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Outline

Overview of Variational Auto-Encoders (VAE)



A Bayesian Approach to Auto-Encoders

Input Encoder t;t::: Decoder Output

» Auto-encoders learn to compress the observations into a
smaller latent representation

» Thus learning a representation where underlying
correlations are captured

But what does “smaller” mean? Can’t we encode an arbitrary
amount of information in continuous values?



A Bayesian Approach to Auto-encoders

Input - Encoder . [;;t::]: . Decoder . IOui‘put.
Adding noise to the latent representation controls the amount of
information that can pass through it.

» Information Bottleneck: minimise the amount of
information that passes through the latent representation

» Reconstruction Loss: ensure that enough information is
passed to reconstruct the input



A Variational Bayesian Approach to Auto-Encoders

Latent

Input Encoder Space Decoder Output

But Bayesian inference in deep models is intractable!

» Variational Information Bottleneck: train a deep
variational approximation to the intractable parts of
Bayesian inference

[Auto-Encoding Variational Bayes, Kingma and Welling, 2014]


https://arxiv.org/abs/1312.6114

A Variational Bayesian Approach to Auto-Encoders

Latent

Input Encoder Space Decoder Output

But how can we backprop through a stochastic model?

» Reparameterisation Trick: move the noise to an input so
that everything we need to backprop through is
deterministic

[Auto-Encoding Variational Bayes, Kingma and Welling, 2014]


https://arxiv.org/abs/1312.6114

Taxonomy of Generative Models

GAN
‘ Generative models ‘
‘ Explicit density ‘ ‘ Implicit density ‘
‘ Tractable density ‘ ‘ Approximate density ‘ ‘ Markov Chain ‘
Fully Visible Belief Nets / \ GSN
- NADE
- MADE ‘ Variational ‘ ‘ Markov Chain ‘
- PixelRNN/CNN — .
- NICE / RealNVP |Var|at|onal Autoencoder| Boltzmann Machine
: ?flj(c))\:‘\(lj Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - 31 May 11, 2021




Outline

Variational Auto-Encoders with a Latent Vector Space
Extensions to VAEs



Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

>

Reconstructed ‘ Features capture factors of
input data y variation in training data.

Decoder

But we can’t generate new

Features VA images from an autoencoder
A

because we don’t know the
Encoder space of z.

Input data ‘ T ‘ How do we make autoencoder a
generative model?
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {;L-(i)}f.\’:l is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional ‘ xr

po-(z | 2)

Sample from

true prior |:Z:|

20 ~ Py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {;L-(i)}f.\’:l is generated from the distribution of unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from ; ) .
generate x: attributes, orientation, etc.

true conditional ‘ xr
po-(w | ()

Sample from

true prior |:Z:|

20 ~ Py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional ‘ T

po- (@ | )

Sample from

true prior P

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional ‘ T

) How should we represent this model?
po-(z | 29)

Sample from

true prior P

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from

true conditional ‘ €z How should we represent this model?
po-(z | 29) I
Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior |I|
2D ~ e (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

loviaviaslaslaslanlontonlon :; We want to estimate the true *
' parameters 4
“ “ ‘ “ ‘ ‘ “ of this generative model given training data x.

Sample from

true condltlpnal ‘ z ‘ How should we represent this model?
po-(z | z®) I
Decoder Choose prior p(z) to be simple, e.g.
network Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior |I|
2 ~ py (2) Conditional p(x|z) is complex (generates

/\ image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from

i 2
true conditional ‘ T How to train the model?

po-(z | 219) I
Decoder
network
Sample from
trge prior P
29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from

How to train the model?

true conditional ‘ T
i A
po-(z | z®) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior z fpe Pa $|z
20 ~ Dy (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12- 52  May 11, 2021




Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from How to train the model?

true conditional ‘ T
i A
po-(z | z®) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from

trge prior 2 fpe Pa $|z dz

29 ~ py (2)
Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational AutoencoderS' Intractability

