

Hence 7'(s) has one infinite pole of order 1 and
Theorems 1 and 2 give rise to the following :

Propaosition |
Let A(s)e®, *"(s), B(s)eR, 2*™(s), with p+q=n.
statements are equivalent :

Then the following

S1. The proper rational matrix

A(s)
Tay:= eR, ‘PHe1xm(s)
B{s)

has no zeros at infinity.

S2. The Smith-MacMillan form of T(s) at infinity is

Iﬂ'l
'q'!"tﬁjx =
i)

S3. There exists n bi-proper rational matrix U (8)ER,,,

f"l
(8T8} = \: il
L

S4. There exist proper rational matrices X(s)eR, M *#(s)

such that
A(s)
| X(s), Y()] =1
Bis)

tprexp+e)(s) such that

and Y(s)eR, ™"9(s)



712 A. 1. 6. Vardulakis et al.

%5. There exist proper rational matrices

CEa‘jeﬂerXl{ﬂ+qJ—m][3}
and
.D{-?]E [Fgquup‘q}-ml(_g]

such that the proper rational matrix
{A{s] '(s)

Eﬂprmﬂ:xmﬂ}{ﬂ
B(s) Dis)

is bi-proper.

S6. lim T(s)= HeRW=% and rank £=m.

=i

Proof
S1 = 82. This follows directly from Theorem I and Definition 2.

S2 = 83. S2 implies the existence of bi-proper rational matrices

T (5)ER, 0@ 10(s)
and
T ()R, ™ (8)
such that

T1(8) T al8) | "!rm
T(s)= T (8} Tris)= T rls)
T als) T'\,4(8) 3 0

TL][‘H} TLE.[‘S} Tl{{ﬂ 0 'Im Im‘
= = U, 7Y(s)
TL:{S) TI.J.{S) 0 I“jj+|-1]—m g L 0

where {/,~1(s)eR,, P+0%W1)(g) bi-proper. Hence 83 follows.

S3 = 84, By appropriately partitioning {7y (s} in S8 we have

[L‘f[‘l{ﬂ'] ULEL‘”][A{EJ] {Im]

= {21}

Upals)  Upats) L B(s) 0 ;

whenee [X(s), Y(8)]=[U1,(s), Urals) ]
S4 = S5. Notice that

['QLI(’E] SLE[S}] l:UI.ﬂ-ﬂ Ur.z':ﬂ}]_l
Opals)  Opats) Upals)  Upgls)
(where the sizes of the matrices U, (s) are equal to those of the matrices
[7,,(8)) is bi-proper and from (21) it follows that ;

[Am] [ﬁr.lts}]
Bs) | | Uhal)
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Therefore C(s) 1= U a(s) and Dis) 1= 0 1.8}

Afs) Cis)
B(s) Dis)

As) COfs) K, K,
him = — KeRp+axpxa)
e~ | Rig) Dig) K, K,

with rank K =p+q. Therefore

Als) K,
limi s — Femintaiom
| Bs) fEx

S6 = S1. This is obvious. O

85 = S0. [ ] being bi-proper implies (see § 2) that

which has rank m.

Remark

From statement S4, it is clear that Proposition 1 can also be interpreted as
expressing various equivalent necessary and sufficient conditions for the
existence of left (or right) proper inverses : T(s)=[X(s), Y(s)] of a proper

rational matrix T'(s) = [;i;]

Corollary 2

Let T'(s)e®r#e(s). Then T(s) is a bi-proper rational matrix if and only if
STLﬂm =jr;|'|'

Corollary 3

Let T, (s)eReom(s), K,eRexr, KpeR™, K, Ky non-singular and
Tols) := K T(s)Kp then T',(s) and T'y(s) have the same finite and the same
infinite Smith—MacMillan forms.

Proof
K, and K are both unimodular and biproper. OJ

3.2, Canonical forms for €= and complete sets of invariants at infinity

Let T{(s)sRr=m(s), with rankg, T'(8) =r <min (p, m) and consider the
quotient of R**"(s) by 67, Le, consider the set {denoted by) Bron(s)/&™ of
& @-equivalence classes : [T'(s)] when 7'(s} runs through the elements of
mexm(s). We can characterize these equivalence classes by determining
complete sets of invariants and canonical forms. We have :

Theorem 3
Let 7'(s)~ Spei(d ™) as in Theorem 2. Then the map

g: BRI xZx o xLi TE) {1 ga oo Gt T oo Or)

is a complete invariant for 6, i.e. the indices q;, iek, ¢;, j=k+1, ..., r (as an
ordered set) constitute a complete set of invariants for §*. Also the map
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fi mexm(g)—RPXm(s) ; T(s)—Spi™ 18 & canonical map for £ on BP*(s) and
Sy ® is a canonical form for £% on Rrxm(s), which we also call the canonical
form of T(s) at infinity.

