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THE SEQUENTIAL CONSTRUCTION OF MINIMAL PARTIAL
REALIZATIONS FROM FINITE INPUT-OUTPUT DATA*
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Abstract. Any strictly proper transfer function matrix of a continuous or discrete, linear,
constant, multivariable system can be written as the product of a numerator polynomial matrix with
the inverse of another polynomial matrix, the denominator. Since a realization is easily constructed
from the polynomial matrix representation, the minimal partial realization problem is translated to
that of extracting-a minimal order partial denominator polynomial matrix from a finite length matrix
sequence. It is shown that minimal partial denominator matrices evolve recursively ; that is, a minimal
partial denominator matrix for any finite length sequence is a combination of the minimal partial
denominator matrices of its proper subsequences. A computationally efficient algorithm that se-
quentially constructs a minimal partial denominator matrix for a given finite length sequence is
presented. A theorem by Anderson and Brasch leads to a definition of uniqueness for the resulting
denominator matrix based upon its invariant factors. Parameters used during execution of the
algorithm are shown to be sufficient for enumerating all invariant factor sets in the equivalence class
of minimal partial realizations. The results apply to continuous and discrete linear systems including
finite state machines.

1. Introduction. Consider the following discrete, linear, constant dynamical
system:

x(k + 1) = Ax(k) + Bu(k),
yk) = Cx(k), k=0,1,2,---.

The vectors and matrices have real-valued elements or, if (1) represents a finite
state machine, the vectors and matrices may be defined over a finite field. The
state is denoted by the n-vector x; u, an m-vector, and y, an r-vector, are the
external input and output, respectively. Thus A, B and C are constant matrices
of dimension n x n, n x m and r x n, respectively, over some appropriate but
fixed field #. For a continuous, linear, constant system,

dx(t)

(1

y(t) = Cx(t).

Here the vectors and matrices have real-valued elements.
Both systems are characterized externally by a strictly proper rational
matrix M(z) called a transfer function and given by

3 M(z) = C(zI — A)"'B.
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CONSTRUCTION OF MINIMAL PARTIAL REALIZATIONS 553

When dealing with discrete-time systems, the polynomial indeterminate z can be
thought of as the z-transform variable. For continuous systems z can be thought
of as the Laplace transform variable.

For either the discrete or continuous system M(z) is said to have a realization
[6] given by the matrix triple £ = (4, B, C) if A, B and C satisfy (3). Let (3) be
expanded in a Laurent series,
@ M@ =Y Mz,

i=1

where the r x m matrices M, are called Markov parameters [6] and
(5) M; = CA'"'B, i=1,2,---.

Alternatively X is a realization if 4, B and C satisfy (5) for all i. If the dimension
of A is minimized over all matrix triples satisfying (3), then X is called a minimal
realization.

The transfer function may also be expressed as the product of a numerator
polynomial matrix, Q(z) € #"*™(z), with the inverse of a denominator polynomial
matrix, P(z)e Fm*™(z), i.e.,

(6) M(z) = Q(2)P™'(2).

The columns of P(z) are called column annihilating polynomials (CAP) and are
written

W pi(2) = Z pjizni—ja I12igm.
j=0

The matrix Py = [pg, Doz - Pom) 1 called the leading coefficient matrix, pro-
vided |Py| # 0. The nonnegative integers n;, 1 < i < m, will be called column
degrees ; their sum is the composite degree of P(z). Then from (6),

ni . ni—j’ : > 0,
®) M) = g =1 2B

0, n, =0,

where the r-vector coefficients of column i in Q(z) are given by

j—1

9) 4ji = Z M;_py.
1=0

Since |Py| # 0, let

(10) S(z) = Py 'P(z).

Foranyk = 1,

J

(11) Z M n,-Pji = 0.
=0
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The vector 7; of length (n; + 1)m constructed from the coefficients of p;(z) as
[ Pu.i 1
Pni—1,i
(12) m=| -
Py
| Poi

will be called a column annihilating vector (CAV).

It has been established [4] that a realization for M(z) having dimension equal
to the composite degree of P(z) is easily constructed from a representation
[0(z), P(z)] satisfying (6). Moreover, a minimal representation [13] exists for any
proper transfer function M(z); that is, there exists a P(z) with composite degree
equal to the dimension of a minimal realization and satisfying (6). A property of
P(z), originally proved in [4], is given by the following theorem.

THEOREM 1. Let £ = (A4, B, C) be a minimal realization and let [Q(z), P(z)] be
a minimal representation of M(z). Then the m highest degree invariant factors of
(zI — A) are identical to the invariant factors of P(z).

The invariant factors [5] of P(z) are monic polynomials denoted yp;(z), with
the property that yp(z) divides yp;+(2),1 < i < m — 1. Thus the m x m matrix
P(z) contains the same information about the system dynamics that is contained
in the system matrix A.

Let {M;} denote any infinite sequence of r X m matrices, and consider the
finite Markov parameter sequence of length N, {M;}y. This finite sequence is
said to have a partial realization X if (5) is satisfied for i = 1,2, ---, N. That is, a
partial realization of {M,}y has a transfer function with a Laurent expansion
whose first N terms correspond identically with {M,}; remaining coefficients of
the Laurent expansion are called the extension sequence. It has been shown [12]
that every finite sequence has a minimal partial realization that is computed from

the elements M, M,, ---, M. It will be convenient to arrange the Markov
parameters in an array called a Hankel matrix given by

Mk+1 Mk+2 Mk+j
(13) O'kH(i,j)= Mk+2 Mk+3 A./Ik+j+1 ’

My Mk+i+l Mk+i+j——l

where the shift operator 6%, k = 0, effectively adds k to the subscript of each block
element. If ¢* is omitted, k is understood to be zero.