Data likelihood: pe(z fpe 2)py(z|2)dz

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational AutoencoderS' Intractability

Data likelihood: pe(z fpe 2)py(z|2)dz

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
Data likelihood: pg(x) = [ pe(2)pe(z|2)dz

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
Data likelihood: pg(x) = [ pe(2)pe(z|2)dz

Intractable to compute p(x|z) for every z!

logp(z) ~ log ZZ 1p(az'|z’)) where z(®) ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Posterior density:  po(2|z) = po(z|2)pe(2)/pe(z)
f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Posterior density also intractable: Pg (Z|$) = Do ($|Z)P9 (Z)/pe(l‘)

Solution: In addition to modeling py(x|z), learn dy (z|x) that approximates the true
posterior py(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the
data likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from
only the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

logpo (z1) = B, L, (2o [Ingg(x(i))] (pe(2?) Does not depend on z)
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Variational Autoencoders

logpo (z1) = B, L, (2o [Ingg(x(i))] (pe(2?) Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later
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Variational Autoencoders

log pg (z(V) = 1 MO [logpg(x(”)] (pe(x?) Does not depend on z)

po(z® | 2)pa(2)

=E. |lo -
[g po(z | 2)

] (Bayes’ Rule)
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Variational Autoencoders

log pg(z() = L MO [logpg(x(”)] (pe(x?) Does not depend on z)

e | )
=E, |[log—————~—= Bayes’ Rule
Eraron Iaay
oa (1) ; (@)
=E, [log o | Z)?O(Z) Go(z | = - )} (Multiply by constant)
po(z | 2®)  gy(z]a®)
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Variational Autoencoders

logpg(x(“) =E. g, (:l2) [logpg(x(i))] (pg(z(i)) Does not depend on z)

po(z® | 2)179(2)]
=E, |[log—————~—= Bayes’ Rule
[ & ol [2) (Bay )
oa (1) ; (@)
=E, [log o | Z)?O(Z) Go(z | = - )} (Multiply by constant)
po(z]2®)  gy(z|2®)

~ ®) (2] 2)
—E.[I @) | )] —E. [log 212 log 22 : Logarith
E, [ogpg(:r \ 4)] » [og 20 (2) +E, |log pol(z | 2) (Logarithms)
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Variational Autoencoders

lngg(.’L'(i)) =E. g, (:l2) [logpg(a;(i))] (pg(z(i)) Does not depend on z)
(i)
— . |10 po(a | 2)po(z)
po(z | z®)
[ oz | Z)PO(Z) g(z | @)
po(z | 4s(z | 2®)

] (Bayes’ Rule)

} (Multiply by constant)

po(z) po(z | )
E. [logps(2 | 2)] = Dicr(as(z | &) || po(2)) + Dici(ao(z | 2@) || po(z | 2?))

~_

The expectation wrt. z (using
encoder network) let us write
nice KL terms

(@) (@)
=E, [logpg("rm | z ] E, [log M} +E, {log M} (Logarithms)
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Variational Autoencoders

logpg(x(i)) =E.q,(:}29) [logpg(a;(i))] (pg(z(i)) Does not depend on z)
(i)
. o e
po(z | z®)
) (i) ; (@)
. og 22 L)tz =)
pol[2)  ao(z |0)

(1) (4)
] E, [log M} +E, {log M} (Logarithms)

] (Bayes’ Rule)

} (Multiply by constant)

E [10 9
= |log pe(x po(z) po(z | m(z))
E. [logpo(2 | 2)] = Dicrlas(z | 29) [ po(2)) + Drcr(as(z | 27) || po(z | 29))
Decoder network gives pg(x|z), can This KL term (between pg(?|x) intra<’:table (saw )
compute estimate of this term through ~ Gaussians for encoder and z ~ €arlier), can’t compute this KL
sampling (need some trick to prior) has nice closed-form term :( But we know KL
differentiate through sampling). solution! divergence always >= 0.
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Variational Autoencoders

logpg(x(”) =E. g, (:l2) [logpg(a;(i))] (pg(z(i)) Does not depend on z)