Proof

Let us denote by &,(T)eZ the least valuation among the valuations of all
minors of T(s) of order j, jer, and define the rational functions i,(s), jer

iy(s) 1= ST, (E(T) 1= 0)

iyl8) 1 = s (TI=E(D) (22)

i fs) 1= sbrma(T=E(T)

Let T(s)eR®#*m(s) be any other rational matrix within the & *-equivalence class
(T'{s)]¢= of T(s). Then by definition there exist bi-proper rational matrices
T'1,(s)eR,,Y*P(s) and T ()R, m#"(s) such that T(s)=Ty(s)T(s)Tg(s). If by
Tiu o h, we denote the jth order minor of T'(s) which is composed from rows

B om

iy, .-, iy, and columns &y, ..., k;; jer then by the Binet-Cauchy formula we
have : i i ¥
Phpo oty = F Tyt T e ot T i f (23)

1€ < ... S;$p, 1€/ < . €8<m, jer

Making use of the properties of a discrete valuation, § 2 (Atiyah and Macdonald :

1969), and observing that the valuations of the elements of T (s) and T'x(s)
are non-negative, it follows that

T2 EAT),  jer (24)

By the symmetry property of the equivalence relation &, we can also write : o

ETY= E(T), jer (25)

and hence that B
E(Ty=¢4T), jer (26)

Therefore we have that

T(s)~T(s)E™) = E(T)=£(T), jer (27)

g e

bice
R

Yo

|-‘ = Ly
LR

4y

(e v e s B 3

=

Hence T'(s) and T'(s) have the same set of rational funetions i;(s), jer defined

in (22). Now by hypothesis : T(s)~Sp"(€7) and therefore from (27) &(T) =

ET)=£,(S7™), jer and it simply follows that
E(T)=1q, &
fg{T]m?l + 4

: i
£{T)= _2:1 't

&
EJ.-+1[T'J=( 2‘1 ?1)—‘?‘“1

F

: ¥
fr(T}E z 4= Q'-_;
=1 fobEL )

! @8

VRS

s
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P l8) =g, ig(8)=48" ..., i,.(8)=8%
(29)
1 1

. 1 : ;
fenl@) =y a8} = oo &)=

. Hence the map g : T(s)—>{qu, - Qs Frsrs +oes @) is an invariant for . We
- show now that g is a complete invariant, i.e. that g(T(s)) =g(T(s)) implies that
- T~ T()(E™).

£ Let (7)) =g(T() =g -s G5 Trorr oo00 7.) as an ordered set in Zx ... X
- 7. Then T(s)~ Sp™(&™) and T~ S =(€ ®) where

8™ =8pi™ =diag (89, ..., 8%, g9t ..., 1/s%, 0 ... 0)

and therefore Tf(s)~T(s)(&=). The above u.rgument-é imply also that
. T(8)—8p,y is a canonical map and S;™ is a canonical form for £™ on

RPXm(s). i)

‘-" Definition 4
The rational functions is), ier in (29) are defined as the invariant rational

functions of T'(s) at infinity.

b

- Remark
Note that formulae (22) indicate a simple algorithm for the computation of
the Smith-MaeMillan form of 7'(s) at infinity Sy ™.

Let

1{{s+ 1)* #  gf{s+1)
T(s)=
(84 2)/(s+0-254+1) 1/s° 1/{s+2)2

.k then the least valuation &(7) among the valuations of all first order minors
L ie. clements) of T'(s} is :

- E(TY=min {2, —3, S T e e

- The least valuation &,(T) among all second order minors is :

£(T)=min {-—2,0, — 1}=-2 and §(T)=0

Therefore i,(s) = &5 =53, iy(g)=sffr=4"3" (=2} =] s and so

a1 0
Spn™ =
0 1js 0

one pole at infinity of order three and one zero at infinity of
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G A -",,'
dafsaiey