Since {M,}y has a minimal partial realization, it also has a pair of minimal
partial numerator and denominator matrices, Qy(z) and Py(z), that satisfy (6) for
the transfer function of any minimal partial realization.

THEOREM 2. Let Py(z) be a minimal partial denominator matrix for {M;}y.
Then the column degrees of Py(z) are bounded by

(14) <N, 1<igm.
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Proof. Since the extension sequence may be arbitrarily chosen, the degree of
any column of Py(z) need not exceed N. In fact, if for any i, ny; = N, coefficients
for pyi(z), excepting the leading coefficient, may be specified arbitrarily.

Since (i) a minimal (partial) realization is easily constructed from a minimal
(partial) representation [4], [13], and (ii) given a minimal P(z) and the Markov
parameter sequence, Q(z) is easily obtained from (8)~9), the minimal (partial)
realization problem [12], [8] translates to the problem of extracting a minimal
(partial) denominator matrix from a given finite sequence of Markov parameters.

For an arbitrary infinite sequence of » x m matrices this paper will establish
that minimal partial denominator polynomial matrices for the finite length sub-
sequences evolve recursively. This is a straightforward and useful approach to
solving the multivariable minimal partial realization problem on the digital
computer. These results are motivated by the work of Massey [9] where Massey’s
minimal length shift register synthesis algorithm is seen as a recursive means of
constructing a minimal partial realization from a scalar, i.e., single-input, single-
output sequence.

The main result of § 2 forms the theoretical basis for the sequential realization
algorithm presented in § 3. In § 4 uniqueness is defined for sequentially generated
denominator polynomial matrices. The sequential realization method is evaluated
and compared with some existing realization techniques in § 5.

Notation. All scalar elements and polynomial coefficients belong to an
arbitrary but fixed field & ; 0 (zero) denotes the additive and 1 the multiplicative
identity elements of #. An m x n matrix X having rank r over & is written
X eZFr . I, represents the n x n identity matrix, 0 is any matrix of zeros, and
the transpose of X is written X'. The range and null space of a matrix X are
denoted #(X) and A'(X), respectively. Elements of the integral domain %(z)
are polynomials of degree [, 0 < [ < oo, with coefficients in #. If X(z)isanm x n
matrix of rank r over #(z), X(z)e #"*"(z). The units of #(z) are the nonzero
elements of & ; an element is monic if its leading, i.e., highest degree, coeflicient
is 1. Additional notation will be presented as needed.

2. The sequential realization theorem. This section establishes the theoretical
basis for the sequential realization algorithm. A lower bound on the dimension
of a minimal partial realization is now given.

THEOREM 3. The dimension of a minimal partial realization of the sequence
{M;}y,1 = N < o0, is zero if and only if

(15) M,=0, i=12-,N.

Proof. Sufficiency. Assume (15) holds. Then Py(z) is any nonsingular matrix,
and the composite degree is zero. Hence n = 0.

Necessity. Assume that M; # 0 for any j = 1,2, ---, N. Then from (11) at
least one column of Py(z) has degree n; > 0, implying n > 0.

This theorem may obviously be extended to include minimal realizations of
the infinite sequence of zero matrices. Any sequence for which the dimension of
a minimal (partial) realization is zero will be called the zero sequence. Any non-
singular m X m matrix is a minimal denominator polynomial matrix for the
Zero sequence.
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DEFINITION 1. The zero length sequence, denoted {M,},, is the sequence
having no elements. Since every infinite sequence, including the zero sequence, is
an extension of the zero length sequence, a minimal partial realization of {M},
has dimension zero.

DEeFINITION 2. The sequence {M,}; is said to be a subsequence of {M}, if
jSkand M;=M,;,i=12,---,j;{M;},is a proper subsequence if j < k. Thus
forany N,1 £ N < oo, {M,}, has N distinct proper subsequences, {M},, {M;},,

T {M i}N— 1

The main result of this section is the following theorem.

THEOREM 4 (The sequential realization theorem). Let {M,},,{M}, -,
{M,};, - be the distinct proper subsequences of an arbitrary infinite sequence
{M,}. Then for any N = 0, the information contained in the minimal partial denom-
inator matrices for {M;}o,{M;}, -+, {M;}y, denoted by Py(z), Pi(z), - -, Py(2),
respectively, is sufficient to calculate a minimal partial denominator matrix Py . (z)
Jor {Mi}y,.

Proof. This theorem is proved in a vector space rather than a polynomial
matrix formulation. Some notational preliminaries and lemmas are required before
proceeding with the main proof.

To column i, 1 £i = m, of Pfz), 0 <j = N, there corresponds a CAV =,
with degree nj;; by Theorem 2, 0 < n;; < j. Applying =;; to the shifted Hankel
matrix of {M,};, , below yields a vector dj;, where
(16) d; = o’ "H(1,n; + Dnj;.