(i)
VA g 2 outc)
We want to p9<2‘$ ) )
maximize the po(z9 | 2)pa(2) gs(2 | @)
data =E; |log— G 0

a po(z |2®)  gy(z | 2®)

likelihood ) )
] E, [log M} +E, {log M} (Logarithms)

] (Bayes’ Rule)

} (Multiply by constant)

=E [10 9
w [ERlm po(z) po(z | ()
E. [10gp9(17(7) | =) ] — Dir(go(z | £9) || po(2)) + Dicr(qs(z | 29) || po(z | )
Decoder network gives pg(x|z), can This KL term (between pg(?|x) intra<’:table (saw )
compute estimate of this term through Gaussians for encoder and z  €arlier), can’'t compute this KL
sampling. prior) has nice closed-form term :( But we know KL
solution! divergence always >=0.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12- 68  May 11, 202



Variational Autoencoders

lngg(.’L’(i)) =E. g, (:la) [logpg(a;(i))] (pg(z(i)) Does not depend on z)

(i)
/ =E, [log Mz)f:@] (Bayes’ Rule)
We want to p ((»)Z | 2() o
imize th
(rjnaIXImlze ° po 291 2)po(2) 45 (2 | =) (Multiply by constant)
ata po(z | 2®)  gy(z]a®)
likelihood

=E, |log

gs(2]2) 152 | 29) ’
] E, [log T(Z)} +E, {log W} (Logarithms)

logpo(a | z ] Drcr(as(z | #9) || po(2))|+ Dicr(go(z | &) [ po(z | 21V))

£.0,6) [20]

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

[
B
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Variational Autoencoders

log pg(z(V) = L N MON [logpg(w(i))] (pe(x?) Does not depend on z)

(i)
=E. [10 pig(x | z)(p)g(z)] (Bayes’ Rule) Encoder:
po(z | 2®) make approximate
Decoder: po(2® | 2)po(2) go(z | ) posterior distribution
_ ® Tulti
reconstruct E. [log 2oz |20)  ga(z ] x(”)} (Multiply by constant) close to prior

the input data ] ) -] (_))
_E. 2@ 2] _E, [10‘M}+ [I (2| =)
g po (x| )] g a2 % polz [ 20)

B, [logpa(a¥ | 2)] ~ Dice(aa(= | ¥ Tmu()|+ Drcalao(z | 29) 1oz | )

£.0,6) [20]

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

} (Logarithms)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e” | )] — Drcs(as(= | =) Il po(2))

L(z%,6,9)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [log (e | 2)] |Drr(astz 149 ()

L(z%,6,9)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data ‘ xr ‘
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [log (e | 2)] |Drr(astz 149 ()

L(z%,6,9)

H Py
Encoder network
g6 (2|2)

Input Data ‘ xr ‘

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12- 73  May 11, 2021



Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logn(a® | 9] Dslastz] 2 1m()]

L(z%,6,9)

Have analytical solution

H Py
Encoder network
g6 (2|2)

Input Data ‘ xr ‘

Make approximate
posterior distribution
close to prior

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e®) | 9)] |- Dics(as(= | =) | po(2))

L(z%,6,9)

Not part of the computation graph!

Sample z from z|z ~ N b
Make approximate P | (lu‘zlz’ ZIm)

posterior distribution

close to prior

Encoder network

g6 (2|2)
Input Data ‘ xr ‘
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Va riational Autoe nCOd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
likelihood lower bound sampie € ~ N (0, I)

. [lozo(e” | ]| Dicc(as(z 1 29) 10(2)) 2= Hofe T €0z

L(z%,6,9)

Sample z from 2|z ~ N (fiz1z, X,z)

Encoder network

g6 (2|2)
Input Data ‘ xr ‘
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Va riational Autoe nCOd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
likelihood lower bound sample € ~ N'(0, lﬂzugtrfph
; . z =
E. [logpo(a) | 2)] |- Dict as(z 1 ) [1po(2) ele |+
L(z®,6,9) Part of computation graph