3.3. Graphical determination of the Smith—MacMillan form of a rational matrix
at infinity it

It is well known that in the case of scalar rational functions the difference =
between the denominator and the numerator polynomial degrees (i.e. the S
valuation) is given by the asymptotic roll-off rate of the Bode magnitude plot.
Hence the roll-off rate determines the Smith-MacMillan form at infinity in the
sealar case. Under certain genericity nssumptions, this idea may be generalized i
to the matrix case. This provides the practical designer with a tool whichmay =
be used to evaluate the Smith-MacMillan form of a rational matrix 7'(s)
at infinity (and hence also in the square case the asymptotic root-locus g
behaviour) from an inspection of the open-loop Bode magnitude array. To
chow this let T'(s)eRP¥m(s) and denote by Tf:jn - & the kth order minor com-

4 R o oy P T A e

2 ot

posed of Tows iy, iy, <oy iy and columns jy, ja, ..s Ji of T(s). Then ;.
i B
TEoi= Y (= D*lep biapar oo tapd) (30) 7 =8

where py, Pay --+» Py IS @ permutation of jis Jar -y Jy and the sum is taken over
all possible permutations (the exponent g is the number of transpositions =
required to go from the natural order Fuo Jar covn du 10 D1i Pav oo Pi)- Taking
valuations of both sides of (30) yields R

k 1
S{T}::}:: r:;:} ?.— lnin {5“1'13'“’ !f;pg!‘ L 'fl'k;n.:l} = Hlin ( iz B“f"ﬂl]) {31} :
- :
Since o |
£(T) 1= min {8(T5: iz 2 3} (32)
we have ;

k 08
g;!:T} = min ( -zl S{I‘;f”“}) l:}ﬂ]

where the minima are taken over all indices, 1 <1, <fy< ... <iy$p, 1€< 08
Ja ar <dpEn. :
Note that 8(t;;) are the asymptotic roll-off rates of the individual entries of -
the rational matrix T'(s) (a valuation of 1 corresponds to a 20 db/dec roll-off
rate and o on). Before the 8(t;)’s can be used to find £.(7) via (33), we have =
to establish the conditions under which the inequality in this equation may be 5SS
removed. These conditions are given by the following lemma :

Lemma |
Given two rational functions f,(s) and ty(s), then

B(ty(8) + ta(s)) = min {5(ty(s)), B(ta(s))}
if
S{ty(s)) # B(t4(8))
Proof
Let t,(s) = n{s){d{s), i =1, 2 where n,(s) and d (s) are polynomials, then

ny(8)dy(8) + ny(8)dy(5)
fy(8)dof5)

t(8) +1a(8) =
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since 8(t,(s)) # 8(t,(8)} we have that

deg (n,(s)) + deg (elg(s)) # deg (ng(8)) + deg (d,(s))
therefore

B(L,(5) + tols)) = deg (d,(s)) + deg (dy(s)) — max [{deg (n(s))
+deg (da(s))}, {deg (ny(s)) —deg (e, (s))}]
=min {3(t,(s)), 8{fa(s))} O

This lemma shows that if there is only one least valuation product term
K
¥ 1, in (33) then equality holds in (33). If there is more than one least
=y

valuation product term, however, cancellations may oeeur during the formation
of the least valuation minor of order k. Almost any small perturbation to the
transfer matrix will remove these valuation-increasing cancellations and
decrease the order of some of the infinite zeros and generate finite ones. In
the generic case, therefore, equality holds in (33) even if there iz more than one
least valuation product term in this expression. These ideas will now be
clarified with the aid of examples.

Bode magnitude diagrams corresponding to Example 4 are shown in the
Figure and the valuation matrix V= {8(t;(s))} is given by

2 -3 =1

1 3 2
From V it follows that

£(T)=-3 and E(Ty=min {243, 1 -3, 2+2, [imto i §—1}= =2

B
3.1E-B3 ]
1.BE-23 3
3AE-04 4

I 1-DE-221 N S T T

Bode magnitude array for Example 4.