DEeFINITION 3. The r x m matrix D; given by
(17) Dj = [djl dj2 djm]

is called the j-th discrepancy matrix. If D, is zero, it is clear from (11) that P,(z) is
also a minimal partial denominator matrix for {M,};, . More likely, D; # 0, so
an alternative, less obvious method for finding P;. (z) is required. This is the
topic of the remainder of this section.
The next two definitions are made primarily for notational convenience.
DEerINITION 4. For the vector n;; of degree n;; define the augmented column

annihilating vector m;(l, n;; + 1,k) as
0
(18) mil,n; + 1,k) = -n-ﬁ-
_(.)_

That is, the vector m(l,n; + 1,k) consists of n; embedded between two zero
vectors of lengths Im and km, respectively. The length of the augmented vector is
m(l + my + 1 + k) =2 m(n;; + 1). Thus n;(0,n; + 1,0) = n;;. The degree associ-
ated with an augmented CAV is the same as the degree of the CAV being
augmented.

DEFINITION 5. Associated with 7n; and p;(z) is an integer k; called the
accumulation index relative to N and given by

(19) ki = (N —j)+ ny, 0<j=N, I=sism



CONSTRUCTION OF MINIMAL PARTIAL REALIZATIONS 557

It will be shown that py ., ;(z) is a polynomial combination of columns in Pj(z),
0 = j = N; the degree of py, (z) is determined from the largest accumulation
index of elements comprising the combination. Equation (16) becomes

(20) dy; = e/ ""HQ, k; + Dm0, n; +1,N — j).
A slight rearrangement of (19) substituted into (20) yields
(21) diy=H(,N + Dry(N — kj,n; + 1,k; —

LemMMA 1. Foranyiand j, 1 Si<m 0Zj=<N, to each pﬁ(z) there cor-
responds aset of N — kj; linearly independent augmented CAV’sin A'TH(1, N + 1)].

The proof follows from observing that for every n; < j the structure of the
Hankel matrices for {M,}y ., implies

(22) ¢ ™ 'H(Q Lk 4+ Dm0, n; + 1,N — j) =0, 1S1<j—n

Since N — kj; = j — n, (22) becomes

(23 H{A,N+ Dry(N—k;—ILn;+1,N—j+1)=0, 1IN -k,
which proves the lemma.

Now let augmented CAV’s from Pj(z) form the columns of (N + 1)
e FEHDmxm e,

(24) Hj(N +1)= [njl(N - kjl’ nj + LN=—-j) - njm(N - kjma R+ 1,N )
so that from (21),

(25) H(1,N + 1)0y(N + 1) = D;, 0Zj=N.

By letting

(26) ON +1)=[0(N+1) 0(N+1) -+ OyN + 1)]
and

27 AN + 1)=[D, D, --- Dy} =[A(N):Dyl,
equation (25) yields

(28) H(I,N + 1)ON + 1) = AN + 1).

The matrix @(N + 1) is square and block upper triangular of size (N + 1)m;
by construction the m x m diagonal blocks are the nonsingular leading coefficient
matrices of Py(z), P,(z), - -+, Py(z). Thus ®(N + 1) is nonsingular.

LEMMA 2. Z[H(1, N + 1)] = Z[AN + 1)].

The proof of this lemma is obvious from (28) and the nonsingularity of
O(N + 1). In accordance with Definition 1 define A(0) and H(1, 0) to be the zero
vector so Z[H(1, 0)] = Z[A(0)], the space spanned by the zero vector.

The number of columns of Py, ,(z) having degree equal to N + 1 may be
determined from the Nth discrepancy matrix Dy and A(N). Let 8y (N + 1) and
Dy, with columns dy; be given by

ﬁN = DNON’
(29) 0N + 1) = 0N + DU,
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where U is obtained as follows. Define D¥ with columns

(30) dx, = { dy; ifdy ¢ ?[A(N)]»
0 otherwise, 1=im.

Then form U unit upper triangular so that the nonzero columns of
31) D, = DxU,

are linearly independent.

LEMMA 3. There is a one-to-one correspondence between the nonzero columns
of Dy and the columns of Py . ,(z) having degree N + 1.

By Theorem 2 each column of Py, ,(z) may be placed in one of two categories:
those with degree equal to N + 1, and those with degree less than N + 1. By
Lemma 2 and (29), any linear combination of the columns of H(1, N + 1) is also
a linear combination of the columns of [A(N):D,]. No combination of the
columns of [A(N):D,] that includes a nonzero column of Dy can equal zero be-
cause the nonzero columns of D are linearly independent and are independent
of the columns of [A(N):(Dy — Dy)]. Since the leading coefficient matrix of
Py, (2) is nonsingular and every column is a CAP, to every nonzero column of
Dy there must correspond a column of Py, ,(z) with degree N + 1. It remains to
show that to every zero column of Dy there corresponds a column of Py, ,(z)
with degree less than N + 1. For any i, 1 < i < m, suppose dy; = 0. Then there
exists a vector t such that

AN)t + dy; = 0.

By Lemma 2 there exists a vector x such that

H(I,N)x + aNl' = 0
Substituting for dy;,

(32) H(I,N + 1)[[-3-] + AN = fiys, iy, + 1,0)] -0,

where #y; is the ith column of 0(N + 1). The vector postmultiplying H(1, N + 1)
in (32) is clearly an augmented CAV for {M;}y,,. Thus an augmented CAV
satisfying (32) exists for every zero column of D . Since Py, ,(z) is minimal, Lemma
3 is proved.

If there are r linearly independent columns in A(N + 1), it is of full row
rank. By Lemma 3 under the restrictions imposed by (29)~(31), there can be no
more than r columns in all of the Pi(z), 0 <j < N + 1, for which n;; = j. Aside
from these at most r columns, the degree associated with each column of P;(z)
must be strictly less than j,0 < j < N + 1.
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Let the (N + l)m-vector ¢ represent any augmented CAV of degree
n, < N + 1 associated with the finite sequence {M,} . ,. Moreover, assume ¢ is
partitioned in m-vector segments as

K2
¢N—l
¢=|- |, o#0.
N
K23
Then
(33) H(1,N + )¢ = f My, _$;=0.