Sample z from 2|z ~ N (fiz1z, X,z)

Encoder network

g6 (2|2)
Input Data ‘ xr ‘
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] |- Drcsas(z | 2) | po(2)) | Pa|z | | Yoz |
L(zD,0,) Decoder network
po(z]2)

Sample z from 2|z ~ N (fiz1z, X,z)

Encoder network

g6 (2|2)
Input Data ‘ xr ‘
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Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the 7 ‘
likelihood lower bound
(21 2?) l|po(2) | Pz|z | | Yz |
L(z®,0,¢) Decoder network
po(|2)
z

Sample z from 2|z ~ N (fiz1z, X,z)

Encoder network

g6 (2|2)
Input Data ‘ xr ‘
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Variational Autoencoders

Putting it all together: maximizing the ‘ 7 ‘
likelihood lower bound
[ £ [log e 12)] - Dicrtastz 14 () T
L(zD,0, ) Decoder network
po(z|2)
For every minibatch of input 4
data: compute this forward Sample z from 2|z ~ N (fiz1z, X,z)

pass, and then backprop!

Encoder network

g6 (2|2)
Input Data ‘ xr ‘
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Variational Autoencoders: Generating Data!

Our assumption about data generation

process

Sample from

true conditional ‘ xz

po-(z | z®) I
Decoder
network

Sample from

true prior z

EREN pe ()

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Variational Autoencoders: Generating Data!

Now given a trained VAE:
Our assumption about data generation  use decoder network & sample z from prior!

process
Sample from ‘ z ‘
true condltlpnal ‘ CI:' ‘ Sample x|z from  Z|z ~ N (lg|z, Xz)2)
po-(z | 29)
Decoder
network ‘ Haz|z ‘ ‘ 2“’|z ‘
Sample from Decoder network

e o [E ] palele
RE

Sample z from z ~ N(O,])
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Datal

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

QANANNNNNANNNN S SNNNNS
QAAIVINNNOBEELELL eSS~
VAN MGhhbhboveew~~
QUVVDNINM ke ®IVVV e e~~~
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|

2:z:|z

@«

Y4
Sample z from z ~ A(0, I)

Sample x|z from  Z|z ~ N (lg|z, Xz)2)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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ing Data!
Data manifold for 2-d z

Generat

Variational Autoencoders

Use decoder network. Now sample z from prior!

QANANNNNNANNNN S SNNNNS
QAAIVINNNOBEELELL eSS~
VAN MGhhbhboveew~~
QUVVDNINM ke ®IVVV e e~~~
QOVDNHNINNBNEGEBIIVIV W - ——
QO0DHNINNMHBIVIVVS w = ——
QOOOOHMMNMMNNDIVI S = ——
000D MNMMMMOIIDD 9w — —
QODMMMNMMNMD®DD DD e = —
QODWMMMNMMMNW®D DD e —
QOMMMOM MMM W®® e ———
QO @M M 00000000 en o - —
QA o4 0409 0000 0000 00 o & o~ o~ om e
Gt o4 o4 0% 07 0700 00 B0 B0 & B oo e e
daddddfFrrrrrrrTsoa~~
JaaddddcrrrrrrrTTIaaaN
YaadadddoorrrrrrrrrIIaan
SAddddTrrrrrrrITrIIRNN
VAdITTTTrrrrrrdrdrrRNN
ATFTTTTCC oo™ R™RNRNNN

ez) Vary z,
|

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

|

Sample x|z from  z|z ~ N (fig|,, &
‘ 2:z:|z

@«

Y4
Sample z from z ~ A(0, I)
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Variational Autoencoders: Generating Data!

Diagonal prior on z

=> independent Degree of smile

latent variables \

Different

dimensions of z Vary z,

encode

interpretable factors

of variation

Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary Z, —
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Variational Autoencoders: Generating Data!