COM.
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SR
s :T' I_-!
Hence S 0 0 k-
¥ 0 J.. '%
Sy (8)= .
0 ljs 0 .
3 =1
g 2
which agrees with the earlier caleulation. Note that no cancellation difficulties b
arose in this case. As has already been mentioned, the graphical method fails ,:T &
it cancellations oceur between numerator coefficients of maximum degree when &
forming least valuation minors of different orders. For example, given a e
- =
s+1) 1/{s+3) Fet %
; pe. 3
T{s}= e 0
(e+2) L/(s+4) B
the Smith-MacMillan form at infinity may be calculated as B X
e . =g
By
| ||'S (0 i '+
S‘T‘Ea:l: o 1- :

0 1/s o

I we were to use a valuation matrix obtained from the Bode magnitude array
of T'(s), which is 3
i 1

V=
11

we would calenlate the Smith-MacMillan form at infinity as

lig 0
Spw” =
0 ls

This diserepancy is due to numerator cancellations which occurred during the
formation of the second order minor. If T'(s} is perturbed to

/(g4 1) L/(s+3)
T"(3) =
(s +2) 100001 ](s+4)

the Smith-MacMillan form at infinity is

s 0
S.r, Llf]x =
]| 1;'8

which agrees with the graphical result. The interested reader may verify that
the perturbation of T(s) resulted in the generation of two finite zeros at
(—2:5 1 j447-2).

4. Realization theory

Let T(s)eRr=m(s) with MacMillan degree (Rosenbrock 1970) 8, (T(2)=n. S5
It has been shown {Verghese et al. 1979, 1981, Rosenbrock 1974) that associated :::.-
with 7T'(s) there is a system of first order differential equations and an output ke
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expression having the form
J pig(t) = Agxp(t) + Bpull)
(34)
yplt) =Crglt)
where, if 7'(s) is non-proper, then ./ peR"<" and is singular, dzeR™", BypeRm ™,
(' eRP=m and such that

(i) the rational (polynomial) matrices
slp—dy
[HJT— .-'11'. == H'Tjt {35,:'
Cy

have no finite or infinite zeros.
Such a quadruple (Jy, Adq, By Cr) has been defined as a ° strongly
irreducible * realization of T(s) (Verghese el al. 1979, 1981).
Let us now write
T(s)=T,(8) + £(8) (37)

where T, (s) is strictly proper and £(s) is polynomial. i T'(s) is an entirely
polynomial matrix, i.e. 7' (s) =0, then it turns out that a strongly irreducible
realization of T'(¢) =£E(s) can be obtained from a minimal realization of the
strictly proper rational matrix (1/w)E(1/w) (Verghese ef al. 1979). We state
this result formally by the following :

Proposition 2
Let E(s)eRr*m(s] and let J geR¥ e, BueRM=r, — CgeRPE™ be n minimal
vealization of (1/w)E(1{w) where n; = 8, L(1w) E(1/i)], Le. assume

(L) E(l )= — Cplie, —Jp) ' By (38)
with
wil, —Jg
rank [wf,, —J ., By]=rank =n,, forall weo(J ) (39)
5
Then (fp £, B Cp)isa strongly irreducible realization of K(s). 1.e.
B(s)=Cglsd p— 1,17 B )
and the polynomial matrices
T e (0
(i) (8 p—1,, Bgl and (i1} (+1)
{-‘H

have no finite or infinite zeros.

Proof

From (38) it simply follows that EQ ) =C (V) =1, 7' B which
by the substitution 1jw=s gives {40). Consider (41 (i).  Obviously
rank [/ —{,,, Bg)=n,, for all finite s. Hence [, —1,,. Bg] has no finite
zeros.  Consider now the point at infinity.  Then [8f =1, . Bg] has no zeros
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g '.-','

at 8 = 20 if and only if the rational matrix [(1/w)J -1, , By] has no zeros at ': ,'ig |

w=0 (Kailath 1980, Pugh and Rateliffe 1979). Now ~ ; -_f"-

—wl,, 0] : f

[(Vw)d y— 1, Bpl=[—J g +wl,, Bg] R

0 jm {42} 3] ;.

