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Chapter 1

Introduction

1.1 References

The main reference is:

• Chi-Tsong Chen Linear System Theory and Design, Oxford University
Press, 1999.

Noteworthy are the following references:

• H.H. Rosenbrock State Space and Multivariable Theory, Thomas Nel-
son & Sons, 1970.

• F.R. Gantmacher The Theory of Matrices, vol. I & II, AMS Chelsea,
1977 (1959, 1960).

• S.K. Godunov Modern Aspects of Linear Algebra, AMS, 1998.

• P. Lancaster Lambda-Matrices and Vibrating Systems, Oxford, Prega-
mon, 1966.

1.2 Possible Representations of Linear Systems

Among possible representations of the dynamical character of a system pos-
sessing the property of the superposition of its solutions, we will consider
four of them, namely the transfer function (when the system has a single
input and single output), the state space formulation (without restricting
the system to have a single input and/or outputs), the matrix polynomial
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fractions (a generalization of the transfer function to the multi-input multi-
output case), and finally polynomial system matrices, which can be seen as
a hybrid between pure state space and matrix fractions.

1.3 The Superposition Principle

Consider a single-input single-output system (SISO) as a black box model
in which the only way to interact with the system is to set its input u to a
time function

u(.) : t→ u(t), t ∈ [0,+∞),

and to collect, at its output y, the time output response

y(.) : t→ y(t), t ∈ [0,+∞).

The input time function is also written u(t) by abuse of notation, because
one could argue that u(t) represents the value of u(t) ∈ R rather than the
time function u(.) : t → u(t), which we will write u(.) so as to alleviate
notational ambiguities whenever necessary. Sometimes we will write u(t) to
designate the time function for simplicity.

Definition 1 (Superposition Principle) A single-input single-output sys-
tem with input u and output y is linear when, for each possible choices of
different input time functions u1(.) and u2(.) — generating the respective
responses y1(.) and y2(.) — the response to the superposition of both input
time functions

u(.) := u1(.) + u2(.)

is the sum of the individual responses

y(.) = y1(.) + y2(.).

1.4 Convolution integrals

• u(t) =

∫ ∞
0

u(τ) δ(t− τ) dτ

• y(t) =

∫ ∞
0

g(t− τ)u(t) dτ

• y(t) = u(t) ∗ g(t) =⇒ Y (s) = U(s) ·G(s)
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1.5 Transfer Functions

The transfer function approach is adequate for a linear system that has a
single input u, dim u = 1 and a single output y, dim y = 1. For continuous-
time system we will write

G(s) =
Y (s)

U(s)
=
B(s)

A(s)
=

∑n
i=1 bis

n−i

sn +
∑n

i=1 ais
n−i

where U(s), Y (s) designate the Laplace transform of u(t), y(t)

U(s) :=

∫ +∞

t=0
u(t)e−st,

Y (s) :=

∫ +∞

t=0
y(τ)e−st,

and where the corresponding dynamical linear relationship is encoded by two
polynomials B(s), the numerator polynomial, and A(s), the denominator
polynomial. We will see how specific properties of the time behavior of y(t)
for a given u(t), such as for instance stability, controllability, observability,
can be read off from specific properties of the polynomials A(s) and B(s).

1.6 State Space

Transfer functions are clearly inadequate to handle multi-input systems. Ad-
ditionally, it is not quite clear how to simulate systems arising from transfer
functions, that is, to create an algorithm, a computer program, to simulate
the system so as to obtain y(t) knowing u(t).

The main problem is in finding the right number of initial conditions and
the variables associated with these initial conditions. Initial conditions can
be understood as the minimal knowledge to completely specify the future
time evolution of a system with the complete knowledge of the input u(t),
t ∈ [0,+∞).

We collect such initial conditions in a vector

x(0) =
(
x1(0) x2(0) . . . xn(0)

)T
.

Notice that these initial conditions are specifically indexed by a time variable
set to 0. This means that these initial conditions can also be seen as evolving
quantities along the system, that is, they become variables in their own right
x(t), and have trajectories (solutions) associated with them x(.).
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These variables x1, x2, . . ., xn are called the state space variables, and
the vector x, the state vector. A very important point is that these variables
are far from unique given the same transfer function. The theory of repre-
sentations will help sort out this issue. We will need tools to check and make
sure that the state variables that we have chosen are indeed associated with
the transfer function (or matrix fraction description, see below) and then
also, maybe, to construct a better suited set of equivalent state variables
(leading to the same transfer function) which are less sensitive to numerical
round off, to numerical imprecisions caused by representing these variables
with an arithmetic of limited precision.

The philosophical interpretation of this, is that one can understand the
state space variables, either as evolving in their own right according to the
system for a given set of a priori initial conditions specified long back, namely
writing x(t), with t > 0, or as initial conditions at the current time, in
which case we simply relabel the time axis with t = 0 so as to designate
this specific time where the initial conditions are set. In the former case,
x(t) means that the system has evolved on its own (under for example the
influence of the input u(t), t ∈ [0;∞)) from initial time t = 0 (where the
initial condition x(0) has been specified) up to the time instant t for which
these same variables have acquired the values x(t).

Now, the main question is: How do we describe the time evolutions
of these variables ? The answer is through a set of ordinary differential
equations of the first order, one ordinary differential equation per state-space
variable, so that we have one initial condition per differential equation. Since
all these ordinary differential equations can be coupled with each other, the
simplest description is through four matrices of real numbers A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m:

ẋ = Ax+Bu

y = Cx+Du (1.1)

1.7 Matrix Polynomial Fractions

A matrix polynomial fraction is a generalization of the transfer function to
the multi-input multi-output case. Polynomials A(s) and B(s) appearing in
the transfer function G(s) are replaced by matrices N(s) and D(s) having
polynomials as entries, hence the name polynomial matrix. A polynomial
matrix will be written for example as M(s) with each entry in the matrix a
polynomial in s. For example
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M(s) =

(
3s2 + 2s 2s+ 1 s+ 2
s2 + s− 3 s s3 + 3

)
There is no need to restrict to square matrices only. Now, if one wants to

mimic a transfer function, one would like to divide the matrix M(s) by an-
other polynomial matrix, say N(s). Clearly, the division should be replaced
by multiplying by the inverse matrix (dividing is nothing but multiplying
by the inverse). Nevertheless, we stumble on two difficulties:

1. Because matrix multiplication is not a commutative operation

N(s)D(s)−1 6= D(s)−1N(s),

even for square polynomial matrices N(s) and D(s).

2. The inverse of D(s) might introduce polynomials appearing in the
denominator of some, or maybe all entries of D(s)−1.

The second aspect does not appear in transfer functions. The denom-
inator polynomial A(s) is always a polynomial. However N(s) must be
restricted somehow. The very interesting fact is that we need only consider
a specific subset (or subclass) of polynomial matrices for the polynomial
matrix N(s). The matrix M(s) stays a general polynomial matrix without
restriction. The matrix N(s), however, should belong to the set of polyno-
mial matrices having a constant as its determinant (that is, the determinant
should not a polynomial). Such matrices having a degree zero polynomial
in s as determinant are called unimodular matrices.

Definition 2 (Polynomial Matrix) A polynomial matrix M(s) is a n×
m matrix, the entries of which mij(s), i = 1, . . . , n, j = 1, . . . ,m are poly-
nomials in s.

Definition 3 (Unimodular Polynomial Matrix) A polynomial matrix
is called unimodular whenever its determinant is a constant (not a polyno-
mial of degree higher than zero).

1.8 Polynomial System Matrices

A question that comes naturally to mind is: Is there anyway to link the
multivariable aspect of state space, which is very natural, to the polynomial
matrix description ? Is there any “intermediate representation” ? The
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answer is surprisingly very fruitful and this new representation is what will
be called polynomial system matrices.

Consider the Laplace transform of the state-space representation

0 = sX(s)−AX(s)−BU(s)

Y (s) = CX(s) +DU(s) (1.2)

It is then possile to introduce a single matrix, with polynomials, that
completely characterizes the system:

S =

(
sI −A −B
C D

)
But one could as well put any polynomial in such a matrix, that is,

S =

(
T (s) R(s)
P (s) W (s)

)
keeping in mind the relation(

0
Y (s)

)
= S

(
X(s)
U(s)

)
for which T (s) = sI − A, P (s) = −B, R(s) = C, W (s) = D is only

a special case. This allows writing implicit systems, that is, systems for
which the equations are not solved explicitly for the highest derivative. Ad-
ditionally, one can also handle not only first order differential equations, as
it is the case with the classical state-space equations, but also higher order
differential equations.

The reasons why it can be considered as a sort of hybrid between matrix
polynomials and the state-space representation is that:

(i) it uses polynomials in the entry of the system matrix S;

(ii) it embbodies an explcit treatment of certain variables X(s) which
are the Laplace transform of variables associated with state variables
whenever explicit first order differential equations are considered.

These variables appear as an explicit argument to the operator associated
with the system matrix S, which is almost never the case (unless the system
has only very few states) with polynomial matrix description.
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Chapter 2

Linear Algebra

In the introduction, we have presented a dynamical linear system through
a combination of ordinary differential equations. All representation of such
a system rely on a set of real numbers most often regrouped into matrices
of scalars or polynomials. We will study in this chapter properties of the
set of numbers only, which are regrouped in matrices and vectors. We will
encounter also polynomials, but in a slightly different flavour than in the
introduction. These new polynomials (not to be confused with those ap-
pearing in the representations of the introduction) are essentially linked to
properties of the constant scalar matrices, although they will reappear also
when studying matrix fraction representations and system matrices, both of
which have explicitly polynomials in their definition. It is really the prop-
erty of these constant matrices that interest us in this chapter irrespective
of the differential equations to which they are possibly attached or not.

Linear algebra handles algebraic operations that preserve linearity, that
is, preserves proportionality both mulitplicatively and additively. The most
familiar concept is that of a vector space together with maps between vec-
tor spaces. These maps can be specified either in an abstract fashion or
concretely through their representations by matrices. Elements of a vector
space can also be represented abstractedly as subspaces of a vector space
— without choosing any kind of coordinate systems — or as a collection of
elements of the field of definition, collected in a row or column, and termed
a vector, which explicitly admits a concrete parameterization using a well-
defined choice of coordinates.

Because of the large possible ways to choose coordinates, the follow-
ing natural questions come to mind: To what extent, and to what quan-
tifiable degree, are maps and elements of a vector space identical ? For
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instance, given a certain matrix A, which represents a given action on a
vector space described through certain coordinate systems, how can one
determine whether it corresponds to another matrix B using another coor-
dinate system but acting on the same vector space ? Otherwise stated, what
are the inherent invariants of the matrix or the abstract operator that will
not change with the choice of coordinates ?

2.1 Vector Space

Definition 4 A vector space V over a field F (e.g. the field or real numbers
R or the complex numbers C) is a set V = {v1, v2, . . .}, finite or infinite,
together with

• an operation + : V × V → V

• an operation · : F× V → V

such that ∀v1, v2, v3 ∈ V and ∀α, β ∈ F and designating by 1 the unit element
of the field F, the following identities hold:

1. v1 + v2 = v2 + v1; (commutativity of +);

2. (v1 + v2) + v3 = v1 + (v2 + v3); (associativity of +);

3. There exists 0 ∈ V such that 0 + v1 = v1 + 0 = v1; (neutral element);

4. −v1∈ V such that v1 + (−v1) = 0; (opposite);

5. α · (β · v1) = (αβ) · v1; (associativity of ·);

6. (α+ β) · v1 = α · v1 + β · v1; (distributivity of · over + of the field F)

7. 1 · v1 = v1; (compatibility of 1);

8. α · (v1 + v2) = α · v1 + α · v2 (distributivity of · over + of the vector
space).

2.2 Basis

A basis B of vector space V is a particular set of vectors that generate the
vector space through suitable combinations. An important property so as
to constitute a basis is that such a set must be minimal with respect to the
number of constituting elements. The way these vectors are combined is
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given by linear combinations. From now on, we will drop explicit mention
of the multiplication operator · : F× V → V.

Definition 5 (Linear combination) A linear combination of elements
v1, v2, . . . , vn ∈ V defined by the elements α1, α2, . . . , αn of the field F is, by
definition, the vector v ∈ V given as

v :=

n∑
i=1

αivi.

Definition 6 (Linear independence) A finite set of vectors v1, v2, . . . , vn
is called linearly independent whenever the solution to

n∑
i=1

αivi = 0

with αi ∈ F, i = 1, . . . , n is unique and given by

α1 = α2 = . . . = αn = 0.

Using this definition, it is possible to combine vectors using arbitrary
linear combinations to generate a new set.

Lemma 1 (Vector space generated by a set of vectors) Given a
set of vectors v1, v2, . . . , vp, not necessarily linearly independent, all possible
linear combination

∑p
i=1 αivi for all possible choices of αi ∈ F, i = 1, . . . , p,

generate a set which is a vector space, that is, the set generated satisfies all
axioms of Definition 4.

Proof: The proof is a straightforward verification of the axioms. For
example, Axiom 8 can be proved in the following way:

(α+ β)

p∑
i=1

αivi =

p∑
i=1

(α+ β)αivi =

p∑
i=1

(ααi + ββi)vi =

p∑
i=1

ααivi +

p∑
i=1

ββivi = α

p∑
i=1

αivi + β

p∑
i=1

βivi.

The other axioms are left to the reader as an exercise. ♠

When one imposes not only the condition of generating a vector space,
but also of being linearly independent (that is, of being minimal among
the spanning sets of vectors), then one has a basis. Minimality will be
established through a lemma.
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Definition 7 (Basis) A basis B of a vectorspace V is a set of vectors B =
{v1, v2, . . . , vn} such that the vectors v1, v2, . . ., vn are linearly independent
according to Def. 6 and generate V according to Lemma 1.

Lemma 2 The number n is independent of the generating set chosen in
Def. 7.