Diagonal prior on z

=> independent Degree of smile

latent variables

Different \
dimensions of z Vary z,
encode

interpretable factors

of variation

\

Also good feature representation that
can be computed using q¢(z|x)!

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary Z, —
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Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12- 88  May 11, 2021




Backprop from Decoder to Encoder

The decoder and encoder are deep neural networks, so we
know how to backprop through those.

> In between the encoder and decoder, we sample from the
posterior distribution q4(z|x), so we need to backprop
through this sampling step.
> In general, it is hard to get a good estimate of the
derivative of a sampling step.
> But because g,(z|x) is a Gaussian, there is a simple
solution.
Reparameterisation Trick: rewrite the sampling noise as an
input €, so that everything we need to backprop through is
deterministic.
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Conditional VAEs

What if we want to generate something which is appropriate for
a given context?

» Condition the encoder and decoder on the context c,
Po(x|z, c) gs(2|x, c)

» Use a deep neural network to learn a representation of the
context (if needed)

» Everything else stays the same



Class-Conditional VAE

¥

@ So far, we haven't used the labels y. A
class-conditional VAE provides the T
labels to both the encoder and the

decoder.

@ Since the latent code z no longer has to Ij Y
model the image category, it can focus 7
on modeling the stylistic features.

o If we're lucky, this lets us disentangle M

style and content. (Note:
disentanglement is still a dark art.)

@ See Kingma et al., “Semi-supervised T
learning with deep generative models."” X Y
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Beta VAEs

» In practice, the two loss terms of a VEA are weighted by a
hyperparameter /3

L(0,¢) = Ezwq,(z|x) log Po(X|Z) — BDki(qs(2|X)|Pe(2))

» Reducing 5 below 1 can help prevent “mode collapse”,
where only the prior is learned

» Increasing S greater than 1 is used to force very
compressed representations, which give more
“disentangled” latent representations.

[beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. Irina Higgins, Loic Matthey, Arka Pal,
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, Alexander Lerchner. 2017]


https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl

Vector-Space VAEs in NLP

Most work applying VAEs to language has focussed on
generating text, particularly with conditional VAEs, or
explainability.

» Generating Sentences from a Continuous Space. Samuel R.
Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal
Jozefowicz, Samy Bengio. 2015

» Neural Variational Inference for Text Processing. Yishu Miao, Lei
Yu, Phil Blunsom. 2015

» Educating Text Autoencoders: Latent Representation Guidance
via Denoising. Tianxiao Shen, Jonas Mueller, Regina Barzilay,
Tommi Jaakkola. 2019

» A transformer-based variational autoencoder for sentence
generation. Danyang Liu, Gongshen Liu. 2019

» Variational Transformers for Diverse Response Generation.
Zhaojiang Lin, Genta Indra Winata, Peng Xu, Zihan Liu, Pascale
Fung. 2020

» Disentangling generative factors in natural language with
discrete variational autoencoders. Giangiacomo Mercatali and
André Freitas. 2021.


https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1511.06038
https://arxiv.org/abs/1905.12777
https://arxiv.org/abs/1905.12777
https://ieeexplore.ieee.org/document/8852155
https://ieeexplore.ieee.org/document/8852155
https://arxiv.org/abs/2003.12738
https://aclanthology.org/2021.findings-emnlp.301
https://aclanthology.org/2021.findings-emnlp.301

Summary of Variational Auto-Encoders

> Auto-encoders are an unsupervised approach to
representation learning

» Deep Variational Bayesian approaches bring information
and probability theory to representation learning

» Variational Auto-Encoders (VAE) are a variational Bayesian
approach to auto-encoders

» VAEs have been widely applied, and are the basis of many
approaches to disentanglement

Also see:
An Introduction to Variational Autoencoders,
Diederik P Kingma, 2019


https://arxiv.org/abs/1906.02691
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Variational Auto-Encoders with an Attention-Based
Latent Space

A vector space is not an adequate latent represention for
language; we need an attention-based latent space.