Since ®(N + 1) is nonsingular, there exists a vector x, partitioned like ¢ and
satisfying,
N

(34) $=ON + Dx =3 Oy (N + )x;.

Jj=0

LeMMA 4. Let ¢ and x be as given above and let Xji, | =i = m, denote the
elements of x;. Then ¢ is a linear combination of augmented CAV’s from P(z),

Pi(z), - -+, P\(2), and its degree is

O=j=N (1zizm

(39) n, = max { max {ky_; |x; # 0}}.

The first part of the lemma follows from (34); it remains to prove (35). First
assume that x, # 0 and that
ng < max {kylxo; # 0}.
1<ism
Then replace the column of 0\(N + 1) with nonzero x,; and the largest accumu-
lation index with ¢. Note that ky; = ny;. The result is a new matrix, O(N + 1),

of augmented CAV’s with a lower composite degree than 6,(N + 1). This would
contradict the minimality of Py(z) so

(36) ng 2 max {kylxy; # 0}.
1gigm
The proof is continued for j = 1,2, .-+, N on the vectors ¢’ given by
. J}
(37 ¢ =¢ — 3 Oy (N + 1)x,.
1=0

Assume x; # 0 and that

n, < max {ky_;lx; # 0}.

15ism
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Then ¢’ replaces the column of 0y_ (N + 1) having the highest accumulation
index and x;; # 0 to yield a matrix of augmented CAV’s with a lower composite
degree than 0y_ (N + 1). This contradicts the assumed minimality of Py_(z).
Hence combining with (36),

roz max {max e+ 0}
But by Lemma 1 every column of @(N + 1) for which x;; # 0 can, by appropriate
internal shifts, generate N — ky_; ; linearly independent vectorsin A"[H(1, N + 1)].
By the same argument ¢ can be shifted internally to produce a total of N + 1 — n,,
augmented CAV’s in A/ [H(1, N + 1)]. Hence Lemma 4 is proved.

Now consider the matrix 0y, (N + 2) e &N 2™*™ with columns

Ty, ilN + 1 —nyyy iy + 1,0, 1Sism,

constructed from Py, ((z). The first m rows in any column of 8, (N + 2) having
degree less than N + 1 are zero; columns with degree N + 1 can have the first
m row elements set arbitrarily to zero. Thus 6y, (N + 2) may be written

0
(38) Oni (N +2) = [-15 :I

N

where Fye (3 mxm

Certain nonsingular matrices specified in the following lemma postmultiply
Oy+1(N + 2) to yield a matrix of augmented CAV’s having the same composite
degree.

LeEMMA 5. The composite degree of Oy, (N + 2) remains invariant under post-
multiplication by a nonsingular matrix R if (i) R is a diagonal matrix, (ii) R is a
permutation matrix or (iii) R is lower triangular and the columns of Oy, (N + 2)
are ordered from the left by decreasing degree, i.e., any column of Oy, (N + 2) has
degree less than or equal to the degree of every column to its left.

Now to proceed with the proof of Theorem 4. From Lemmas 3 and 4 it is
clear that

(39) H(1,N + )Fy = Ey,

where the nonzero columns of E are linearly independent and are not elements
of Z[H(1, N)]. Moreover, for every nonzero column of Ey there is a column of
Py, ,(z) with degree equal to N + 1. Since ®(N + 1) is nonsingular, there exist
matrices Wy e "™ and Vy € #V™*™ satisfying

Vs
(40) Fy = O(N + 1)[.W-].

N
From Lemma 2 and (27)28),

. VN
(1) H(1,N + )Fy = [A(N):DN][-W-].

N
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It is now claimed, without loss of generality, that Wy, is unit upper triangular. In
its most general form the nonsingular W, may be factored [3] as follows:

(42) WN = UNRNLN .

where U is unit upper triangular, Ly is lower triangular and Ry is a permutation
matrix. Should W, have the form (42) with the columns of 6y, (N + 2) ordered
from left to right by decreasing degree, 0y, (N + 2) can be postmultiplied first
by Ly! and then by R). According to Lemma 5, the resulting matrix of aug-
mented CAV’s has the same composite degree as the original and is thus minimal.
Hence Wy = Uy. Note also that U, contains Uy of (29)<31) as a factor, i.e.,
Uy, Oy, Uy U, are all unit upper triangular and

. V,
(43) H(1,N + 1)Fy = [A(N): D] [-A-_- - ]
Uy Uy
Combining (38)-(40) expresses in augmented column annihilating vector form
Py . 1(2) as a combination of the columns of Py(z), P,(2), - - - , Py(2), i.e.,

(44 0 (N+2)—[ ° ][VN]
’ vl 2= | sx o)

This proves Theorem 4. [

The form of (44), i.e., Uy upper triangular with unity diagonal elements,
indicates that, regardless of the associated degree, column i in Oy, (N + 2) is a
shifted linear combination of column i in 8y(N + 1) with columns to its left in
O(N + 1).

3. The sequential realization algorithm. The results of the previous section
will be used in this section to develop an algorithm for the recursive construction
of the minimal partial denominator matrices of the finite length subsequences of a
given infinite sequence. The proof of Theorem 4 is constructive because it demon-
strates that column i of 0y, (N + 2) equals column i of §(N + 1) shifted and
added to a linear combination of shifted columns to the left of i in (N + 1).
The exact numerical form of this linear combination is dependent upon column
i of the Nth discrepancy matrix, and it is selected to minimize ny, ;. Let

AN), i=1,

(45) A(N) = { . .
[AN)idyy dyy o-+ dyi—q], 1 <ism.