Proof: Suppose that there exist another generating and linearly in-
dependent set {w1, w2, . . . , wp} with p < n. This means that every vector
vi, i = 1, . . . , n, can be expressed through a linear combination of the wj ,
j = 1, . . . , p, i.e.

vi =

p∑
j=1

βijwj i = 1, . . . , n. (2.1)

Now, constitute the equation of linear independence

n∑
i=1

αivi = 0 (2.2)

for which the only solution is αi = 0, i = 1, . . . , n, because the vi are
supposed to constitute a basis. We will now display a contradiction. Indeed,
once the vi, i = 1, . . . , n, appearing in (2.2), are replaced by their expressions
(2.1), one gets

n∑
i=1

αi

 p∑
j=1

βijwj

 =

p∑
j=1

(
n∑
i=1

αiβij

)
wj .

Then, because wj , j = 1, . . . p, constitute a basis, all coefficients in front of
wj , j = 1, . . . , p, must vanish, that is,

n∑
i=1

αiβij = 0 j = 1, . . . , p. (2.3)

But the system of equations (2.3) has more unknowns αi, i = 1, . . . , n, than
the number of equations, p. Therefore, one can secure a set of scalars αi ∈ F,
i = 1, . . . , n with at least one non-vanishing element αk 6= 0, k ∈ 1 . . . n such
that (2.2) holds. This contradicts the fact that the vi, i = 1, . . . , n are lin-
early independent. The case with p > n follows a similar argument once p
and n are swapped. Therefore, we have proved that all bases have the same
number of vectors n. ♠
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Definition 8 (Dimension) The integer n appearing in Def. 7, which is
guaranteed to be independent of choices through Lemma 2, is the dimension
of the vector space V.

Lemma 3 (Coefficients w.r.t. a basis of an abstract linear
map) Given a basis B = {v1, . . . , vn} and a linear map φ : V → V, if
α1, α2 ∈ F , then φ(α1v1 + α2v2) = α1φ(v1) + α2φ(v2).

2.3 Matrices and Operators

Let V be an n dimensional vector space. We can select for such a space
many different bases. Let us consider two of them B1 = {v1, . . . , vn} and
B2 = {w1, . . . , wn} with vi, wi ∈ V, i = 1, . . . , n.

Lemma 4 (Uniqueness w.r.t. a given basis)
Once a basis B = {v1, . . . , vn} is chosen, any vector v ∈ V can be ex-

pressed as a unique linear combination with coefficients αi ∈ F, i = 1, . . . , n
as

v =
n∑
i=1

αivi. (2.4)

Proof: Suppose that there exists another set of coefficients ᾱi ∈ F,
i = 1, . . . , n such that v =

∑n
i=1 ᾱivi. Then substract this last expression to

(2.4) so as to have

0 =
n∑
i=1

(ᾱi − αi)vi.

This contradicts linear independence of the vectors of the basis B, because,
by assumption the linear combination defined by the α’s is different from
the one defined by the ᾱ’s, there exists at least one k for which ᾱk 6= αk. ♠

Thus, once a basis is chosen, then one can represent a vector through a
collection of n coefficients belonging to the base field F.

Definition 9 (Vector in coordinates) A vector — in coordinates, with
respect to a basis B = {v1, . . . , vn} — is a collection of n coefficients αi ∈
F, i = 1, . . . , n written as a column (or row depending on convention):

v =
(
α1 . . . αn

)T
. It will be understood that this notation means that

v =
∑n

i=1 αivi.
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Here aT designates the operation of transforming a row vector a into a
column vector aT (and vice-versa).

Definition 10 (Linear map — Linear operator)) A map Φ : V → V
will be called a linear map (or linear operator), whenever ∀α, β ∈ F, ∀v1, v2 ∈
V, the following equality holds:

φ(α1v1 + α2v2) = α1φ(v1) + α2φ(v2).

Lemma 5 (Linear map defined through a basis) Suppose that a ba-
sis is given as B = {v1, . . . vn}, then any choice of coefficients αij ∈ F,
i, j ∈ 1, . . . , n defines a linear map φ after setting φ(v) = w in which
v =

∑n
i=1 αivi, and w =

∑
j βjvj with the βj’s defined as

βi :=
n∑
j=1

αijαj i = 1, . . . , n. (2.5)

Proof: Let v =
∑n

i=1 αivi and w =
∑n

i=1 γivi then

φ(αv + βw) = φ

(
n∑
i=1

(ααi + βγi)vi

)
=

n∑
i=1

 n∑
j=1

αij(ααj + βγj)

 vi

= α
n∑
i=1

 n∑
j=1

αijαj

 vi + β
n∑
i=1

 n∑
j=1

αijγj

 vi

= αφ(v) + βφ(w)

so that the defining property of linearity is satsfied, proving that Φ is a
linear map. ♠

Lemma 6 (Coefficients of a linear map w.r.t. a basis) Once a
basis B = {v1, . . . , vn} is chosen, then each abstract linear map φ : V → V
leads to a unique choice of coefficients αij, i, j ∈ 1, . . . , n appearing in (2.5).

Proof: Since vi ∈ V, i = 1, . . . , n, one can apply the map φ to them
so as to obtain a collection of vectors φ(vi), i = 1, . . . , n. Now, because B
is a basis, each φ(vi) admits a unique decomposition φ(vi) =

∑n
j=1 αijvj .

Hence, all coefficicients αij , i, j = 1, . . . , n appearing in (2.5) are unique and
well defined by φ. ♠
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Definition 11 (Matrix of a linear map) The coefficients αij, i, j =
1, . . . , n appearing in Lemma 6 can be arranged as a n× n array or matrix
A that can be used to represent the linear map φ,

A =

 α11 . . . α1n
... · · ·

...
αn1 . . . αn2


It operates on the column vector representation of a vector v =

∑n
i=1 αivi

in the following way to signify that w =
∑n

i=1 βivi is the image of v through
the linear map φ, that is, w = φ(v).

2.4 Minimal Polynomials

We follow closely F. R. Gantmacher Matrix Theory, Vol. 1, chap. III. In
this section, we will consider an n dimensional vector space V together with
a vector v ∈ V.

2.4.1 Polynomials define linear maps

Suppose a polynomial in λ is given as

φ(λ) = λn + a1λ
n−1 + . . .+ an−1λ+ an1

with all coefficients a1, a2, . . ., an belonging to the field F.
Depending on the nature of the variable λ, the polynomial defines various

maps. For instance, if we restrict λ to values belonging to F we get a map
φ(.) : F→ F. If we restrict λ to matrices we get the following:

Definition 12 (Linear map defined by a polynomial and a matrix)
Suppose that a matrix A is given together with a polynomial φ(λ), whose
coefficients belong to F. Then, upon substitution λ → A, 1 → I, where I
stands for the identity matrix, one gets a new matrix

φ(A) = An +

n∑
i=1

αiA
n−i (2.6)

which is the linear map (in matrix form) corresponding to A and φ(λ).

Consider a linear map φ1, leading to a matrix A1 and another one φ2,
leading to A2. Since it is linear, it’s allowed to do: φ1+φ2, leading to A1+A2.
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Suppose that dimA1 = dimA2 = n× n, so we can multiply A1 · A2 and
A1 ·A1.

The question of interest is whether some the properties of this polynomial
will be invariant when the basis is changed.

z = P · x P−1z = x
A : V → V Ax = z PAP−1 = Ā

Ψ(PAP−1) = Ψ(A)

2.4.2 Annihilating polynomials

A linear map is given through a matrix A. Consider an arbitrary vector v
given in column form so that A can operate on it by matrix multiplication,
that is, Av is a new vector of V in column form. Thus, the matrix A can
operate on it again so as to obtain A(Av) = A2v. Continuing this process
— and since the vector space V is of finite dimension — there exists a p for
which Apv becomes linearly dependent on the family of linearly independent
vectors

Bv = {v,Av, . . . , Ap−1v}.

This means that there exist αi ∈ F, i = 1, . . . , p, such that

Ap = −α1A
p−1 − α2A

p−2 − . . .− αpI. (2.7)

Thus, the polynomial

φ(λ) := λp + α1λ
p−1 + . . .+ αp

becomes an annihilating polynomial of v since (2.7) is nothing but

φ(A)v = 0.

Definition 13 (Annihilating polynomial of a vector) A polynomial
φ(λ) is an annihilating polynomial of a vector v ∈ V, w.r.t. a matrix A
(linear operator), if

φ(A)v = 0.

Notice that an annihilating polynomial is specific to a linear map and
might change with the chosen vector v ∈ V. Thus, a natural question is
to construct annihilating polynomials for a set of vectors and, therefore, for
the corresponding vector subspace spanned by this set of vectors.
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Definition 14 (Annihilating polynomial of a vector space) Let W
be a vector subspace (i.e. W ⊆ V). A polynomial φ(λ) is an annihilating
polynomial of W if, no matter the vector w ∈ W, then

φ(A)w = 0.

Among all annihilating polynomials, there are some that are minimal
with respect to degree. This is true not only for annihiliating polynomials
of single vectors but also for annihilating polynomials of subspaces.

Definition 15 (Minimal annihilating polynomial) Among all annihi-
lating polynomials φi(λ), i = 1, 2, . . ., there are some for which their degree
are all equal and of smallest possible value. They differ from each other by
a factor of the field F. Pick one of them, say φj(λ) =

∑p
i=0 αp−iλ

i, and
multiply this polynomial by the inverse of α0 to get a unique polynomial
φ(λ) = α−1

0 φj(λ) which will be called the minimal annihilating polynomial.

Remark 1 We will use at times the abreviation MAP for the (M)inimal
(A)nnihilating (P)olynomial.

2.5 Eigenvectors and Singular Values

Definition 16 (Eigenvector) Vector V, such that there exists λv ∈ F for
which AV = λvV.

2.6 Invariant Subspaces

Definition 17 (Invariant subspace) An invariant vector subspace for a
linear map Φ is a vector subspace I included in the original vector subspace
V (i.e. I ⊆ V) such that for any vector v ∈ I one has Φ(v) ∈ I.

2.7 Minimal and Characteristic Polynomials

Definition 18 (Characteristic polynomial) The characteristic poly-
nomial of matrix A is ∆(λ) given by

∆(λ) =| A− λI |= 0. (2.8)

Lemma 7 () ∆(λ) is invariant with respect to similarity transform.
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Proof:

Ā = PAP−1

|Ā− λI| = |PAP−1 − λI| = |PAP−1 − λPP−1|
= |P (A− λI)P−1| = |P ||P−1||λI −A|
= |λI −A|

♠

2.8 Generalized Bezout and Cayley Hamilton

2.8.1 Matrix Polynomials and Multiplication

In general, the matrix product of any two square matrices M1 and M2 does
not commute, i.e.

M1M2 6= M2M1.

However, when the matrices result from polynomials φ1(λ) and φ2(λ), namely
for a matrix A, say M1 = φ1(A) and M2 = φ2(A), things are different:

Lemma 8 (Commutativity of polynomial matrix functions) Given
a n × n matrix A and two polynomials φ1(λ) and φ2(λ), the associated
polynomial matrix functions commute, i.e.

φ1(A)φ2(A) = φ2(A)φ1(A).

Proof: Let

φ1(A) = α0A
n + α1A

n−1 + . . .+ αnI

φ2(A) = β0A
m + β1A

m−1 + . . .+ βmI

The idea is to isolate the first term of one of the polynomials (for example
β0A

m of the second polynomial), and to factorize that term on the appro-
priate side of the other polynomial (that is, factorizing β0A

m on the left in
φ1(A)). This is possible because it amounts to simply regrouping repeated
factors AA . . . A so that Am appears on the other side (e.g. ApAm = AmAp),
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which gives in full detail:

φ1(A)φ2(A) =

(
n∑
i=0

αiA
n−i

) m∑
j=0

βjA
m−i


=

(
n∑
i=0

αiA
n−i

)β0A
m +

m∑
j=1

βjA
m−j


=

(
n∑
i=0

αiA
n−iβ0A

m

)
+

(
n∑
i=0

αiA
n−i

) m∑
j=1

βjA
m−j


= β0A

m

(
n∑
i=0

αiA
n−i

)
+

(
n∑
i=0

αiA
n−i

) m∑
j=1

βjA
m−j


Pursuing this factorization one step further through isolating β1A

m−1 in∑m
j=1A

m−j , leads to

(
β0A

m + β1A
m−1

)( n∑
i=0

αiA
n−i

)
+

(
n∑
i=0

αiA
n−i

) m∑
j=2

βjA
m−j


which upon iteration gives m∑

j=1

βjA
m−j

 (
n∑
i=1

αiA
n−i

)

from which the desired commutativity property results,

φ1(A)φ2(A) = φ2(A)φ1(A).

♠

2.8.2 Matrix Polynomials and Division

We consider in this section not only a polynomial of a single matrix (so that
when the variable λ is replaced by a matrix, a matrix is obtained, as in
the previouse paragraph) but a matrix whose entries are polynomials in the
variable λ.
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Definition 19 (Matrix polynomial) A matrix polynomial D(λ) is a n×
m matrix with polynomial entries:

D(λ) = (di,j) di,j =

r∑
k=1

di,j,kλ
r−k

All coeffeicients belong to the base field, that is,

di,j,k ∈ F i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , r.

Of course, the case of the previous paragraph is just a special case,
since by expanding and summing the polynomial matrix function for a given
matrix yields a polynomial matrix with a specific structure.

Now, general matrix polynomials can, not only be multiplied by each
other (in a non-commutative way when arbitrary polynomial matrices are
considered), but also be divided by each other. Because matrix multipli-
cation is not commutative, we need to consider division on the right and
division on the left.