= N{uw)Djw) ! ,". _f

and since

—wd ] '_r. i ,r

Dw) ; g &

rank =rank i) [, {=ny+m forall weC (43) 7 S

N(w) g

wh,—Jg By

Equation (42) is a right coprime matrix fraction description of [(1jw)d o — 1, Bg]

and hence the zeros of [(1jw)Jy—1,,, ByleR, () at w=0 sre given by the = £

zeros of the ' numerator ' [wl, —J,, Byl at w=0. But [wl, —Jg Bg] has S8

no zeros because of (39).  An analogous procedure proves (41) (ii). g

= 4

We can now give a theorem which characterizes the structure of ./, in :' 3 .:

(38) or (40) in terms of the pole structure of E(s) at infinity. -3 ;f:':
;p'

Theorem 4

Let E(s)eR#*m[s] with rankgy, £(s)=r have Smith-MacMillan form at B
infinity :

Bpia™ =diag [s%, 8%, ., s, 1/gtesr, 1/g%ees, ..., Lg%, 0, ..., 0] (44) i j. |

with ¢;2¢.> ... 2,20 §2§.,2 ... 2§e1>0. Then all strongly irre-
ducible realizations (/.. I, By, O}) of E(s) are such that ., has Jordan form
given by :

block diag [/ oy, o/ gor -oon o g (43)
where

S R ¢ I 6

oo 1 ... u
Jg=|: : g+ 1. ek

KO

o

e
g+t
modulo block ve-ordering,

Proof %

Let (J,. By, —Cg) be a minimal realization of the strictly p
matrix (1) E(1/w) so that E{(s)=Cg(sf—1)"'Bp. Now sin
nomial, all its poles are at infinity.  This implies that (17w} E(



I‘-Tn .-

= LT e

Aty

DG I B B TR PRI
& 3 s o 4 ) I =

 £-4
—

Structure of rational matriv at infinity 7

poles at w=0 whieh in turn implies that all eigenvalues of J 5 are at 0 and so
J  can be decomposed as

J = I block diag [Jy, Ty, ..., J 11 (47)
where J ;, ict are Jordan blocks

G G T e

U e |

JF= : .-_ ‘-+E | uy !.'Et t'-lS}
: 3 |
| 0 0 L 0]+
- e

with (say) vy 20,2 ... 29,20, and I is a non-singular matrix whose columns
are eigenvectors and generalized eigenvectors of J,. Now the v/s give the
degrees of the non-trivial invariant polynomials of (wl —.f ) or equivalently the
degrees of the denominator polvnomials yr(w) =w" appearing in the Smith-
MacMillan form

I ot L Y
.”{H}-—lllﬂ:g Jl'fﬁ{ﬂ-"f 'ﬁ';[lﬂ}' gpaqla g i) A s, G} (49)
of (1fw)E(1jw). Therefore v, —1, iet give the degrees of the denominator
polynomials ' (w)=w"""! of the Smith-MacMillan form of E(ljw), i.e. the
orders of the poles at w=0 of E(ljw) or equivalently the orders of the poles of
E(s) at infinity. But by (44} the orders of the poles of E(s) at infinity are equal
to the gq/'s, fek, ie. k=t and v;=¢;+ 1, rek. O

If E(s)is a px m column (row) proper polynomial matrix with p=m (p < m)
then a strongly irreducible realization (f o I, By Cg) of E(3) and the Smith-
MacMillan form S, ™ of E{s) at infinity can be obtained by inspection. These
resultg are formally stated in Theorem 5 and Corollary 3 below.

Theorem o
Let B(s)eRr>m[s), pzm, be column proper and v, =deg e;(s) where

ri

efsy= Y e;sleRP<[s], jEm are the m columns of E(s). Then a strongly
=

irreducible realization (g, 1, By Cp) of E(s) is given by -

J g =block diag (f gy, gae oo S pn) (50}
with

S = ER{vﬁ-leu‘,--H. jEm (1)
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and
L]
Ty E l:.ui'+ l}' B}:zhlu'ck diﬂg lblf bzr ma bm} {52:'
=1
with
by=[0, 0, ..., 0, 1]TeR"~ 1! (63)
and
Olige [ Bgucisosi Byg|€apys vees Bag| e [€rr -or Emol (54)
Proof
Write

E(s)=[E(s)i[s7] + £SA8) (25)

where | £{s)]PeR#*m denotes the highest column degree coefficient matrix of
the matrix inside the brackets, [s¢] =diag (™, .... 8"}

ogr=l '| .1\
o (0
s
1
i A1 1
St i
N {8) = (56)
, P
sl"m—l |
SFM-E
O : L,
5
L I il . -
and £ ap :-c( * ﬂj) real matrix. Then
i=1
E(1jw)y=[E(s)" diag (1w), ... Lwt)+ B8 (1w) (57)

and

(L) E( jw) =[ E(s) ] ding (1jwnt, o a4l + (1/w) £ N (1)w)