By Lemma 3 and construction, ny,,; = N + 1 if and only if dy; ¢ Z[A,(N)]. If

dyi € Z[A(N)], every row element in column i of 0y, (N + 2) is arbitrary except

for the last m + 1 — i; hence the linear combination is also arbitrary.

If dy; € Z[A(N)],ny+,; < N + 1 and the selected linear combination must
satisfy two conditions: when applied to the columns of A,(N), it must yield —dy;;
and when applied to the columns of ®(N + 1), ny, , ;, given by (35) as a function
of the accumulation indices of columns included in the combination, must be
minimized. If ny, , ; is minimized in this manner column by column, (44) clearly
indicates that the composite degree of 0y (N + 2) is also minimized.
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Let py; = rank [A;(N)]. Since a column basis for A,(N) is formed from py;
linearly independent columns, 0 < py; < r, usually only a subset of the columns
of A,(N) need be considered for any minimal linear combination that produces
—dy; € R[A,(N)]; viz. a subset of py; linearly independent columns generated by
a corresponding subset of columns in @(N + 1) whose largest accumulation index

is minimized. More precisely, let K ; be a spanning set of columns of A;(N) gener-
ated by

(46) H(1,N + 1)®y; = Ky;,
where
i i ipnid? iz 1,
@7) o, = {[¢N:1 iz o ,N,] PN
0, pyi=0.

The columns ¢y;; are columns of @(N + 1) with degree n,y;; and accumulation
index kyy;; selected so as to minimize max, <;<, {kyni;}- By the previous dis-
cussion, if ny,,; < N + 1, either ny,.,; = ny; or ny,,; equals the largest
accumulation index of the columns of ®; included in the linear combination. In
either case ny,,; is minimized. Finally, for notational consistency, let by;(z)

denote the column of Py(z), Py(2), - -+, Py(z) from which ¢,;; was constructed,
and let

bnii(2) byia(z) -0 by, (2)], =1,
(48) Byi(2) = [bri1(2)  Dnia(2) Nipw (D)5 PN

0’ Pni = 0.

The following algorithm is a procedure for computing a minimal partial
denominator polynomial matrix for a finite matrix sequence of length N, = 0.
Initially, I,, is assumed as the minimal denominator for the zero length sequence;
the procedure halts with the minimal denominator for {M} . The notation is
consistent with that presented previously except that the subscript Ni has been
dropped for convenience. Also the algorithm is presented in polynomial rather
than vector space notation.

THE SEQUENTIAL REALIZATION ALGORITHM.

Step 1. Initialization. Set N =p =0, Bz)=0, K=0, Pz)=1,,, n,=0,
1fism

Step 2. If N = N, stop.

Step 3. Otherwise perform Steps 4—14 fori = 1,2, ---, m.

Step 4. From column i of P(z) compute

d= ) My.\_pj
j=0
Step 5. If d = 0, go to Step 14.
Step 6. If d # Oand p = 0,set p = 1, K = d, B(z) = by(2) = pi(2), kyp1 = nyg,
= n;, piz) = p(2)z2" "' "™, n; = N + 1 and go to Step 14.
Step 7. If d # 0 and p > 0, compute x = K *d,

d=d—- Kx=( — KK,
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where K*is a pseudoinverse of K. That is, K = KK*K. (See [3] for a discussion
of pseudoinverses of finite field matrices.)
Step 8. Set

N+1 ifd+#0,
n, = .
max < n;, max {k,|x; # 0}, ifd=0
15j=p

and

P
() = pi(D2" 7 = X bylapez e
ji=1

Step 9. If n, = n;, go to Step 13.

Step 10. If n, > n;,set K = [K:id], b, (2) = pi(z), B(z) = [B(2):pi(2)], Ky, p+1
=Ny ,e1 =N

Step 11. Order the columns of B(z) from left to right by increasing accumu-
lation index; place the corresponding columns of K in the same order.

Step 12. Set p = rank (K). Discard the linearly dependent column of K, if
any, with the largest accumulation index, i.e., the right-most linearly dependent
column. Remove from B(z) the column corresponding to any discarded column
of K. If necessary, renumber the columns of K and B(z) from 1 through p.

Step 13. Set p;(z) = t(z) and n; = n,.

Step 14. If i < m, increment i by 1 and go to Step 4.

Step 15. Ifi =m,set N = N + L.If p > O,set ky; = ky; + 1,1 = j < p, and
go to Step 2.

Before demonstrating the algorithm on some examples it should be noted
that the following values hold at Step 2 for any N < N:

P(z) = Py(z) with column degrees n, =ny;, 1<i<m, n=ny;
K = Ky; ofrank py,; = rank [A(N)] = p;
B(z) = Byy(z) with accumulation indices ky; = kynyjs 1 Sj = pyy-

The algorithm is now applied to an example from [12] where the sequence is
defined over the real number field. Parameter values are given at Step 2 of the
algorithm for N = 0, 1, 2, 3, 4.