Definition 20 (Matrix polynomial right division) Let E(λ) and F (λ)
be two n×n matrix poylnomials. Define the right quotient Q(λ) and the right
remainder R(λ) as the two matrix polynomials that satisfy

E(λ) = F (λ)Q(λ) +R(λ). (2.9)

Definition 21 (Matrix polynomial left division) Let E(λ) and F (λ)
be two n×n matrix polynomial. Define the right quotient Q(λ) and the right
remainder R(λ) as the two matrix polynomials that satisfy

E(λ) = Q̂(λ)F (λ) + R̂(λ). (2.10)

Theorem 1 (Generalized Bezout) The right remainder R(λ) of a n×n
polynomial matrix E(λ) divided by the particular polynomial matrix λI −A
is given by the matrix E(A). This means that there exits a Q(λ) such that

E(λ) = Q(λ)(λI −A) + E(A).

• B(λ) is the co-adjoint matrix
∆(λ) = |λI −A| (λI −A)B(λ) = ∆(λ)I

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


R(A) = 0 zero remainder.
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• I is an invariant subspace.
Rv ∈ I
∆(λ) cancels A
Rv = V2 R ·R ·V2 = V3 V3 is linearly dependent on V1 and
V2

R(V1 + V2) = RV1 +RV2 it is a linear map

2.9 Orthogonalization

2.9.1 Scalar Product

Definition 22 (Scalar product) A scalar product is a map

〈·, ·〉 : V × V → R

that satisfies, ∀ v1, v2, v3 ∈ V, ∀ α, β ∈ F:

1. 〈v, v〉 > 0 v 6= 0

2. 〈v1, v2〉 = 〈v2, v1〉

3. 〈αv1 + βv2, v3〉 = α〈v1, v3〉+ β〈v2, v3〉

Definition 23 (Norm) We suppose that F is a valuation field with valua-
tion | · | : F→ R. This means that the map | · | : F→ R satisfies the follwoing
three axioms ∀α, β ∈ F

(i) |α| ≥ 0

(ii) |αβ| = |α| |β|

(iii) |α+ β| ≤ |α|+ |β|

A map ‖ · ‖ : V → R is a norm when the following identities are satisfied,
for all v, v1, v2, α1, α2.

1. Homogeneity: ‖αv‖ = |α|‖v‖.

2. Positivity: ‖v‖ > 0 ∀v 6= 0, and, ‖v‖ = 0⇔ v = 0.

3. Triangle inequality: ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.
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Lemma 9 The Euclidean norm

‖v‖ :=
√
〈v, v〉

obeys the definition of a norm according to Def. 23.

The proof is a simple check of the corresponding axioms.

Example 1 Let v =
n∑
i=1

αivi where a basis B = {v1, . . . , vn} has been cho-

sen which need not be orthonormal.

‖v‖2 :=
n∑
i=1

|αi|2

‖v‖1 :=

n∑
i=1

|αi|

‖v‖∞ := max
i∈1...n

|αi|

Remark 2 When the basis is orthonormal the 2-norm ‖ · ‖2 becomes the
Euclidean norm ‖ · ‖.

This remark leads us to the definition of an orthogonal basis and or-
thonormal basis.

Definition 24 (Orthogonal vectors w.r.t. a scalar product) Let
〈·, ·〉 : V → R be a scalar product. Two vectors v1 and v2, both belonging to
V will be called orthogonal if and only if

〈v1, v2〉 = 0.

Definition 25 (Orthonormal basis)

Definition 26 (Standard scalar product) Suppose a vector is given
through its column definition as in Def. 9. The standard scalar product is
defined as 〈v1, v2〉 = vT1 v2 where on the left-hand-side, v1 and v2 are elements
of V written in the standard way, whereas on the left-hand-side, v1 and v2

represent their respective representation with respect to an orthogonal basis
B = {e1, e2, . . . , en}.

Let B = {v1, v2, . . . , vn} be a basis of a vector space. We
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Definition 27 (General linear map) For any vector v : v,Av, ..., Ap−1v
there exist p such that {v,Av, ...Ap−1v} is a basis.

Definition 28 (Annihilating polynomial of a vector (a subspace))
is a λ-polynomial such that (a subspace) Ψ(λ): Ψ(A)v = 0.

Apv = AAp−1v = −α1Ap− 1v − α2A
p−2v − ...− αpIv

∃α1, α2, ..., αp−1 λp + α1λ
p−1v + ...+ αp−1

Definition 29 (Cyclic invariant subspace) is defined as

I = span{v,Av, ..., Ap−1v}

Theorem 2 Any vector space V can be split as a direct sum of cyclic sub-
spaces

V = I1 ⊕ I2 ⊕ ...⊕ Iz

Let V ∈ I1 ⊕ I2 (subspace of V) and exists two V1 and V2 such that
V1 ∈ I1 and V2 ∈ I2, then V = V1 + V2

Exercise Suppose that we know an annihilating polynomial Ψ(λ) of the
whole vector space V, where A is given.
∀v ∈ V Ψ(A)v = 0.

Definition 30 (Minimal polynomial (vector, subspace, matrix)) It
is the lowest degree polynomial which is an annihilating polynomial.

∆(λ), characteristic polynomial might not be the minimal polynomial of
A.

Then, it should be shown that there exists an unique vector C which has
the same minimal annihilating polynomial.

2.9.2 Factor space

Let I = {v,Av, ..., Ap−1v} be an invariant set.
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Definition 31 (Absolute equality in vector space) Vectors v1 and
v2 are absolutely equal if v1 = v2, meaning that v1 − v2 = 0.

Definition 32 (Relative (mod I) equality in vector space) Vectors
v1 and v2 are relatively equal (by mod I) if v1 ≡ v2 and iff ⇔ ∃v ∈ I, v1 =
v2 + v, v1 − v2 = v.

Definition 33 (Equivalent classes of vectors) Vectors v1 and v2 are
absolutely equal if v1 = v2, meaning that v1 − v2 = 0.

Equivalent classes of vectors x ≡ y set {y | ∃v ∈ I, x = y + v}
1. reflexivity x ≡ y ⇒ y ≡ x
2. transitivity x ≡ y y ≡ z ⇒ x ≡ z
3. simetry x ≡ x

Exercise Check the axioms of the vector space {y | ∃v ∈ I, x = y + v}
if ȳ is one of its elements.
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Chapter 3

Coprimeness and
Annihilating Polynomials

Recap:

• Minimal annihilating polynomial (MAP): φ, such that for invariant
space I1 ⊂ v and for ∀v,A v ∈ I1, it holds that φ(A) v = 0.

• Degree of the MAP must be less than or equal to the degree of the
characteristic polynomial.

3.1 Coprime polynomials

Basic integer coprimeness for given two integers (e.g. 3 and 7): ∃a, b ∈ Z :
3a+7b = 1. This holds with a = 5 and b = −2, i.e. 3·5+7·(−2) = 15−14 = 1.

Definition 34 (Coprimeness polynomials) Polynomials Ψ1 and Ψ2 are
coprime iff a(λ)Ψ1(λ) + b(λ)Ψ(λ) = 1.

Definition 35 (Annihilating Polynomial (AP) of a Vector Space)
Let Rn be the general state space and consider an arbitrary subspace con-
tained in it V ⊆ Rn.

Let a matrix A be given which is Rn×n.
Among all polynomials ψ(λ) consider those that are such that when λ is

replaced by the matrix they annihilate all vectors that belong to the subspace
V, or in other words,

{v ∈ Rn|ψ(A)v = 0}
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Definition 36 (Minimal Annihilating Polynomial) Among all AP,
the one of least order will be called the minimal annihilating polynomial
(written MAP).

3.2 Invariant Subspaces and Cyclic Invariant Sub-
spaces

Definition 37 (invariant subspace)
Let I be a vector subspace of Rn and A an n× n matrix. The subspace I is
said to be invariant if for any v ∈ I, then Av ∈ I.

Definition 38 (cyclic subspace)
Let a matrix A of dimension n × n be given. A cyclic invariant subspace
is an invariant vector subspace I generated by a single vector. Let v be
one of its generator. The dimension of the cyclic subspace is the maximum
integer p such that the vectors v, Av, . . ., Ap−1 constitute a family of linearly
independent vectors. The integer p is independent of the chosen generator.

3.3 Decomposition into Cyclic Subspaces

Lemma 10 (vector sharing same MAP as whole space — single
irreducible factor case)

Let A be a given n × n matrix. Let V be a vector subspace having MAP
(w.r.t. A) which contains a single irreducible factor, i.e.

ψ(λ) = (φ(λ))l

where l ∈ N is the multiplicity of that factor. Then there exists at least one
vector v ∈ V sharing the same MAP. The MAP (w.r.t. A) of v is (φ(λ))l.

Proof: Consider in succession each canonical basis vector ei, i =
1, . . . , n. For each i, construct the maximal linearly independent familiy of
vectors

{ei, Aei, . . . , Ali−1ei}.

To such a family of vectors, there correponds the MAP

ψi(λ) = (φ(λ))li

Notice that these MAPs have to share the same irreducible factor as the
MAP of the whole space (since this latter polynomial is considered of having
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a single irreducible factor). The multiplicity li might be smaller than l. Then
consider the least common mulitiple (l.c.m)

l.c.m.i=1,...,n{(φi(λ))li}

This means that
l = max i=1,...,n{li}

and the the sought vector e is the basis vector with index that matches this
attained maximum, i.e.

e := eargmax i=1,...n{li}

♠

Theorem 3 (coprime factorisation of the MAP of the whole
space induce direct sum decomposition into invariant subspaces)
Let ψ(λ) be the MAP of the whole vector space Rn. Suppose that ψ(λ) can
be factorised into two coprime factors, i.e.

ψ(λ) = ψ1(λ)ψ2(λ)

then the whole space splits into a direct sum of two invariant subspaces

Rn = I1 ⊕ I2

for which ψ1(λ) is MAP of I1 and ψ2 is MAP of I2.

Proof: Since the polynomials ψ1(λ) and ψ2(λ) are coprime one can
find two polynomials a(λ) and b(λ) so that the Bezout indentity

1 = a(λ)ψ1(λ) + b(λ)ψ2(λ) (3.1)

holds which becomes after substituting the matrix A for the variable λ, and
after postmultiplying by an arbitrary vector x

x = a(A)ψ1(A)x+ b(A)ψ2(A)x

Hence, it is possible to define two new vectors

x1 := a(A)ψ1(A)x

x2 := b(A)ψ2(A)x
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so that
x = x1 + x2

But then

ψ2(A)x1 = ψ2(A)a(A)ψ1(A)x

= a(A)ψ1(A)ψ2(A)x (3.2)

= a(A)ψ(A)x (3.3)

= a(A)0 (3.4)

= 0

where commutation of polynomial maps has been used in (3.2) so that the
polynomial map ψ(A) stands out in (3.3) which is the map associated with
the minimal annihilating polynomial ψ(λ) of the whole space Rn, and hence
it is also the MAP of the vector x, so that (3.4) holds and therefore leads to
ψ2(λ) being an annihilating polynomial of x1 (in a compact form, ψ2 is AP of
x1). In a similar fashion, one shows that ψ1(λ) is AP of x2. Hence all vectors
x (being annihilated by the polynomial ψ(λ)) split into two components
x1 and x2 according to the above procedure. One can then notice that
the vector x1 belongs to an invariant subspace (which will then be written
I1 and defined as I1 = {v|ψ1(A)v = 0}). Indeed, take any x1 such that
ψ1(A)x1 = 0. Multiplying by A and using the commutation of A with the
polynomial map ψ1(A) gives

ψ1(A)Ax1 = Aψ1(A)x1 = A0 = 0

and hence ψ1(λ) is AP of Ax1 and hence Ax1 ∈ I1 so that I1 is an invariant
subspace (w.r.t. A). Similarly, one shows that I2 is an invariant subspace
(w.r.t. A). Otherwise stated, one has

I = I1 + I2

Let us now show that
I = I1 ⊕ I2

by displaying that the only vector in common with I1 and I2 is the zero
vector 0. We will exhibit a contradiction: Suppose then that there exists a
vector v 6= 0 such that v belongs to both I1 and I2, that is,

ψ1(A)v = ψ2(A)v = 0
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Now, postmultiplying the Bezout identity (3.1) by v (after substituting λ
for A) gives

v = a(A)ψ1(A)v + b(A)ψ2(A)v = 0 + 0 = 0 (3.5)

This exhibits the sought contradiction since v 6= 0 was initially assumed.
What remains to be proven is the fact that not only are ψ1(λ) and ψ2(λ)

the APs of the respective supspaces, but they are in fact the minimal ones
(i.e. they are MAPs). To this effect, consider an arbitrary AP ψ̃1 of I1.
Using the Bezout identity,

ψ̃1(A)ψ2(A)x = ψ2(A)ψ̃1(A)x1 + ψ̃1ψ2(A)x2 = 0

x being an arbitrary vector, ψ̃1(λ)ψ2(λ) is an annihilating polynomial for R
and is therefore divisible by ψ(λ) = ψ1(λ)ψ2(λ) which means that ψ̃1(λ) is
divisible by ψ1(λ) and thus ψ(λ) is the MAP of I1. ♠

Lemma 11 (the product of coprime polynomials is the MAP of
the sum of the vectors associated with the polynomials)

• Let A be a given n× n matrix.

• Let v1 and v2 be arbitrary vectors in Rn.

• Let ψ1(λ) be a MAP (w.r.t. A) of the vector v1.

• Let ψ2(λ) be a MAP (w.r.t. A) of the vector v2.

• Suppose that ψ1(λ) and ψ2(λ) are coprime

⇒

e := e1 + e2

has
ψ(λ) := ψ1(λ)ψ2(λ)

as MAP (w.r.t A).

Proof: Let χ(λ) be an AP of e = e1 + e2.

ψ2(A)χ(A)e1 =

= ψ2(A)χ(A)(e− e2)

= ψ2(A)χ(A)e− χ(A)ψ2(A)e2

= 0− 0 = 0
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This means that ψ2(λ)χ(λ) is AP of e1 Since the AP is divisible by the
MAP, the product ψ2(λ)χ(λ) is divisible by ψ1(λ). In a similar fashion we
establish that ψ1(λ)χ(λ) is AP of e2. Since the AP is divisible by the MAP,
this means that the product ψ1(λ)χ(λ) is divisible by ψ2(λ).