> Texts vary widely in length, so a fixed dimensionality is
often either too big or too small

» Attention-based models have a variable number of vectors
in their latent spaces, depending on the number of tokens
in the text

» Empirically, attention-based representations are much
much better than fixed-dimentional representation

How do we define distributions over attention-based latent
representations?
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Attention-based Transformer Embeddings

A Transformer encoder passes information to a Transformer
decoder using attention.

» Encoder embeds the input in a sequence of vectors
» Decoder issues a query to access the embedding
» Attention returns an average of the vectors near the query

cross attention

Attn(u, Z) = Za,z,

P sequence of vectors query - attention function
1 1 TfT t | lfl |
— i Tr T
a = jxp(wa‘:z') Tencoder decoder
Yimee(guz) P R

Attention is all you nheed Attention is all you need



The Latent Space of Transformers

» Attention function is permutation invariant in the vectors

Attn(u, Z) = Z a;zZ;
i=1

ol

e exp(ﬁ uz;)

uz;)




The Latent Space of Transformers

» Attention function is permutation invariant in the vectors
> Attention imposes a normalised weighting over vectors

Attn(u,Z) = Za,z, N | I

L el . o \
n -
> oim1 exp( %Uzi) \ -~ -




The Latent Space of Transformers

» Attention function is permutation invariant in the vectors

> Attention imposes a normalised weighting over vectors

» Attention supports a variable number of vectors

n
Attin(u,Z) =) ajz;
i=1

exp(ﬁ z))

i

S exp( L uz)

x+




The Latent Space of Transformers

» Attention function is permutation invariant in the vectors
> Attention imposes a normalised weighting over vectors
» Attention supports a variable number of vectors

Like a nonparametric space of mixture distributions

n
Attn(u,Z) =) ajz;
i=1




The Latent Space of Transformers

Transformer embeddings are:

nonparametric mixtures of impulse distributions

Attention function is:
Bayesian query denoising

n
Attn(u,Z) =) " az; L
i=1

1 ‘ + - _—
a = exp(ﬁ Z,) +, R - \
27:1 exp(id z)) \ - -




Query Denoising Attention Function




Query Denoising Attention Function

Zy, ..., Zn




Query Denoising Attention Function

aiz4, ..., anZn ‘



Query Denoising Attention Function

n
azZy, ..., @nZn ‘ Zaizi
i=1



Denoising Attention

The attention function is query denoising using a mixture of
impulses.
> Attention takes a sequence of vectors and a query vector
and returns an attention vector

» Denoising takes a prior distribution and a noisy
observation and returns its expected value




Denoising Attention

Query denoising is a generalisation of attention.
» The prior distribution can be any mixture distribution
» Gaussian mixtures make denoising easy to compute




Denoising Attention




Denoising Attention
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Attention-based Representation generalise to

Mixture Distributions
Every attention-based representation has an equivalent
mixture distribution.
» Sets-of-vectors can be replaced by mixtures of impulse
distributions
> Attention function can be replaced by denoising attention

@,&\oo o,
&Q@/ ‘\:@.%9
& >
sequence of vectors query — attention function
tttt Y4
Transformer Transformer
encoder decoder
Pt RN

Denoising is all you need Denoising is all you need



Attention-based Representation generalise to

Mixture Distributions
Mixture distribution are more general than set-of-vector
representations.

» Sets-of-vectors can parameterise any mixture distribution

» Denoising attention function applies to any mixture
distribution

e
. .
«‘?38‘;00
.\{\@&
set of parameter vectors query - attention function

ttt ¢t Vil
Transformer Transformer
encoder decoder
Pttt voeov oy

Denoising is all you need Denoising is all you need
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Variational Information Bottleneck

Variational Auto-Encoders use a Variational Information
Bottleneck (VIB) to regularise their latent representation.