T (T LR e

0 o/\0 o/\1 1\ 3 3
N=0: P@z)= ! O], n,=n,=n=0,
10 1
K= 0]’ p:O,
| 0
B(z) = O].
L0
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N=1: P(z)=_(z) _1] ny=1, n,=0, n=1
K= 1], p=1,
o
B(z) = 1:|, kyy = 1.
0
[z -4 —z+1
N=2 P@= :| no=n,=1, n=2,
L O z
K= _1], p=1,
Lo
(-1
B(Z)= :l’ k¢1=
|1
N=3 pm=|F ¥ _Z] n,=3, n,=1, n=4
| —622  z+ 1] ' TR ’
1 —6
=1 o 1]’ p=2
By =| " 2_4], ko = kyy = 2.
10

3242 -2z
N=d: PE= [z+z+z 22 —z-2
—6z%2 — 62 224+z4+6

S

-z -1
B(Z)=[z+1 1]’ ko1 =2 ke =3.

:|, n=3, n=2, n=25,

4. Uniqueness of minimal partial denominator matrices. In this section unique-
ness of a minimal partial denominator polynomial matrix is defined, and a
criterion for determining the uniqueness of a sequentially computed denominator
matrix is presented. The information carried along while applying the sequential
realization algorithm, viz. N, p, P(z), B(z), K, {n;, i = 1,---, m} and {ny;, ky;,
j=1,---, p}, is shown to be sufficient for constructing the equivalence class of
minimal partial denominator matrices after the algorithm terminates.

First consider the set of all minimal partial denominator matrices for
{M}yiq,ie,let

Qy.1 = {Py, (2)Py, (2) is a minimal partial denominator matrix for

49
@) {Mi}ni1)-
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It is useful to define uniqueness for a minimal partial denominator matrix in
terms of its invariant factors.

DEFINITION 6. The minimal partial denominator matrix Py, (z) for {M;}y,,
is unique if it and every other element P, (z) € Qy., has the same set of in-
variant factors.

The above is consistent with the definition given in [8] for uniqueness of
minimal realizations modulo a choice of basis for the state. That is, a minimal
realization is said to be unique modulo an equivalence class of similar system
matrices. This definition has now been extended to partial realizations via the
polynomial matrix formulation.

THEOREM 5. Let Py, (z) and By, (z) be computed as above and let
ﬁNH(z)eQNH. Then there exist polynomial matrices Xy (z) and Yy, (z) such
that

(50) ﬁN+1(Z) = Py 10X y44(2) + BN+1,1(Z)YN+1(Z)9

where Xy, ((z) is an elementary matrix.

Proof. Let Oy, (N + 2) be a set of augmented CAV’s constructed from
P, . ,(z) according to (24). Then 8y, (N + 2) generates a discrepancy matrix
when postmultiplying H(1, N + 2). Since ®(N + 2) is nonsingular and upper
block triangular,

T,
Oy (N +2) = O(N + 2)[--”-*-1-]

RN+ 1
(51

ON + 1)
=" Tyi1 + Oni (N + 2Ry, g,

where Oy, (N + 2) is given by (38). Note that elements of Ry, , and Ty, are
chosen so that the composite degree of @y, (N + 2) equals that of Oy, (N + 1).
Lemma 5 gives the restrictions on the nonsingular matrix Ry, ;. Without loss of
generality, column permutations will be ignored so that Ry, ; must have non-
zero diagonal elements, and there is a column degree equivalence between cor-
responding columns of 8, ;(N + 2)and 6, (N + 2). Moreover, for off-diagonal
elements

(52) ”RN+1“ji #0 onlyifny, 1, S ANt Ilsi#j=m.

That is, only those columns of 8y, (N + 2) for which the degree is not greater
than ny, , ; can be combined with column i of 6y, (N +2) to form column i of
On+ (N + 2). The matrix Ty, , has elements restrictedfor 1 £ i, <m,0<j < N,
by

(53) [Tv+illjmer # 0 onlyifky < nyyy;,

where kj, is the accumulation index relative to N + 1. The linear combinations of
(51) allow every variation of dy, (N + 2) that leaves the composite degree un-
changed. Thus (51) under the restrictions of (52)+53) specifies the equivalence
class of minimal sets of augmented CAV’s for {M,}y ., ;.

Now for the matrix Oy, (N + 2) define the shift matrix ¢~ [0y, (N + 2)]
whose columns consist of every distinct augmented CAV of length (N + 2)m
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associated with Py ((z) except those in Oy, (N + 2). Thus by Lemma 1 there are
N + 1 — ny,; columns in ¢~ [0y, (N + 2)] for every column py,, (z), 1 < i
< m. Let 6™ [0y, (N + 2)] be the zero vector if every column of Py, ,(z) has
degree N + 1.

Let @y, ,, given by (46)H47), be the subset of columns of @(N + 2) that
generates discrepancies forming a column basis for A (N + 1) = AN + 1) with
minimum largest accumulation index relative to N + 1. Define the shift matrix
6~ (@ ,,) whose columns are every distinct augmented CAV of length (N + 2)m
associated with By, ,(z) with the last m rows zero and not in ®y,, ;. Thus for
every column by, i(z), 1 £j < py+y,,1, there are N + 1 — k, v, ,; linearly
independent columns in ¢~ '(®y,, ,); the columns of @y, ; and ¢~ '(Dy,, )
are all linearly independent by construction. If the accumulation index is N + 1
for every column of @y, , orif @y, , = 0, let 6~ '(®y, ) be the zero vector.

LEMMA 6. The columns of Oy, (N + 2), 0" [0y, (N + 2)], ®y,,, and
0~ "(@y+1.1) are a basis for the column space of O(N + 2).

First from the algorithm presented in § 3 it is readily verified that

@ @
0N +2), o '[0N + 2)], [(N)‘] and a—l[--(’;-'l]

are generated as linear combinations of
0 0n+1(N +2)], @y, and o7 ' ( @y ).