We thus come to the conclusion that because ψ1(λ) and ψ2(λ) are co-
prime, χ(λ) has to be divisible by ψ1(λ) and χ(λ) has to be divisible
by ψ2(λ). But this also signifies that χ(λ) is divisible by the product
ψ1(λ)ψ2(λ). Because χ(λ) was supposed to be an arbitrary AP of e (not
necessarily the MAP of e), we come to the conclusion that every AP of e is
divisible by ψ(λ)ψ2(λ). Therefore, ψ(λ) = ψ1(λ)ψ2(λ) has to be the MAP
of e = e1 + e2. ♠

Theorem 4 (there always exist a vector sharing the same MAP
as the whole space)
Let A designate a matrix Rn × Rn and let fA be the linear map Rn → Rn

defined through A. Given a vector space V with MAP ψ(λ) and a linear map
fA defined through a matrix A, then there always exist at least one vector
v ∈ V sharing the same MAP as the whole space, that is, ∃v ∈ V, such that
ψ(λ) is also the MAP of v.

Proof: Let ψ(λ) be the MAP (w.r.t. A) of the whole space Rn.
Factorise ψ(λ) into irreducible factors

ψ(λ) = (φ1(λ))l1(φ2(λ))l2 · · · (φp(λ))lp

and then proceed as in the proof of Lemma 10 by displaying for each irre-
ducible factor (φ(λ))li the corresponding annihilated vector vi. Then apply-
ing recursively Lemma 11 ♠

Theorem 5 (decomposition into cyclic invariant subspaces with
MAPs that divide each predecessor)
Let A be a given n × n matrix. The n dimensional vector space Rn splits
into a direct sum of invariant cyclic subspaces

Rn = I1 ⊕ I2 ⊕ . . .⊕ Ir

with each invariant subspace Ii, (i = 1, . . . , r), having an associated MAP
ψi(λ) with the property that ψi+1(λ) divides ψi(λ).
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Proof: The whole space Rn has a MAP. It will be labeled ψ(λ).
Theorem 4 guarantees the existence of a vector e ∈ Rn having the same
ψ(λ) as MAP. This implies the existence of a cyclic invariant subspace

I1 := {e,Ae, . . . , Ap−1e}

for a given p. Let us suppose that p < n, for otherwise the whole space Rn
is a single cyclic invariant subspace, and the theorem holds. In the case that
p < n we can consider the relative minimal annihilating map modulo I1 of
the whole space Rn, which we will denote as ψ2(λ) and use the acronym
RMAP (mod I1) of the whole space Rn. It is plain to show that the RMAP
has to divide the MAP of a given space. This means that ψ2(λ) divides
ψ1(λ) = ψ(λ), i.e. ∃χ(λ) such that ψ1(λ) = ψ2(λ)χ(λ). Because ψ2 is the
RMAP (mod I1) of the whole space, there exists a vector g∗ ∈ Rn sharing
the same RMAP (mod I1), (just adapt Theorem 4 to the relative case), i.e.
for which

ψ2(A)g∗ ≡ 0 (mod I1)

Translating this equivalence into an equality, there exists γ(λ) such that

ψ2(A)g∗ = γ(A)e

Let us apply χ(A) on both sides of the last equation

ψ1(A)g∗ = χ(A)ψ2(A)g∗ = χ(A)γ(A)e

Now since ψ1(λ) is the MAP of the whole space, it is an AP of g∗ and
therefore

χ(A)ψ2(A)g∗ = 0

which means that χ(λ)ψ2(λ) is AP of e. It is therefore divisible by ψ1(λ)
(since ψ1(λ) is MAP of e). This then means that because ψ1(λ) = χ(λ)ψ2(λ),
the polynomial γ(λ) must be divisible by ψ2(λ), i.e.

γ(λ) = β(λ)ψ2(λ).

Hence,
ψ2(A)g∗ = γ(A)e = β(A)ψ2(A)e

which leads to
ψ2(A)(g∗ − β(A)e) = 0.

Therefore ψ2(λ) is MAP of the newly defined element

g := g∗ − β(A)e.
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But ψ2(λ) is also the RMAP of g (mod I1) (since g is equal to g∗ modulo
an element of I1, namely β(A)e). Since g has MAP ψ2(λ), the space

{g,Ag, . . . , Am−1g} (3.6)

is cyclic. Since ψ2(λ) is RMAP (mod I1) of g, it follows that the family
(3.6) has to be linearly independent from

{e,Ae, . . . , Ap−1e}.

If n = m+ p then
Rn = I1 ⊕ I2.

If not, we continue the process by considering the RMAP of the whole space
Rn (mod I1 ⊕ I2) and we finally secure a sequence of polynomials

ψ1(λ), ψ2(λ), . . . , ψr(λ)

with ψi+1(λ) dividing ψi(λ) i = 1, . . . , r − 1. These polynomials are the
MAPs of associated invariant subspaces that constitute a direct sum de-
composition of the whole space:

Rn = I1 ⊕ I2 ⊕ · · · ⊕ Ir

♠
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Chapter 4

Smith Form, Unimodalar
Matrices and Invariant
Polynomials

• Assume we have a vector space and can split it into a direc sum of invari-
ant subspaces: V = I1 ⊕ I2 ⊕ ...⊕ Ir
Up to a certain index, the annihilating polynomials will divide each others:
Ψk+1 divides Ψk, where k = 1, 2, ..., r − 1.
The question of interest is how to easily compute these polynomials Ψk of Ik.

• Consider a matrix A and its determinant, Dn(λ) of order n.
• Method to compute the minimal polynomial of Ik:
1◦ choose all minors of order n− 1 of matrix A
2◦ compute the greatest common divisor of all minors of order n−1 (Dn−1(λ))
3◦ choose all minors of order n− 2
4◦ ...
5◦ repeat the steps until the end.

Definition 39 (Invariant polynomials of A)

i1 =
Dn−1(λ)

Dn−2(λ)
i2 =

Dn−2(λ)

Dn−3(λ)
... in−1 = D1

• They are invariant to the similarity transform: PAP−1 has the same ik
for k = 1, 2, ...
• We can also show consecutive division:
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ik+1 divides ik
÷ can be show by the Cauchy-Binet formula: |AB| = |A||B|

4.1 Smith Form

• It is possible get invariant polynomials from the Smith Form of the matrix,
which can be expressed via unimodular matrices:

U1(sI −A)U2 =

∣∣∣∣∣∣∣∣∣
d1(s) 0 . . . 0

0 d2(s) . . . 0
...

...
. . .

...
0 0 . . . dn(s)

∣∣∣∣∣∣∣∣∣ .
• The idea is to find these matrices U1 and U2, diagonalize matrix and
re-get invariant polynomial ik.
|U1| ∈ F and |U2| ∈ F , where F is a field.
• Needed building blocks:

T1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 c 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
T2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 α(s) 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
÷ T1 is identity matrix multiplied with a constant c ∈ F .
÷ T2 is identity matrix with swap of i-th row or j-th column.
÷ T3 is identity matrix with an inserted polynomial.
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• Construction:
U1 = Tk1 · Tk2 · ... · Tkm , where kj ∈ {1, 2, 3} and j = 1, 2, ...,m
U2 = Sk1 · Sk2 · ... · Skm , where S1 = T1, S2 = T2, S3 = T T3
• Another way to generate the Smith Form:

|sI −A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P11(s) P12(s) P13(s) . . . P1n(s)
P21(s) P22(s) P23(s) . . . P2n(s)

...
...

...
. . .

...

Pj1(s)
...

...
. . .

...
...

...
...

. . .
...

Pn1(s) Pn2(s) Pn3(s) . . . Pnn(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
÷ Pji is a polynomial of maximal degree 1.

1◦ Choose the lowest degree element in s (e.g. in the 1st column and j-
th row, Pj1).
2◦ Swap the rows to switch Pj1 and P11.
3◦ Divide Pk1 by Pj1 (and we can do it because it has the lowest degree)
4◦ Pk1(s) = αk(s)Pj1(s) + βk(s).
÷ αk is from T3 and βk is a reminder
5◦ Replace Pn1 terms by β terms.
6◦ . . .
5◦ Repeat the whole process until matrix is diagonal and do the same for
the columns.

• The choice will not disturb the fact that at the end we obtain an
unique solution.

4.1.1 Elementary divisor

• Consider invariant polynomials i1(s), i2(s), ..., ir(s), where r ≤ n.
Each of them can be factorized in the (algebraic) field F :
ik(s) = (s− λk1)pk1 · (s− λk2)pk2 · ... · (s− λkl)pkl , where λl ∈ C

Definition 40 (Elementary divisor) Each element (s − λ)p is an ele-
mentary divisor of A.

4.1.2 Dynamical Systems

• ẋ = Ax+Bu y = Cx+Du
• If we change coordinates by z = Px, we have ż = Pẋ, where P is not
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singular.
x = P−1z ż = Pẋ = PAx+ PBu = PAP−1z + PBu
y = CP−1z +Du

• Similarity transform for state-space system
Ā = PAP−1 B̄ = PB C̄ = CP−1 D̄ = D

• Standard solution of a system:

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

d

dt
(e−Atx) = −Ae−Atx+ e−Atẋ

• Exponential of the matrix:
x ∈ R ẋ = ax a ∈ R x0e

at = x

d

dt
(eatx0) = aeatx0 − ax− ẋ

÷ ex = 1 + x+ 1
2x

2 + 1
3!x

3 + ... x = at
÷ eat = 1 + at+ 1

2(at)2 + 1
3!(at)

3 + ...

eA = I +A+ 1
2A

2 + 1
3!A

3 +O(A4)

Theorem 6 (Cayley-Hamilton Theorem) Matrix A satisfies its char-
acteristic polynomial |λI −A| = ∆(λ) in λ.

• deg(∆(λ)) ≤ n

∆A = 0, we can express An =
n−1∑
j=0

αiA
j , αi ∈ F

This means that in a finite sum of eA we can take all the high degrees and
express them with lower ones.

eA =

n−1∑
j=0

βjA
j

Though, if we have some other function, maybe it won’t be easy to express
it in the series.

• Suppose we have polynomials f(λ) 6= g(λ)
The question is if this can be true: f(A) = g(A) f(A)− g(A) = 0
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f(λ)− g(λ) = Ψ(λ) is an annihilating polynomial of A.
Ψ(λ) = m(λ)Φ(λ), where m(λ) is minimal annihilating polynomial of A

g(λ) = eλ f(λ) =

n−1∑
j=0

βiA
j

• λ1, λ2, ..., λr are roots of m(λ)
f(λj) = g(λk) totally independent of matrix

•
n−1∑
j=0

βjλ
j
k = eλk , r equalities

• m(λ) = (λ− λ1)p1(λ− λ2)p2

d

dλ
m(λ) = p1(λ− λ1)p1−1(λ− λ2)p2 + p2(λ− λ2)p2−1(λ− λ1)p1

m′(λk) = 0

• ẋ = Ax+Bu

−Ae−Atx+ e−At(Ax+Bu) =
d

dt
(e−Atx) = e−AtBu∫ t1

0
e−AτBu(τ)dτ = e−At1x(t1)− e−A·0x(0)

x(t1) = eAt1x0 + eAt1
∫ t1

0
e−AτBu(τ)dτ
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Chapter 5

Stability

• Open-loop stability
• Closed-loop stability
• Asymptotic stability
• Bounded-input-bounded-output (BIBO)
• Lyapunov stability

5.1 BIBO in SISO systems

Definition 41 (Bounded-input-bounded-output)
∀u,∃M ∈ R+ : ||u|| < M , where M mesures thr size of a system.

• ||u(·)|| =
∫ ∞
−∞
|u(τ)|dτ = || ||1, norm-1, L1

• ||u(·)|| =
∫ ∞
−∞

(u(τ))2dτ = || ||2, norm-2, L2

Theorem 7 ∀u,∃m : ||y|| < m⇔ the system is BIBO stable.

Proof: Consider an impulse response g(t).

y(t) =

∫ ∞
−∞

u(τ)g(t− τ)dτ =

∫ ∞
−∞

g(τ)u(t− τ)dτ y = g ∗ u

This means that g(t) is independent of u(t), which is not true for nonlinear
systems.

∃C ∈ R+ : ||g(·)|| < C, because we want ”bounded” g(t)
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∫ ∞
−∞
||g(τ)||dτ < C

Proof for ⇒:

y =

∫ ∞
−∞

u(t− τ)g(τ)dτ , and we choose M , such that ||u|| < M

|y| = |
∫
u(τ)g(t− τ)dτ |

� |a • b| ≤ |a| • |b| |
∫
a(·) • b(·)| <

∫
|a(·)| • |b(·)|

|y| ≤ ||u|| · ||g|| |y| ≤M · C

Proof for ⇐:
Assume contraposition: g(·) is not bounded.

∀N > 0,∃t such that

∫ t

0
|g(τ)|dτ > N

y(t) =

∫ t

0
g(τ)u(t− τ)dτ

Particular bounded input:

u(t− τ) =

{
+1 g(τ) > 0;
−1 g(τ) < 0;

ȳ(t) =

∫ t

0
|g(τ)|dτ > N , which is a contradiction. ♠

• Consider the following system:

u   1

s-a

          s-a

(s+ 1) (s+ 2)

y

Figure 5.1: a, α1, α2 > 0
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Transfer function of the system:
1

s− a
· s− a

(s+ α1)(s+ α2)

If we perform canceling of the terms (s− a):
1

���s− a
· ���s− a

(s+ α1)(s+ α2)
=

1

(s+ α1)(s+ α2)

A possible scenario is that there can be some initial conditions that will
cause the ”explosion” of the system after the first block and than the zero
in a might or might not be able to ”calm” it down.