=([E(s)]! + (1 fw) £ S (1]ie) ding (emt 1evm -1y |
qu"r"l -1
P
[ Hd.m‘-l}
= N(w) D{w)? (58)
where N(w)=[E(&) "+ E(1jw)S.(1/w) diag (1!, ... wrwtDeRP*™w] can also

be written as
N(w)=CuS{w) (59)
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where
- 14
w =) | v+ 1
: |
Ty i
N(w) = : (60)
1 +
B w | v, + 1
"'I;-"H 4| l

" D{0 (
Now sinee for w=0. rank Lfl,f:nﬂr-mnk [[E{&}}E]:m and for w#0,

rank Tim; — . we have that {58} is a right coprime matrix fraction descrip-
S

tion (MFD) of (1/w)E(1jw)eR, " (w) with D(w) column proper and by virtue
of the Wolovich-Falb structure theorem (Wolovich and Falb 1969, Wolovich
1974) (., By, Cp) is a minimal realization of (1/w)E(1jw). TFurthermore by
Proposition 2 (g, [, Bp. —Cg) 18 also a strongly irreducible realization

of E(s). ]

Remark

A dual result can be obtained for every pxm (p<m) and row proper poly-
nomial matrix F{s) by transposing E(s) and applying Theorem 5.

The proof of Theorem 5 leads to an interesting corollary regarding the
Smith-MacMillan form of a pxm, p>m, column proper (p<mnt. TOW proper)
polvnomial matrices at infinity. This183

Corollary 4

Let E(s)e®P*7[s] be column (row) proper with p=m (p<m). Then E{s)
has no zerog at infinity and its column (row) degrees give the orders of its
infinite poles.

Proof ;
Consider the column proper, p = m, case. The infinite pole—zero structure of
Ef(s) is given by the finite pole-zero structure of E(ljw)eRr*m(w) at w=10.
From (57)

TILTR I e

E(w)=[[B®))" + ES(1jw) diag (w", ... w'™)] :
] w'm
= N{w) D)™ (61)

where N()eRP*mw], D(w)eR™*"[w]. Now it ie easily seen that (61) is a right
coprime MEFD of £{1[w). Hence the pole-zero structure of E{1jw) at w= 0 is
given by the zero structure of the numerator and denominator matrices Niw)
and D{w) respectively. Since rank N(0)=rank [E(s)]i=m, E(1[w) has no
zeros at w— 0 therefore E(s) has no zeros at infinity.  On the other hand, since
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w't, iem are elementary divisors of D(w), E(1/w) has poles at w="0 of orders
equal to the »,'s, and therefore fi(s) has poles at infinity with the same orders.
The row proper, p < m case follows by duality.

Example 5

Find the Smith-MacMillan form at infinity of the following column proper
polyvnomial matrix
s#+s &

Es)=|2s+1 s+1

3s 1

and then write down a strongly irreducible realization of L(s).
By Corollary 4, E(s) has no infinite zeros and its infinite pole structure is
given by its column degrees, i.e.
& 0

HE“]I‘: 0 &
o 0

Ny ™ can be checked using elementary bi-proper operations or the valuation
approach, Theorem 5 allows us to write down a strongly irreducible realization

of E{s) as

01 0:0 0 00

o 0 1i0 0 00 1 1 0i1 ©
Je=| 0 0 0i0 o IBg= 1?_0 and Cp=—| 0 2 11 1

o0 ﬂl;ﬂ 1 nn ﬁ.ﬂ nén .I

L0 0 n%n 0 ] ELp

Note how the block structure of ./ vindicates Theorem +.

5. Conclusions

The Smith-MacMillan form at infinity is dealt with using a new set of
elementary operations which are similar in form to the classical unimodular
ones. The essential property of this new set of elementary operations is that
their matrix representations have no poles or zeros at infinity. The standard
algorithm for computing the Smith-MacMillan form at finite frequencies using
elementary unimodular operations is generalized to deal with infinite frequencies
using bi-proper operations. The connection between these operations and the

Tk
L)

valuation approach is established. The orders of the infinite poles and infinite ks -

zeros of a rational matrix constitute a complete set of invariants for equivalence

at infinity. Links between the poles at infinity and strongly irreducible
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realizations of polynomial matrices are derived. Finally, a simple graphical
procedure for finding the Smith-MacMillan form at infinity from a Bode
magnitude array is proposed.
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