Reversing the algorithm it may be shown by successive induction that the column
space of ®(N + 2) is spanned by columns of Oy, (N + 2),6™ [0y, (N + 2)],
@y, and 67 '(®y, ;). It remains to show that a mutual linear independence
exists between the columns of these four matrices.

Since the last m rows of 0y, (N + 2) form a nonsingular matrix, its columns
are obviously independent of [®y . 1110 0y (N + 2)]i07 @y, 1.1)]. Let x
and y be arbitrary with x e 2[¢ ™ '[0y, (N + 2)]ic™'(®y1,)]and ye B[Oy, ]
Then H(I,N + 2)x =0, but H(1, N + 2)y = d # 0 implying x # y. Thus the
columns of @y, , are linearly independent of [6 ™' [0y (N + 2)]ic™ '@y q,1)]-
To show that columns of ¢~ '(®y,, ) and ¢ '[Oy, (N + 2)] are mutually
independent, assume that some element t € Z[o~ '(®y ., ;)] is a linear combination
of columns in 6™ '[0y ., (N + 2)]. By the structure of the shift matrix 6~ "(®@y ; ),
t can be shifted internally. This yields the contradictory implication that an element
in #(®y,,,) is a linear combination of columns in ¢ '[0y, (N + 2)] and
0~ (®y41.1)- The proof of Lemma 6 is now complete.

From Lemma 6 it is possible to rewrite (51) as

9N+1(N + 2) = Oy (N + 2)Ry . 1,1+ 0_1[0N+ (N + 2)IRy1 1,2

(54)
+ Qyi1 Ty 07 Y@y 1.0Tv+1,2

with Ry, ; = Ry,; and appropriate restrictions on the elements of Ry, ,,

Ty+1,, and Ty, . But since an internally shifted CAV has an alternative rep-

resentation as a CAP multiplied by the polynomial indeterminate to a non-

negative power, (54) has the more compact polynomial representation of (50). If
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column permutations are again ignored, X y, ;(z) has nonzero diagonal elements;
the elements of Xy, ,(z) are given for 1 < i,j < m by

NN +1,i BN +1,j

AN +1,i—nN+1,;—1
XN +1,jil2 NI ANy 2

n iy
(55) xy41,(2) = 1=0 -

0, nyiyi<nyiyj

Elements of Yy, ,(z) are givenfor 1 <j < pyyy 4,1 < i< m, by

AN +1,i~KeN+1,1)

i—keNn 1,151
yN+1,jilZnNHl oN 1L

=0
(56) Yn+1,;i(2) =
T i, 2 k¢N+ 1,1j>

0, nyyii <konerng

Suppose that the columns of Py, ,(z) are ordered from the left by decreasing
degree. It is then clear from (55) that Xy, ,(z) is block lower triangular with
diagonal blocks that are nonsingular matrices of elements in & . Hence X, ,(z)
is an elementary matrix, and Theorem 5 is proved. [

THEOREM 6. Py, (2) is a unique (by Definition 6) minimal partial denominator
matrix for {M;}y+ if and only if
(57) min { min {k;|d;; # 0}} > max {nyiqf,

0<jsN [1Zism 1Igm

where the accumulation indices kj; are relative to N + 1.

Proof. By Theorem 5, X ((z) is an elementary matrix, and by Lemma 6,
no column of By,, (z) is a polynomial combination of columns in Py, (z).
Hence Py, ,(2) is unique by Definition 6 if and only if

(58) Yyii(2) = 0.
But inspection of (56) shows that (58) holds if and only if

(59) .min {k¢N+ 1,1;'}> > max {nys1)-
15jSpN+1,1 1Z5ism

By the process of selection the columns of @y, ,, (59) and (57) are equivalent

conditions. This completes the proof of Theorem 6. [

Now (50) with (55)-(56) enumerate the entire equivalence class Qy,; given
the parameters required by the sequential realization algorithm. Also (58) pro-
vides a criterion for uniqueness. If (58) does not hold, Py, ((z) is not unique, and
it may be desirable to examine the range of variation in the set of invariant factors
over the elements in Qy , , . This task can be simplified considerably by considering

(60) Py.1(2) = Pyty oPys (X 511(2).

Since Py, and Xy, ,(z) are elementary matrices, Py, ,(z) and Py, ,(z) are
equivalent and thus have the same set of invariant factors. Moreover, Py, ,(z)
can be written

(61) PN+1(Z) = Sy+1(2) + BN+ 1,1(2)7N+1(Z)’
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where Sy, (z) is obtained from Py, (z) by (10), By, ,(2) = Pyl 0By+1.1(2) and
Yy+1(2) = Yy 1(2)X511(2). Corresponding columns of By, (z) and By, (2)
have the same degree so that elements of Yy, ;(z) must obey the same constraints,
viz. (56), as Yy, ,(z). Every column of By, (z)Yy.(z) has degree strictly less
than the corresponding column of Py, ,(z2)Xy. (z) by construction; a similar
relation holds between columns of By, ,(z)¥y.(z) and Sy, (z). Although (61)
and (56) simplify the task of enumerating the invariant factor sets of a non-
unique minimal partial denominator matrix, in general complicated, nonlinear,
algebraic manipulations may be required as the following example serves to
illustrate.

Example 2. Continuing with the sequence of Example 1, P,(z) is clearly not
unique by Definition 6. It is the purpose of this example to enumerate all in-
variant factor sets for P,(z).