In other words, one should take care of iternal states.

5.2 Lyapunov stability

Lypunov stability is essential state stability, where the initial conditions act
as inputs.

• ẋ = Ax+Bu y = Cx+Du
If we want to check stability for the states, than there is no need to know
the output.

• Linear systems case:
Check stability for states with u = 0.
ẋ = Ax x̄ = 0 is equilibrium
Initial conditions x(0) = x0

∀R < 0,∃r : ||x0|| < r

Solution that depends on initial conditions:
d

dt
χ(x0, t) = Aχ(x0, t)

||χ(x0, t)|| < R

5.3 Asymptotic Lyapunov stability

• lim
t→∞

χ(x0, t) = 0

• V (x) = xTX = xT Ix
generalize with matrix P : xTPx > 0, for ∀x 6= 0
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Definition 42 () A positive definite matrix P is a matrix such that

xTPx > 0, ∀x 6= 0.

• V = xTPx is Lyapunov function.

• V̇ = ẋTPx+ xTPẋ = xTATPx+ xTPAx ẋ = Ax .
xT (ATP + PA)x < 0 ATP + PA < 0
� ATP + PA = −Q Q > 0 xTQx > 0

Definition 43 (Lyapunov stability) ∀Q > 0,∃P > 0 such that

ATP + PA = −Q.

Remark: Use MATLAB c© function lyap(AT , Q) = P.

• This can be also linked to the real parts of all eigenvalues of A being
negative: Re{Eig(λ)} < 0.

P =

∫ ∞
0

eA
T τQeAτdτ

ATP + PA = AT
∫ ∞

0
eA

T τQeAτdτ +

∫ ∞
0

eA
T τQeAτAdτ

=

∫ ∞
0

(AT eA
T τQeAτ + eA

T τQeAτA)dτ

=

∫ ∞
0

d

dτ
(eA

T τQeAτdτ)

= eA
T τQeAτ |∞0 = 0−Q = −Q

ATP + PA = −Q

• ATP + PA = −Q⇒ Re{Eig(λ)} < 0
v is an eigenvector of A: Av = λv
vT = [v1 v2 ... vn]
vH = [v∗1 v

∗
2 ... v

∗
n], complex conjugate of v (v1 = a+ jb, v∗1 = a− jb)
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vHAH = λHvH vTAT = λT vT

−vHQv = −vTQv = −vT (ATP + PA)v = λHvTPv + vTPvλ =
= (λH + λ)vHPv

y 2Re{λ} < 0vTPv < 0
2Re{λ}vTPv < 0

Since Q is positive definite, P is positive definite and it implicates Re{λ} <
0.
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Chapter 6

Controllability and
Observability

6.1 Controllability

• Consider the system:
ẋ = Ax+Bu y = Cx+Du, where B(n,m), A(n, n),m ≤ n

Controllability is an open loop issue. It represents steering, or ability to
bring an initial vector of states to the zero vector with finite time.

Observability is the ability to construct the values of unmeasured states
for all times.

Definition 44 (Controllability) System is controllable if:
1◦ rank[B AB A2B ... An−1B] = n
2◦ rank[A− λjIB] = n ∀λj ,∃v 6= 0, j = 1, 2, ..., n

3◦ rank[

∫ t

0
eAτBBT eA

T τdτ ] = n ∀t > 0

Definition 45 (Controllability) More explicit definition:
∀x0,∀x(T ),∀T > 0,∃u(·) such that

x(T ) = eATx0 +

∫ T

0
eA(t−τ)Bu(τ)dτ
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Define the controllability grammian as the following integral

Wc(t) =

∫ t

0
eAτBBT eA

T τdτ (6.1)

The asymptotic value Wc(∞) satisfies the Lyapunov equation

ATWc(∞) +Wc(∞)A = BBT

3◦ ⇒ controllability
We must compute a specific input that steers the system from an arbi-

trary initial condition x0 to an arbitrary desired final state x(T ) at time T
which means finding u(.) in the formula

x(T ) = sATx0 +

∫ T

0
eA(T−τ)Bu(τ)dτ (6.2)

On this purpose, notice that after a simple change of variables τ = T − τ̄
we have the following expression for the formula (6.1)

Wc(T ) =

∫ T

0
eA(T−τ̄)BBT eA

T (T−τ̄)dτ̄ (6.3)

Let the integral in the controllability definition (6.2) be isolated on the
right-hand-side

x(T )− eATx0 =

∫ T

0
eA(t−τ)Bu(τ)dτ

then we see that the integral resembles ’half’ of the controllability grammian
expression, leaving the guess as to the right value of u(.) to choose. Indeed
setting

u(τ) = BT eA
T (t−τ)Wc(T )−1(x(T )− eAT

x0) (6.4)

we have after pulling the terms that do note depend on τ out of the integral
the following trivial equality
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x(T )− eATx0 =

∫ T

0
eA(t−τ)Bu(τ)dτ

=

∫ T

0
eA(T−τ)B

(
BT eA

T (T−τ)Wc(T )−1(x(T )− eATx0)
)
dτ

=

(∫ T

0
eA(T−τ)BBT eA

T (T−τ)dτ

)
Wc(T )−1(x(T )− eATx0)

= Wc(T )Wc(T )−1(x(T )− eATx0)

= x(T )− eATx0 (6.5)

which proves indeed that the input given in (6.4) transfers the state from
x0 to x(T ).

Controllabilty ⇒ 3◦

Let us proceed by contradiction after assuming that both (i) |Wc(t1)| = 0
at a given instant of time t1 > 0 and (ii) the system is controllable. Because
|Wc(t1)| = 0,This means that ∃v 6= 0 such that Wc(t1)v = 0. Then compute

vTWc(t1)v =

∫ T

0
vT eA(t1−τ)BBT eA

T (t1−τ)vdτ

=

∫ t1

0
‖BT eA

T (t1−τ)‖2dτ = 0

which implies
BT eA

T (t1−τ) ≡ 0 ∀τ ∈ [0, t1]

which is also
vT eA

T (t1−τ)B ≡ 0 ∀τ ∈ [0, t1]

Now, the second part of our assumption is that the system is controllable
so that there exists a u(·) transferring x0 = e−At1v to x(t1) = 0

0 = v +

∫ t1

0
eA(t1−τ)Bu(τ)dτ

But taking the scalar product with the vector v gives the sought contradic-
tion since

0 = vT v + vT
∫ t1

0
eA(t1−τ)Bu(τ)dτ

= vT v (6.6)
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forces v = 0 contradicting the consequence of the first part of our assumption
v 6= 0.
• Use Cayley-Hamilton to show that 3◦ ⇒ 1◦:

eAt =
n∑
i=0

αiA
iti

• By contraposition, we will show that 1◦ ⇒ 3◦.
If rank is lost then, ∃v such that Wcv = 0

vTWcv = 0∫ t

0
vT eAτBBT eA

T τvdτ = 0

sum of squares → each square must be 0
BT eA

T τv = 0, ∀τ

• By contraposition, we will show that 1◦ ⇒ 2◦.
∃v 6= 0 such that [A− λIB]v = 0
Av = λv Bv = 0
A2v = AAv = Aλv = λ2v
rank[B λB λ2 ... λn−1B] = 1

• Controllability is not lost under similarity transform:
Ā = PAP−1 B̄ = PB
rank[B AB A2B ... An−1B] = rank[B̄ ĀB̄ Ā2B̄ ... Ān−1B̄]

• An incontrollable system has a specific change of coordinates where the
incontrollability becomes obvious:
ẋ = Ax+Bu

Ā =

(
A1 A12

0 A2

)
B̄ =

(
B̄1

0

)
y z =

(
zc
zc̄

)
(controllable and uncontrollable states)

żc̄ = A2zc̄ is not influenced by u

• Show that 2◦ ⇒ 1◦ by contraposition:
∃P such that the initial system may be transformed into controllable and
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uncontrollable states.
Rank will be lost: rank[B AB A2B An−1B] < n
The objective is to find all vi 6= 0 such that
rank[B AB A2B An−1B]vi = 0 i = 1, 2, ..., n

[vi, Pj ] is a basis

z = Px =



P1

P2
...
v1

v2
...
vr


x

Compute the eignvector of A2

A2v2 = λ2v2

Ā

(
0
v2

)
= λ2

(
0
v2

)
B̄

(
0
v2

)
= 0

y (Ā = λIB̄)

(
0
v2

)
= 0 which is a contradiction

6.2 Observability

• For observability, we can generally state that if (A,B) is controllable,
then (AT , BT ) is observable.

Definition 46 (Observability) The system is observable if :

1◦ y(·), u(·)⇒ x(0), x(·)

2◦ rank


C
CA
CA2

...
CAn−1

 = n
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3◦ rank

(
A− λI
C

)
= n

4◦ rank[

∫ t

0
eA

T τCTCeAτdτ ] = n

• WO(∞)A+ATWO(∞) = CTC

•

rank


C
CA
CA2

...
CAn−1

 = rank[CT ATCT ... (AT )n−1CT ]

⇔

rank[B Ab AwB ... An−1B] = rank


BT

BTAT

BT (AT )2

...
BT (AT )n−1



• Show that 1◦ ⇒ 4◦ by contraposition:

y = Cx+Du = CeAtx0 + C

∫ t

0
eA(t−τ)Bu(τ)dτ +Du

y is measured and last two terms are known because we control them.

ȳ = y − C
∫ t

0
eA(t−τ)Bu(τ)dτ −Du = CeAtx0

x0 = W−1
O (t)(

∫ t

0
eA

T τCTCeAτdτ)x0

x0 = W−1
O (t)

∫ t

0
eA

T τCT ȳdτ
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Now, start with a state corresponding to a vector that cancels WO

x0 = v u = 0 WO · v = 0

y we can not distinguish between a zero-state from nonzero-state (i.e.
the system is unobservable).

6.3 Invariant subspaces

6.3.1 Maximal Controllable Subspace

6.3.2 Maximal Observable Subspace
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Chapter 7

Realization

Assume that a transfer function of a system is known and we want to obtain
a state-space model:

G(s) 
ẋ = Ax+Bu
y = Cx+Du

7.0.3 Single-input single-output case

• G(s) =
β1s

3 + β2s
2 + β3s+ β4

s4 + α1s3 + α2s2 + α3s+ α4
=
N(s)

D(s)

• Sequence of N(s) and D(s) is important for non-SISO cases.

• One possible realization:

1

D(s)
=
Y (s)

U(s)
· 1

N(s)
= G(s)

1

s4 + α1s3 + α2s2 + α3s+ α4
=
Y (s)

U(s)

v(4) + α1v
(3) + α2v

(2) + α3v̇ + α4v = u

x1 = v(2) x2 = v(2) x3 = v̇ x4 = v xT = [x1 x2 x3 x4]

ẋ1 = v(4) = −α1v
(3) − α2v

(2) − α3v̇ − α4v − u
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ẋ2 = v(3) = x1

ẋ3 = v(2) = x2

ẋ4 = v̇ = x3

A =


−α1 −α2 −α3 −α4

1 0 0 0
0 1 0 0
0 0 1 0

 B =


1
0
0
0

 D = 0

For controllability: α4 6= 0 or rank[B AB A2B A3B] = 4

y = β1v
(3) + β2v

(2) + β3v̇ + β4v = β1x1 + β2x2 + β3x3 + β4x4

C = [β1 β2 β3 β4]

• D(s) and N(s) need to be coprime to avoid pole-zero cancellation and
loss of observability.

Theorem 8 If the controllable canonical realization is observable (§), then
N(s) and D(s) are coprime and vice versa (?).

Proof:

(§)⇒ (?) by contraposition:
Suppose N and D have a common zero λn ∈ R : N(λn) = D(λn) = 0
λ4
n + α1λ

3
n + α3λ

2
n + α4 = 0

β1λ
3
n + β2λ

2
n + β3λn + β4 = 0

A =


−α1 −α2 −α3 −α4

1 0 0 0
0 1 0 0
0 0 1 0

 B =


1
0
0
0

 C = [β1 β2 β3 β4]

χ =


λ3
n

λ2
n

λn
1

 ν =


C
CA
CA2

CA3


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It should be shown that ν loses rank, i.e. ∃x 6= 0, νx = 0.

Cx = β1λ
3
1 + β2λ

2
1 + β3λ1 + β4 = 0

CAx = C


−α1 −α2 −α3 −α4

1 0 0 0
0 1 0 0
0 0 1 0




λ3
1

λ2
1

λ1

1

 = C


−α1λ

3
1 − α2λ

2
1 − α3λ1 − α4

λ3
1

λ2
1

λ1

 =

λ1Cx = 0

It loses rank → the system is not observable.

(?)⇒ (§) by contraposition:

rank

(
A− λI
C

)
χ =


λ3

λ2

λ
1



(§) implies that ∃x 6= 0 such that

(
A− λI
C

)
x = 0

Cx = 0 (A− λI)x = 0 Cx = N(λ) = 0 |λI −A| = D(λ)

So, N(λ) = D(λ) = 0 (not coprime). ♠

• A good realization would mix controllability and observability.

• Define two state-space systems:
System I: (A,B,C,D)
System II: (Ā, B̄, C̄, D̄)

Expansion:
G(s) = C(sI −A)−1B +D = C̄(sI − Ā)−1B̄ + D̄

D + CBs+ CABs2 + CA2Bs3 + CA3Bs4 + ... =
D̄ + C̄B̄s+ C̄ĀB̄s2 + C̄Ā2B̄s3 + C̄Ā3B̄s4 + ...
D = D̄ CB = C̄B̄ CAB = C̄ĀB̄ ... CA2B = C̄Ā2B̄
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ż = Pẋ ż = ĀPx+ B̄u y = C̄Px+ D̄u

A = P−1ĀP B = P−1B̄ C = C̄P D = D̄
Ā = PAP−1 B̄ = PB C̄ = CP−1 D̄ = D

CB = C̄PP−1B̄ = C̄B̄
CAB = C̄P (P−1AP )P−1B̄ = C̄(PP−1)Ā(PP−1)B̄ = C̄ĀB̄
...

• Observability and controllability matrices:

O =


C
CA
CA2

...
CAn−1

 C = [B AB A2B ... An−1B]

• For the similarity transforms:

Ō =


C̄
C̄Ā
C̄Ā2

...
C̄Ān−1

 C̄ = [B̄ ĀB̄ Ā2B̄ ... Ān−1B̄]

• The analogs are not identical (O 6= Ō, C 6= C̄), but their products both
give the same Hankel matrix:
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OC = ŌC̄ =


CB CAB CA2B

CAB CA2B
...

...
...

. . .



y C̄B̄ = CP−1PB = CB C̄ĀB̄ = CP−1PAP−1PB = CAB

• The two systems have the same transfer function G(s) = C(sI −A)−1B.

Theorem 9 Two minimal realizations (dimension equal to degree of D(s),
with N(s) and D(s) coprime) are similar and equivalent.

• Product of observability, A, and controllability lends the same Markov
parameters as the Hankel matrix, but in a different order:

OAC = ŌĀC̄
C
CA
CA2

...
CAn−1

 A [B AB A2B ... An−1B] = ŌĀC̄

Ō−1OACC̄−1 = Ā P = Ō−1O P−1 = CC̄−1

• Consider the systems:
ẋ = Ax+Bu ż = Āx+ B̄u
y = Cx+Du y = C̄x+Du

The question is how to build the matrix P , having in mind a fact that

these 2 systems have the same transfer function G(s) =
N(s)

D(s)
.

• Because of minimality, we have observability and controllability.

• To reformulate the question, we need to build the matrix P so as to
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”balance” between these two properties.

• Characterization of controllability:
AWC +WCA

T = −BBT

If it is controllable, than WC is the unique solution of the system.

WC =

∫ ∞
0

eA
T (BBT )eA

T τdτ

It should be full rank.

• Likewise for observability:
ATWO +WOA = −CTC

Theorem 10 Suppose that systems (A,B,C) and (Ā, B̄, C̄) are minimal
and equivalent, then WCWO and W̄CW̄O are similar.

Proof:
WCWO = P−1W̄CW̄OP, P connects the two properties
ĀW̄C + W̄CĀ

T = −B̄B̄T

PAP−1W̄C + W̄C(P−1)TATP T = −PBBTP T

P−1(PAP−1W̄C + W̄C(P−1)TATP T )(P T )−1 = −P−1PBBTP T (P T )−1

AP−1W̄C(P T )−1 + P−1W̄C(P−1)TAT = BBT

WC = P−1W̄C(P T )−1

AWC +WCA
T = −BBT

The same for observability, and we get:
WO = P T W̄OP
WOWC = P T W̄OP P−1W̄C(P T )−1 = P T W̄OW̄C(P T )−1 = P−1W̄OW̄CP ♠

Theorem 11 The product WCWO share the same eigenvalues as W̄CW̄O

(characteristic polynomials are the same).

Theorem 12 There exists P , such that W̄O = W̄C = Σ (diagonal).

• WC = QTDQ diagonalize it, because WC is positive definite.

WC = QTD1/2D1/2Q = RTR, because all elements of the diagonal D
are positive
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Lemma 12 WCWO has the same eigenvalues as RWOR
T .

• So, we want to showRTRWO 6= RWOR
T , but eig(RTRWO) = eig(RWOR

T ).

y Two general matrices, M and N , with dimension n:

det(sI −MN) = det(sI −NM), but obviously MN 6= NM

• det(σ2I −WCWO) = det(σ2I −RTRWO) = det(σ2I −RWOR
T )

• Construction of matrix P :

WC = RTR

P = Σ1/2UT (RT )−1

WCWO share same eigenvalues as RTWOR

RTWOR = UΣ2UT

W̄C = PWCP
T = Σ1/2UT (RT )−1WCR

−1UΣ1/2 = Σ1/2UTUΣ1/2 = Σ
y UTU = I = UUT ΣT = Σ

RWOR
T = UΣ2UT

W̄O = (P T )−1WOP
−1 = Σ−1/2UTRWOR

TUΣ−1/2

W̄O = Σ−1/2UTUΣ2UTUΣ−1/2 = Σ

• What we did is:
A B  Ā B̄ balancing WC and WO such that W̄C = W̄O = Σ
C D  C̄ D̄ balanced transformation.

• Finding a good A,B,C, and D from G(s) is still an open issue.
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• SISO case (it can be applied to MIMO very easily):

G(s) =
β1s

n−1 + β2s
n−2 + ...+ βn

sn + α1sn−1 = α2sn−2 + ...+ αn

G(s) = h(1)s−1 + h(2)s−2 + h(3)s−3 + ...

G(s) = C(sI −A)−1B = CBs−1 + CABs−2 + CA2Bs−3 + ...

s−1I + s−2A + s−3A2 + ... = s−1(I + s−1A + s−2A2 + ...) = s−1(I −
s−1A)−1 = (sI −A)−1

C(sI −A)−1B = CBs−1 + CABs−2 + CA2Bs−3 + ...

h(1) = CB h(2) = CAB h(3) = CA2B ... Markov parameters

For the realization: collect Markov parameters h(i)-s and fill the Hankel
matrix.

The problem that occurs is that the series never end.

T (α, β) =


h(1) h(2) h(3) . . . h(β)
h(2) h(3) h(4) . . . h(β + 1)
h(3) h(4) h(5) . . . h(β + 2)

...
...

...
. . .

...
h(α) h(α+ 1) h(α+ 2) . . . h(α+ β − 1)

 =

=

 CB CAB CA2B) . . .
CAB CA2B . . . . . .

...
...

. . .
...


Although, the matrix is well defined, we don’t know values of α and β.

h(1) = β1 , from division
h(2) = −α1h(1) + β2

h(3) = −α1h(2)− α2h(1) + β3
...
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h(n) = −α1h(n− 1)− α2h(n− 2)− ...− αn−1h(1) + βn
...
h(m) = −α1h(m− 1)− α2h(m− 2)− ...− αnh(m− n) + βn

h(i) is nothing more else than the impulse response. So, we can do the
realization by collecting the impulse response.

Theorem 13 ∀m ≥ n, ∃n, such that rank(T (n, n)) =rank(T (m,m)).

• If G(s) is minimal (means that the system is controllable), then T (n, n)→
deg{D(s)} = n.

• The second matrix of interest is:

T̃ (n, n) =


h(2) h(3) . . .
h(3) h(4) . . .
h(4) h(5) . . .

...
...

. . .

h(n+ 1) h(n+ 2) . . .

 = =

 CAB CA2B) . . .
CA2B . . . . . .

...
. . .

...



C and B are easy to extract:

T = OC =


C
CA
CA2

...
CAn−1

 · [B AB A2B ... An−1B]

T̃ (n, n) = OAC A = O−1T̃C−1

• If we collect T and T̃ , we can rebuild A.
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• So, if we can factorize T as O and C, then B is the first column of C
and C is the first row of O. With this, we obtain a state-space representa-
tion.

• Factorization of T :

We’ll use singular value decomposition (SVD).
Idea is to build positive definite matrix Λ and two other matrices (basis)

K and L.

KTΛL = T = KTΛ1/2Λ1/2L = OC

Λ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n

 , σi ∈ R+

y Properties: KTK = I = LTL LLT = I = LTL
OTO = Λ1/2KKTΛ1/2 = Λ CTC = Λ1/2LLTΛ1/2 = Λ

• MIMO case (p outputs and m inputs):

G(s) = H(0) +H(1)s−1 +H(2)s−2 + ...
H(i)− matrices of constant numbers

T (α, β) =


H(1) H(2) . . . H(β)
H(2) H(3) . . . H(β + 1)

H(3) H(4) . . .
...

...
...

. . .
...

H(α) H(α+ 1) . . . H(α+ β)

 =

 CB CAB CA2B) . . .
CAB CA2B . . . . . .

...
...

...
...



∃l ∈ N such that ∃T (l, l) for which rank(T (l + 1.l + 1))=rank(T (l.l))
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Using SVD:

T = KT


Λ

0
. . .

0

L

where Λ = Λ(n, n) and n is a size of state-space (i.e. dim{x} = n)

For SVD we have the property that σi-s are ordered as in a decreasing
sequence:

σ2
1 0 0 0

0 σ2
2 0 0

0 0
. . . 0

0 0 0 σ2
n

 σ2
1 > σ2

2 > ... > σ2
n > 0

We can simply refactorize T as: T (l, l) = K̄TΛL̄, meaning that we take
only k first rows of K and L (because of the multiplication with zeros in
matrices).

K̄ is no more a square matrix; KT = (l · p, n), Λ = (n, n), L̄ = (n, l ·m)

O = K̄TΛ1/2 = O(l · p,m) C = Λ1/2L̄ = C(n, n · l)

T = OC T̃ = OAC

Need for a new way of extraction, sinceO is not a square matrix anymore.

Use pseudo-inverse methodology:
(OTO)−1 = O+ (CTC)−1 = C+ O+TC+ = A
y (OTO)−1OACCT (CCT )−1

B and C can be easily extracted: B is the first m columns of C and C
is the first p rows of O.

• Getting H(s) is tricky: can generate it from G(s) if we have G(s); gen-
erating experimentally requires growing-order derivatives and the validity is
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quickly lost in the noise.

• The similar routine as in SISO should be performed: triger one by one
input and calculate the rest.
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Chapter 8

State Feedback

This chapter deals with state feedback for eigenvalue assignment both in
the single-input setting and in the multiple-input setting. If the system
is controllable then any possible values of the eigenvalues can be assigned
through a single state feedback using real numbers only. We will present
this result through an example only in the multiple-input case and present
a full proof in the single-input case.

A technique relying on solving a Lyapunov equation is also introduced
which can be applied toboth the single and the multiple input cases. It relies
however on solving the Lyapunov equation. We omit the details as to how
to solve this Lyapunov equation in an efficient and systematic way.

We will then develop a technique based on the cyclic decomposition of
the state space into a direct sum of cyclic subspace with each successive
summand having a MAP that divides the MAP of the previous summand.
This has been explained in the chapter concerning annihilating polynomials.
Although the pole placement technique presented is presented through an
example only, it stresses the extra freedom of choice available in the MIMO
setting. It does not rely on solving a Lyapunov equation.

Consider the system:

ẋ = Ax+B

y = x

• The controller ”does not need” any ”dynamics”. Its purpose is:
• to get rid of errors (in outputs, states... )
• stability - assignment of poles.
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H(s) y(s) 
- 

G(s) 
+ 

yC 

e
 

u
 

• So, we can do all this with constants.

• We need to know u, build H(s), knowing the error.

• u = −[k]x+ yC = −kx+ r k = [k1 k2 ... kn] = k(1, n), ki ∈ R
y r - reference

u = −
n∑
i=1

kixi + r

• We redraw the system:

k x G(s) 
r

 
u

 

• ẋ = Ax+Bu u = −kx

• We want to push all the states to zero, so r = 0

ẋ = Ax−Bkx = (A−Bk)x

• If r 6= 0 then:

ẋ = (A−Bk)x+Br, Ā = A−Bk and B̄ = Br

Theorem 14 If (A,B) is controllable (meaning rank[B AB ... An−1B] =
n) and we have random matrix k, then rank[B (A−Bk)B (A−Bk)2B ... (A−
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Bk)n−1B] = n. The controllability is never lost by changing the controller k.

Proof:
Example:

[B AB A2B A3B]


1 −kB −k(A−Bk)B −k(A−Bk)2B
0 1 −kB −k(A−Bk)B
0 0 1 −kB
0 0 0 1

 =

= [B (A−Bk)B] (A−Bk)2B (A−Bk)3B ♠

• SISO case

ẋ = Ax+B u = r − kx

C = [B AB A2B A3B]

CK = [B (A−Bk)B (A−Bk)2B (A−Bk)3B]

CK = C


1 −kB −k(A−Bk)B −k(A−Bk)2B
0 1 −kB −k(A−Bk)B
0 0 1 −kB
0 0 0 1


Some eigenvalues of A might be positive (unstable), so there is a need

to transform A in order to correct it.

ẋ = (A−Bk)x+Br = Ãx+Br
Need to find k such that eig(Ā) ∈ C−.

Because of dimensionality issues, k takes n states and we have one input.

Use similarity transform:
λ(PÃP−1) = λ(Ã) λ(PAP−1) = λ(A)

We want to seek for the correspondence with respect to similarity trans-
form:
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ẋ = Ax+Bu → ż = Ãz + B̃u
y z = Px Ã = PAP−1 B̃ = PB

Add the feedback:
u = −kx+ r = −kP−1z + r
ż = Ãz +Bu = Ãz − B̃kP−1z + B̃r

Controllable canonical form is a nice system which can facilitate finding
of coefficients of characteristic polynomial.

Ã =


−α1 −α2 −α3 −α4

1 0 0 0
0 1 0 0
0 0 1 0

 B̃ =


1
0
0
0


˜̄A = (Ã− B̃kP−1) and k̃ = B̃k, but we are still looking for k.

|λI −A| = λ4 + λ3α1 + λ2α2 + λα3 + α4

The usefulness of transformed system:

B̃k̃ =


k̃1 k̃2 k̃3 k̃4

0 0 0 0
0 0 0 0
0 0 0 0

 ˜̄A =


−α1 − k̃1 −α2 − k̃2 −α3 − k̃3 −α4 − k̃4

1 0 0 0
0 1 0 0
0 0 1 0


|λI − ˜̄A| = λ4 + (α1 + k̃1)λ3 + (α2 + k̃2)λ2 + (α3 + k̃3)λ+ (α4 + k̃4)

To proceed:

1) Choose the 4 desired closed-loop eigenvalues: λ̃1, λ̃2, λ̃3, λ̃4, Re(λ̃i) < 0

2) Expand the polynomial and set it equal to characteristic polynomial
(λ− λ̃1)(λ− λ̃2)(λ− λ̃3)(λ− λ̃4) = λ4 +(α1 + k̃1)λ3 +(α2 + k̃2)λ2 +(α3 +

k̃3)λ+ (α4 + k̃4)

3) Express k̃i by identification of common powers of λ.