P2 |:z3+322+2z —22——2—2]
7) = ,
4 — 622 — 62 22 +z4+6

B, () |:——z -1
Z) =
a1 z+1 1

S
4,0_0 1’ 4-,0_01

542 [23—322—42 4 ] B, () [ 1 0:|
= 5 Z) = .
“ 62— 6z P Az+6 1 s+ 11

Then Y,(z) has the form

Y2, [uz + v w]
z) =
N t 0
with parameters t, u, v and w. In general,
13 [ 22 -3224+wu—4)z+v w+ 4 ]
o2) = u—622+u+v—6z+@w+1) Z2+W+Dz+w+6]1

Case 1.w # —4. Clearly y5, = 1 and y5, is the characteristic equation. Thus
Ve, =20+ W =2z + w—2w— D23+ (v — 3u—w+ 2)z?
+ Qu — 3v + 2w)z + 2v — t(w + 4).

If the desired characteristic equation is
vp2 = 2° + Biz* + Boz® + Baz’ + Baz + Bs,
then all but one of the coefficients may be independently specified;

By = —(158, + 7B, + 3B5 + 31)
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and
1
w=p +2, t= m(l“ﬂx + 6B, + 285 — Bs + 30),
u=28,+p,+5, v="78, + 3B, + B3 + 15.
Case2. w = —4.

_ =322+ Ww—4z+v 0
Py(z) = .

u—6z2+u+v—6z+ @+t z2-32+2

@ t#0,95 = 1,yp, =[2°> = 32> + (u — 4z + v](z* — 3z + 2).
(b) t = 0,v = 26 — u).

(22— z + (u— 6)](z — 2) 0 ]
(—6z+@®—-6lc—-2 (—iz-2])
vP1 =22, Ypp=1[2"—z+ (u—6)](z* -3z +2).
©t=0v=6—u
= (22 =22+ (u— 6]z —1) 0
P = [ ) )
(W—6z+w—06Jz—1) z—-2(z-1)
vpri=z—1, g =1[22—2z+ (u—6)](z* — 3z +2).
dt=v=0u=6.

Py2) = [

Vo1 =22 =324+ 2, yp,=(2 =3z + 2z.

Py2) = |:

z3 — 322 4+ 22 0 :|
0 22 —3z+2)

5. Discussion of the sequential realization method. The method of realizing
linear constant dynamical systems derived from the sequential realization
algorithm has much to recommend it over previous techniques. It may be used
to construct linear realizations from transfer function matrices whose elements
are ratios of not necessarily co-prime polynomials that need not be in factored
form. The method is also useful in constructing a minimal linear model from a
set of empirical measurements represented by a finite output data sequence.
Hence it is a practical solution to the black box problem.

The sequential realization method is recursive so that the algorithm may be
halted at any point in a matrix sequence with a minimal partial denominator
matrix from which a minimal partial realization can be easily obtained. It is an
improvement over Massey’s algorithm because it is applicable to multivariable
systems.

Rissanen’s recursive realization procedure is essentially a variation of the
Ho algorithm [6], [8] where in [10] and [11] the Hankel matrix of a finite sequence
is factored as the product of a unit lower triangular matrix with a matrix whose
bottom row is zero. The block symmetric structure of the Hankel matrix is ex-
ploited to yield a recursive factorization. In order to maintain this recursive
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property, it is necessary that the row dimension of the Hankel matrix not exceed
the column dimension and that the bottom row be linearly dependent. Thus
Rissanen’s approach will not always produce a minimal partial realization for an
arbitrary finite sequence. For example, no minimal partial realization can be
obtained using the method in [10] and [11] for the scalar sequence of length
N=2gvenbyM, =M, =--- =My_, =0, My = 1. In contrast it has been
shown that the sequential realization algorithm yields a minimal partial realization
of any finite sequence. Another comparison to be made is based upon the amount
of storage required if implementing the method on the computer. Since it is
necessary to store and manipulate a Hankel matrix and its factors in order to
execute Rissanen’s algorithm, the required storage grows rapidly with the length
of the sequence, particularly for matrix sequences. To use the sequential realization
algorithm it is only necessary to store the given sequence, N, P(z), B(z), {n;,
1<izm},p, {kyjjand ng, 1 £j < p} and K.

The sequential realization method applies to the broad class of systems of
(1)+2) including finite state machines. It is a solution to the partial realization
problem for arbitrary finite sequences including the zero sequence and the zero
length sequence. Within this framework the initialization of B(z) in the sequential
realization algorithm is handled in a more natural way than by Massey [9].

Finally the sequential realization method provides a complete answer to an
open question in Kalman [7]. He points out that the whole question of invariant
factors, cyclicity and so forth of minimal partial realizations is entirely open. In
the preceding section the uniqueness of a minimal partial realization was based
upon the invariant factors of a minimal partial denominator matrix. Upon
termination the parameters generated by the sequential realization algorithm
yield the entire range of variation on the invariant factors of the minimal partial
realizations. This certainly provides answers to questions like: Do there exist any
minimal partial realizations for a given finite sequence having a cyclic system
matrix? The sequence of Examples 1 and 2 has been used by Ackerman [1] to
point out the superiority of the realization method in [2] over that of [12] because
a coupling parameter results that is not available using the method in [12].
However, a complete enumeration of the available minimal partial realizations
given in Example 2 reveals that the realization obtained by Ackerman in [1],
although an improvement over Tether’s, is still more restricted than it needs to
be. In particular, Ackerman’s realization corresponds to Case 1 in Example 2
with t = 0.
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