4) k = k̃P
This step is a bit problematic, because we don’t have P yet.
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• Controllable canonical form:

C̃ =


1 −α1 −α2

1 − α2 −α3
1 + 2α1α2 + α3

0 1 −α1 α2
1 − α2

0 0 1 −α1

0 0 0 1

 = [B̃ ÃB̃ Ã2B̃ Ã3B̃]

C ↔ C̃, P connects these two entities: P = C̃C−1

P−1 = CC̃−1

C = [B AB A2B A3B]

C̃−1 =


1 α1 α2 α3

0 1 α1 α2

0 0 1 α1

0 0 0 1


bullet Choosing eigenvalues can be tricky due to numerical sensitivity, so
an alternative is the Lyapunov-like pole-placement method.

8.1 Lyapunov-like pole-placement method

• Ingredients:

1) Compute the eigenvalues of A (just to have a good guess where they
are)

2) Choose a F matrix, n by n, with desired eigenvalues λi(F ) 6= λj(A),∀i, j.
Should not set them on the same position as the initial one (open-loop).

3) Choose a row vector k̃, such that the system (K̃, F ) becomes observ-
able

for example: rank


K̃

K̃F

K̃F 2

K̃F 3

 = 4

4) Solve AT − TF = BK̃ for T . This is Lyapunov-like equation.
5) K = K̃T−1 T should be invertible.
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• Assume that T is invertible:

AT = TF = BK̃ K = K̃T−1 K̃ = KT
AT −TF = BKT we want to isolate closed-loop transfer function
(A−BK)T = TF T−1(A−BK)T = F
F and (A−BK) are similar and have the desired eigenvalues.

• To justify the assumption that T is invertible:

α4(IT − TI) =
α3(AT − TF ) = . . .
α2(A2T − TF 2) = . . . sum these
α1(A3T − TF 3) = . . .

(A4F − TF 4) = . . .

∆(λ) = λ4 + α1λ
3 + α2λ

2 + α3λ+ α4

A4 + α1A
3 + α2A

2 + α3A+ α4 = 0

If we sum everything up, al the members will vanish and the result will
be 0.

• If λi is an eigenvalue of F , then ∆(λi) is also an eigenvalue of ∆(F ).
|λ̄I − F | = |∆(λ̄i)I −∆(F )| = 0, prove by Cauchy-Binet.

• AT − TF = BK̄ AT = BK̄ + TF
A2T − TF 2 = A(AT )− TF 2 = A(BK̄ + TF )− TF 2 =

= ABK̄ −ATF − TF 2 = (AT − TF )F +ABK̄ = ABK̄ +BK̄F
and so on for higher terms..

• We thus finish to justify the assumption of T being full rank:

α4(IT − TI) = 0
α3(AT − TF ) = (BK̄)α3

α2(A2T − TF 2) = (ABK̄ +BK̄F )α2

α1(A3T − TF 3) = (A2BK̄ +ABK̄F +BK̄F 2)α1

(A4F − TF 4) = (A3BK̄ +A2BK̄F +ABK̄F 2 +BK̄F 3) · 1
= ∆(A)T − T∆(F )
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∆(A)T − T∆(F ) = [B AB A2B A3B]


α3 α2 α1 1
α2 α1 1 0
α1 1 0 0
1 0 0 0




K̄
K̄F
K̄F 2

K̄F 3


This implies that T is full-rank:

• first term cancels by Cayley-Hamilton
• controllability matrix is full-rank since the system is controllable
• the middle matrix is full-rank by construction
• the last matrix is full-rank by observability assumption.

8.2 Langenhop vectors and canonical form

Let a given matrix A of size n × n be given having a MAP (w.r.t. A) of
the whole space Rn of maximum order n. This means that there exists
at least one vector v of cyclicity index of n. We will introduce particular
vectors linked with this cyclic vector v. The MAP (w.r.t. A) is equal to the
characteristic polynomial and is of order n

∆(λ) = |λI −A| = λn + α1λ
n−1 + α2λ

n−2 + . . .+ αn

Let v be a vector of cyclicity index of n which means that the vectors in
the familiy of vectors

{v,Av,A2v, . . . , An−1v}

are linearly independent and spans the whole space Rn.
Let us introduce in succession the following vectors (in reverse numera-

totion)

en = v

en−1 = Aen + α1v

en−2 = Aen−1 + α2v

en−3 = Aen−2 + α3v
...

...

e1 = Ae2 + αn−1v

which, in-closed form, leads to the following defining formula (whose
right-hand side only depends on the vector v)
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ek = An−1v +
n−k∑
j=1

αjA
jv k = 1, . . . n (8.1)

One can then deduce that the matrix A acts on these vectors according
to

Aek = ek−1 − αkek (8.2)

or in the canonical basis {e1, e2, . . . , en} the A matrix becomes after
introducing the change of basis matrix

P =
(
e1 e2 . . . en

)
(8.3)

the following matrix

P−1AP =



1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

. . . . . .
...

...
...

. . .
. . .

0 0 0 . . . 1
−αn −αn−1 −αn−2 . . . −α1


where the effect of formula (8.2) reveals itself.

8.3 Pole assignment in single input controllable
case

We will now apply the computation of the previous section to a control
system with a single input

ẋ = Ax+ bu

so as to assign the eigenvalues to a specific set of n complex numbers in
complex conjugate pairs.

On this purpose, let us introduce the change of coordinates (associated
with the change of canonical basis vectors given by the P matrix above)

but with the cyclic vector v being set to the input vector b. This is
possible since under the assumption of controllability the b vectors gener-
ates a cyclic family of vectors of maximum order, i.e. a set of n linearly
independent vectors

70



{b, Ab,A2b, . . . , An−1b}

z = P−1x

which give the followinig expression

ż = P−1APz + P−1bu (8.4)

which gives a transparent transcription and visible expresion of the char-
acteristic polynomial since the transformed matrix

8.4 Eigenvalue assignment through cyclic decom-
position

Consider the following square 4×4 matrix A together with the 4×2 matrix
B

A =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 B =


0 1
1 0
1 1
1 1


that define the multi-input open-loop control system

ẋ = Ax+Bu

with x = ( x1 x2 x3 x4 )T and u = ( u1 u2 )T .
Notice that the open-loop eigenvalues equal 2, 3, 4, with 2 a repeated

eigenvalue.
The system is not controllable using one input channel only. For instance,

defining b1 and b2 as the first and second column of B = ( b1 b2 ), the first
input does not achieve controllability since

rank
(
b1 Ab1 A2b1 A3b1

)
= rank


0 0 0 0
1 2 4 8
1 3 9 27
1 4 16 64

 = 3 < 4
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Similarly, the second input does not achieve controllability either

rank
(
b2 Ab2 A2b2 A3b2

)
= rank


1 2 4 8
0 0 0 0
1 3 9 27
1 4 16 64

 = 3 < 4

Nevertheless using both inputs does the system become controllable since

rank
(
B AB A2B A3B

)
= rank


0 1 0 2 0 4 0 8
1 0 2 0 4 0 8 0
1 1 3 3 9 9 27 27
1 1 4 4 16 16 64 64

 = 4

Problem 1 Design a feedback mechanism so as to set the closed-loop eigen-
values at purely imaginary values +i,−i,+2i,−2i so that the closed-loop
system is purely oscillatory with two distinct frequencies (the frequency of
the second mode being twice the frequency of the first mode).

This problem seems quite trivial at first sight, but looking closer we en-
counter a difficulty. The maximum cyclicity index of the A matrix is an odd
number, namely 3 which is not a multiple of 2. This means that all possible
combinations of the column vectors of the B matrix will at most achieve a
cyclicity index of 3.

Unfortunately, complex poles can be assigned only by conjugate pairs
and therefore cannot be embedded into a third order polynomial unless a
purely real eigenvalue is accounted for, a condition clearly not allowed by the
design considerations (i.e. imposing only complex conjugate eigenvalues).

The origin of this problem stems from the multiple eigenvalue 2 which
accounts for the MAP (w.r.t. A) of the whole space R4 being

ψ(λ) = (λ− 2)(λ− 3)(λ− 4) = λ3 − 9λ2 + 26λ− 24 (8.5)

a third order polynomial. Indeed,
8 0 0 0
0 8 0 0
0 0 27 0
0 0 0 64

− 9


4 0 0 0
0 4 0 0
0 0 9 0
0 0 0 16

+ 26


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4



−


24 0 0 0
0 24 0 0
0 0 24 0
0 0 0 24

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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since we have simultaneously 8−9×4+26×2−24 = 0, 27−9×9+26×3−24 =
0 and 64− 9× 16 + 26× 4− 24 = 0.

So as to circumvent the difficulty of the maximum index being 3, we
first construct a feedback u = Kx so as to assign — after feedback — a
new MAP (w.r.t. A + KB) of order 4. This is achieved by changing one
of the eigenvalues 2 to another value which we choose equal to 1 (so as
to be distinct from 2, 3 and 4). This automatically implies that for the
transformed matrix A + BK, the existence of a cyclic vector of cyclicity
index 4.

Since the original system is controllable, there is a nice theorem that
states that there exists a vector in the span of the columns of the B matrix
sharing the exact same MAP (w.r.t. A+BK) as a vector having maximum
cyclicity index, i.e. there exists a combination of the columns of the B matrix
that attain maximum cyclicity index of 4. This combination is then used
to set the eigenvalues at the desired position by imposing that the MAP of
the newly transformed system (through this second feedback) is the desired
closed-loop characteristic polynomial equal to

ψd(λ) = (λ− i)(λ+ i)(λ− 2i)(λ+ 2i) = (λ2 + 1)(λ2 + 2)

Therefore, so as to initiate the first step of the design, let us choose
the first Leangenhop vector equal to b1. Since b1 generates a subspace of
cyclicity index of 3, this vector is set to

e3 := b1 =
(

0 1 1 1
)T

Then define inductively according to the scheme (8.1)

e2 := Ae1 − 9b1 =
(

0 −7 −6 −5
)T

(8.6)

e1 := Ae2 + 26b1 =
(

0 12 8 6
)T

(8.7)

Notice the appearance of all the coefficients of the MAP (w.r.t. A) of the
vector b1 except the last coefficient (first coefficients of the polynomial (8.5))
in the inductive computations (8.6)-(8.7).

Then we pick a complementary vector v in the range of the B matrix so
that the family of vectors {e1, e2, e3, v} becomes linearly independent. For
example setting

v := b2 =
(

1 0 1 1
)T
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allows the change of basis defined through the matrix

P =
(
e1 e2 e3 v

)
=


0 0 0 1
12 −7 1 0
8 −6 1 1
6 −6 1 1


to transform the initial matrix A to

Ā = P−1AP =


0 1 0 0
0 0 1 1
24 −26 9 7
0 0 0 2

 (8.8)

the structure of which is
0 1 0 X
0 0 1 X
−α3 −α2 −α1 X

0 0 0 −β

 (8.9)

where αi, i = 1, . . . , 3 are the coefficients of the MAP of b1 = e3 (which
is λ3 + α1λ

2 + α2λ + α3) and where β is the coefficient of the polynomial
λ+ β which the RMAP (w.r.t. A) of v (mod span {e1, e2, e3}). Notice that
because λ + β is not the absolute AP but only the relative one, do — not
necessarily zero values — appear in the upper part of the last column of the
transformed matrix in (8.9), where the symbol X accounts for any number
which is not necessarily zero.

Concerning the effect of P on the input matrix, because both, P−1P = I,
and P contains, in its third column position, b1 and, in its fourth column
position, b2, the transformed B matrix is

B̄ = P−1B =


0 0
0 0
1 0
0 1

 (8.10)

Let us construct a first feedback so as to change the last eigenvalue 2
to the value 1, distinct from the three first eigenvalues 2, 3, and 4. This is
achieved after setting

K̄ =

(
0 0 0 0
0 0 0 −1

)
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So that after applying the feedback

u = −K̄z + v

to the transformed system
ż = Āz + B̄u

we have a new system

ż = (Ā+ B̄K̄)z + B̄v = Ãz + B̄v

with distinct four eigenvalues with the matrix

Ã =


0 1 0 0
0 0 1 1
24 −26 9 7
0 0 0 1

 (8.11)

Now want to find a vector in the range of the B̄ matrix having cyclicity
index of 4. This is achieved for the vector

v4 =
(

0 0 1 1
)T

since the four following vectors

{v4, Ãv4, Ã
2v4, Ã

3v4} =




0
0
1
1

 ,


0
2
16
1

 ,


2
17
99
1

 ,


17
100
504
1




are linearly independent.
Let us compute the Langenhop vectors associated with v4 and Ã char-

acteristic polynomial

(λ− 1)(λ− 2)(λ− 3)(λ− 4) = λ4 − 10λ3 + 35λ2 − 50λ+ 24

= λ4 + β1λ
3 + β2λ

2 + β3λ+ β4

which gives successively

ẽ4 = v4 =
(

0 0 1 1
)T

ẽ3 = Ãe4 − β3v4 = Ãe4 + 50v4 =
(

0 2 6 −9
)T

ẽ2 = Ãe3 − β2v4 = Ãe3 − 35v4 =
(

2 −3 −26 26
)T

ẽ1 = Ãe2 − β1v4 = Ãe2 + 10v4 =
(
−3 0 24 −24

)T
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Therefore, after defining the new change of variables

P̃ =
(
ẽ1 ẽ2 ẽ3 ẽ4

)
=


−3 2 0 0
0 −3 2 0
24 −26 6 1
−24 26 −9 1


brings the Ã matrix into the canonical form

Â = P̃−1ĀP̃ =


0 1 0 0
0 0 1 0
0 0 0 1
−24 50 −35 10


where the characteristic polynomial coefficients are clearly visible. Now,
define the desired characteristic polynomial as

(λ2 + 1)(λ2 + 4) = λ4 + 5λ2 + 1 = λ4 + γ1λ
3 + γ2λ

2 + γ3λ+ γ4

and set the second feedback to

K̂ =
(
β4 − γ4 β3 − γ3 β2 − γ2 β1 − γ1

)T
=
(

20 −50 30 −10
)T

so that

Â+ B̂K̂ =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 −5 0


with the required desired characteristic polynomial. Summing up, we have
the following feedback to be applied to the original control system,

Kt = K̄P−1 +

(
1
1

)
K̂P̃−1P−1 (8.12)

=

(
−26

3 −20 130
3 −34

−29
3 −20 130

3 −34

)
and we check indeed that this feedback assigns the required eigenvalues since

λ(A+KtB) = {i,−i, 2i,−2i}

Formula (8.12) is justified after considering the following sequences of sys-
tems and the change of coordinates associated with them (i.e. those defined
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successively by P and P̃ already computed).

ẋ = Ax+Bu

z = P−1x

ż = P−1APz + P−1Bu

u = K̄x+

(
1
1

)
v

w = P̃−1z

ẇ = P̃−1ÃP̃w + P̃−1B̃v

v = K̂w + v2

ẇ =
(
P̃−1ÃP̃ + P̃−1B̃K̂

)
w + P̃−1B̃v

Considering only what affects the inputs v and u

v = K̂w + v2

= K̂P̃−1z + v2

= K̂P̃−1P−1x+ v2

u = K̄z +

(
1
1

)
v

=

(
K̄P−1 +

(
1
1

)
K̂P̃−1P−1

)
x+ v2 (8.13)

which justifies formula (8.12).
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Chapter 9

Pole Assignment and
Model-Matching

9.1 Pole placement - SISO

y(s) 
- 

G(s) 
+ r

 e
 

u
 B

A

Figure 9.1:

• The purpose is to build controller B/A.

• G(s) =
N(s)

D(s)
degN = m degD = n m < n

N(s) = N0 + sN1 + s2N2 + ...+ smNm Ni ∈ R
D(s) = D0 + sD1 + s2D2 + ...+ snDn Di ∈ R

• Closed loop transfer function:
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G0 =
B
A ·

N
D

1 + B
A ·

N
D

=
Y

r
=

BN

AD +BN

we can’t change the zeros, but can change poles

• In some ways, this is more useful that state-space since we dont need
to measured all the states.
• We want to enforce:

G0 =
E

F
=

BN

AD +BN

E = BN and F = AD +BN have to be solved for A and B

• F = F0 + sF1 + s2F2 + ...? we don’t know where to stop
F = AD +BN
A = A0 + sA1 + s2A2 + ...?
B = B0 + sB1 + s2B2 + ...?
F0 = A0D0 +B0N0

F1 = A+ 0D1 +A1D0 +B0N1 +B1N0

F2 = A0D2 +A1D1 +A2AD0 +B0N2 +B1N1 +B2N0
...

• Sylvester matrix (N,D initial data) multiplied by the unknowns (A,B)
gives what we want to assign (F ):

S

  =

 F


• How to build the S and calculate A,B:

[A0 B0 A1 B1 A2 B2 ...]



D0 D1 D2 . . . Dn 0
N0 N1 N2 . . . Nn 0
0 D0 D1 . . . . . . 0
0 0 D0 . . . . . . 0
... 0 N0 . . . . . . 0
... 0 0 . . . . . . 0
0 0 0 . . . . . . 0


= [F0 F1 F2 ... Fn+1]
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• Assume that degA = l and degB = l.
dimS = 2(l + 1)× (n+ l + 1)

Distinguish between different cases:
2(l + 1) > n+ l + 1 AB = F ∗ pinv(s)
2(l + 1) = n+ l + 1 AB = FS−1

2(l + 1) < n+ l + 1 not useful
We can choose l which is a degree of compensator, but can’t change n

which is a degree of initial transfer function.
As we change (increase) l, the first case will become dominant.

9.2 Disturbance rejecting

y(s) 

- 

G(s) 
+ r

 
e

 
u

 B

A

1

+ 

w(t)
 

Figure 9.2:

• Perfect tracking with perfect knowledge and ”no control” on zeros.

• Assume disturbance entering (the 1/Φ is used to compensate for the
disturbance).

• Relations to compensate for reference tracking and disturbance rejection:

GYW =
Y (s)

W (s)
=

G(s)

1 +G(s)BA
1
Φ

=
N
D

1 + N
D
B
A

1
Φ

=
NAΦ

DAΦ +BN
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GY R =
Y (s)

R(s)
=

B
AΦ

N
D

1 + B
AΦ

N
D

=
BN

AΦD +BN

• Assume that we know w(t) and thus W (s):

W (s) =
NW

DW
Y (s) =

NAΦ

DAΦ +BN

NW

DW

poles of the perturbation can be offset with the poles of the model.

9.3 Internal model principle

• DW = Φ

GY E =
Y (s)

Y (s)− r(s)
e = (1−GY R)r =

AΦB +BN −BN
AΦD +BN

NR

DR

If we want to take care of both, then the composed Φ is Φ = ΦRΦW .

• Degree of l tends to dumb quickly. The trick is to put only the least
possible information in Φ (the least common multiple of the unstable poles
of NW

DW
and Nr

Dr
).

• Idea is to compensate only the unstable poles (the stable part will die
out naturally).

• Solving for the Sylvester:

AΦD +BN = F D̃ = ΦD AD̃ +BN = F
solve as previously.

9.4 Model matching

• Second degree freedom controller.

• C1 =
L

A1
compensator C2 =

M

A2
A = A1 = A2
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y(s) 

- 

G(s) 
+ r

 u
 

C1 

C2 

Figure 9.3:

so, three polynomials to deal with L,M,A.

• Now we want to match the whole transfer function, not just the poles
and we impose an arbitrary:

G0 =
Y (s)

R(s)
= C1 ·

G(s)

1 + C2G(s)
=
L

A
·

N
D

1 + M
A
N
D

=
LN

AD +MN
=
N0

D0

• Restrictions:
1) pole-zero excess inequality:
degD−degN− ≤ degD0− degN0 (should never decrease)
2) must retain ”unstable” zeros (zeros in right-half plane of N(s)), as can-
celling them will introduce unstable poles.

G0

N
=

N0

ND0
=
N̄0

D̄0
G0 =

NN̄0

D̄0

L

AD +MN
=
N̄0

D̄0
⇔ LN

AD +MN
=
N̄0N

D̄0

LN = N̄0N AD +MN = D̄0

We know hoe to solve it using Sylvester matrix.

Tempted to set L = N̄0, could possibly induce non-properness of C1(C1 =
L/A), because deg(L) might be greater than deg(A).

l can be increased by adding a ”dummy” polynomial D̂, so that:
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AD +MN = D̄0D̂ and
LN

AD +MN
=
N̄0N

D̄0D̂
.

• Theres no guarantee for the compensators being stable in the above
procedure (the elements are, but the whole setup is not, due to the possible
instability of A).

• Alternative I:

The close-loop will stabilize the system even if L/A is unstable.
Too many states (state-space for L/A and M/L).
Might not be proper (deg(M) > deg(L)).

y(s) 
- 

G(s) 
+ r

 e
 

u
 L

A

M

L

Figure 9.4:

• Alternative II:

Assumption: M is stable.
It is guaranteed to be proper.
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y(s) 
- 

G(s) 
+ r

 L

M

M

A

Figure 9.5:

• Alternative III:

This is more efficient, as it needs less states.
Noise gets amplified by M, however.

y(s) 
- 

G(s) 
+ r

 1

A

M 

L 

Figure 9.6:

• No leakage: all closed-loop signals, transfer functions, should be stable.

• So, all the 3 cases are better than the initial one, but then the indi-
vidual ones differ by properties.
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9.5 MIMO setting

• Transfer function matrix with p inputs and q outputs:

G(s) =



n11(s)

d(s)

n12(s)

d(s)
. . .

n1p(s)

d(s)
n21(s)

d(s)

n22(s)

d(s)
. . .

n2p(s)

d(s)
...

...
. . .

...
nq1(s)

d(s)

nq2(s)

d(s)
. . .

nqp(s)

d(s)


= D̄−1(s)N̄(s) = N(s)D−1(s)

D̄(s) is unimodular (det(D̄(s)) doesn’t depend on s)
N̄(s) doesn’t need to be unimodular.

• The question is if we have matrix description of G(s), how do we get
the factorization.

• Objective is to find unimodular N(s) and N̄(s), and D(s) and D̄(s),

• G(s) = N(s)D−1(s) = D̄−1(s)N̄(s)
multiply with D̄ on the left and D on the right

D̄(s)N(s)D−1(s)D(s) = D̄(s)D̄−1(s)N̄(s)D(s)

D̄(s)N(s) = N̄(s)D(s), advantageous because D̄(s) and N̄(s) are known.

• Bezout equation:

D̄(s)N − N̄(s)D = 0

• N̄(s) = N̄0 + sN̄1 + s2N̄2 + ... N̄i ∈ Rq×p
D̄(s) = D̄0 + sD̄1 + s2D̄2 + ... D̄i ∈ Rq×p

• D̄(s)N(s)− N̄(s)D(s) = 0
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

D̄0 N̄0 0 0 0 0
D̄1 N̄1 D̄0 N̄0 0 0
D̄2 N̄2 D̄1 N̄1 D̄0 N̄0
...

... D̄2 N̄2 D̄1 N̄1

D̄n 0
...

...
...

...

0 0 0 0
...

...
...

...
...

...
...

...





−N0

D0

−N1

D1

−N2

D2
...


= 0

all elements belong to R.

• The question is how to solve this system.

• We should built the first matrix to the dimension of n, until we get
full rank.

• Get different solutions by first taking one column, then two, etc...

• We’re looking for p solutions (width of second matrix).

• Need a n× q rank matrix for the D’s.

• In order to get N ’s we should keep increasing column index until rank
deficiency is reached.

Example Testing loss of ranks

Try to use qr() in MATLAB c©

A = QR, Q is full rank, R is rank deficient.
The rank of A is the number of nonzero entries in the main diagonal of

A.
We need to perform QR at each iteration to find where rank is lost.
Keep the number of columns that preserve rank.
Alternative: look for zeros that appear in the SVD.
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Chapter 10

Polynomial system matrix

• If state-space (A,B,C,D) is a minimal representation of G(s), then the
deg(G(s)) = dim(x) = n

• G(s) = C(sI −A)−1B = D̄(s)−1N−1 = N(s)D(s)−1

where C(q, n) and B(p, n) are constants polynomial matrices.

• G(s) = V (s)T−1(s)U(s) +W (s)
special case T (s) = sI +A

• Implicit linear system

T (s)·ξ = U(s)·U(s) deg(T (s)) > 1 Y (s) = V (s)·ξ+W (s)·U(s)
y U is a matrix of inputs

• Explicit linear system

(sI −A)X(s) = B · U(s) T (s)(r, r)

• P (s) ≡
(
T (s) −U(s)
V (s) W (s)

)
convention for system matrix

• Example
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Compute unimodular matricesN(s) andD(s) such thatG(s) = N(s)D−1(s)

G(s) =


1

(s+ 1)2

1

(s+ 1)(s+ 2)
1

(s+ 1)(s+ 2)

s+ 3

(s+ 2)2



P (s) =



I2 0 0
0 (s+ 1)2(s+ 2) 0
0 −(s+ 1) s+ 2

0 −1 0
0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣

0 0
s+ 2 s+ 1

0 1

0 0
0 0


1◦ T (s) 2◦ − U(s) 3◦ V (s) 4◦ W (s)

• First check that it gives G(s).
• Find a state-space.
• Compute the Smith form of T (s).
• Compute the Smith form of P (s).
• Where are the poles and zeros? • Compare with G(s).

• System matrix:

State-space: ẋ = Ax+Bu y = Cx+Du

(
sI −A −B
C D

)(
x
u

)
=

(
0
y

)
P (s) - polynomial matrix of special kind - system matrix

T (s) = sI −A V (s) = −B U(s) = C W (s) = D

• Be aware that it needs to be 1st order, because of the state-space repre-
sentation.

G(s) = C(sI −A)−1B +D G(s) = U(s)T−1(s)V (s) +W (s)
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• Smith form

P (s) = MP1ΛpMP2 Mi are two unimodular matrices, detMi ∈ R

T (s) = MT1ΛpMT2

• ΛP =


1 0 0 0
0 p1(s) 0 0
0 0 p2(s) 0
...

...
...

. . .

 ΛT =


1 0 0 0
0 t1(s) 0 0
0 0 t2(s) 0
...

...
...

. . .


ξ1 = p1(s) ξ2 = p2(s) ξ3 = p3(s) . . .
ψn = t1(s) ψn−1 = t2(s) ψn−2 = t3(s) . . .

• G(s) = D̄−1N̄

D̄ =

∣∣∣∣ (1 + s)2(2 + s)2 0
0 (1 + s)2(2 + s)2

∣∣∣∣
N̄ =

∣∣∣∣ (2 + s)2 (1 + s)(2 + s)
(1 + s)(2 + s) (1 + s)2(3 + s)

∣∣∣∣
• N̄ = MN̄1

ΛN̄MN̄2
ΛN̄ = C1N̄C2

C1 = M−1
N̄1

C2 = M−1
N̄2

• ΛN̄ =

(
1 0
0 (1 + s)2(2 + s)3

)
•

θ =
ΛN̄
D̄

=

 1

(s+ 1)2(s+ 2)2
0

0 s+ 2


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