» Latent space is a vector space (previously)
» Encoder outputs a distribution over vectors

sampling

// \\7 [ E—

/ \

parameters noisy input

W

Denoising is all you need Denoising is all you need



Variational Information Bottleneck

VIB only allows required information to pass from encoder to
decoder.

» Sampling noise controls the information that passes
» KL divergence with a prior regularises the noise level

sampling

~u. |

\

parameters noisy input

Denoising is all you need Denoising is all you need



Variational Information Bottleneck for Transformers

We can define a VIB for mixture distributions (NVIB) with
Bayesian nonparametrics

» Defines distributions over mixture distributions for the
posterior and prior

» Defines sampling, means, and inference of the posterior

DP: _ Mmixture:
o sampling
X L
s N P
- . =
o S 2
& AN
£ 232

set of pseudo-observations query denoising function

Transformer Transformer
encoder decoder

Denoising is all you need Denoising is all you need




Nonparametric Variational Information Bottleneck
Bayesian nonparametrics provides an extensive theory on
mixture distributions

> Dirichlet processes specify distributions over mixtures of
impulse distributions

i

L

%
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Nonparametric Variational Information Bottleneck
Bayesian nonparametrics provides an extensive theory on
mixture distributions

» Dirichlet processes specify distributions over mixtures of
impulse distributions
» Mean of the samples is a continuous mixture distribution

| NVIB |
DP prior: ) DP: \ ~ mixture: I
| - inference A\ sampling '
= = g\ T S 1
lmmm . ——> a0 I
| = - = - -
s % o |
| ) S o,
& (9((‘ OO/‘ . =% |
I s N Qo
Q‘7 @\S‘g 66/70\9 2," 2 1
. 2.
: £ % %o
I ¢ |

—
c
>
0
=
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>

set of pseudo-observations query denoising



Nonparametric Variational Information Bottleneck
Bayesian nonparametrics provides an extensive theory on
mixture distributions

» Dirichlet processes specify distributions over mixtures of
impulse distributions

» Mean of the samples is a continuous mixture distribution

» Dirichlet processes are conjugate priors

NVIB
DP prior: ) DP: \ ~ mixture:
- inference e sampling
. . y . o

g
s
PNy
&
¥

set of pseudo-observations query denoising function



Inference of the Dirichlet Process Posterior

» One pseudo-observation F ~ DP(Gy, ag)
per encoder token n
» Each is a Gaussian G; and ap = ag+ Z Q;j
its pseudo-count «; =1
: . o oP L
> Pnot DPis a G.aussnaanz‘0 G, = =0 GD+ PG
and its pseudo-count o/ Qg el

» Posterior DP is a mixture Gy of the Gaussians
and a total o of the pseudo-counts

o Gh: oGo: F: ‘|

inference AN e sampling ‘
— i
|

.'QIJ: %
. o . =
(X]_G]_. 5 asz. ((6 ?o/
& 20
3 N - =
7N :E %\Q

set of pseudo-observations query denoising function



Nonparametric Variational Information Bottleneck
Our Nonparametric Variational Information Bottleneck
required proposing some effective approximations:

» the KL divergence between the posterior and prior DPs to
regularise the posterior

» The reparameterisation trick for sampling from DPs with
backpropagation through the sampling step

DP prior: ) DP: \ ~ mixture:
) inference A sampling |
- Iy ‘f\\‘ = ‘ |
- . ~ E L
S— ) \—/ o %
regularisation & error T 2
& A
] =5
£ 2o

set of pseudo-observations query denoising function



Sparseness of the Dirichlet Process Posterior
NVIB regularises the number of components.
» Total pseudo-count «g determines the effective number of
vectors in the sampled mixture, and thus its noise level
» KL divergence regularises the total pseudo-count to
encourage more noise
» A zero pseudo-count removes that component

0B Gh: 0oGo: 2 F:
00 inference 0= sampling
!

G

- . <~ =

o .3
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& 20
4 =%
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Nonparametric Variational Information Bottleneck
NVIB only allows required information to pass from encoder to
decoder.

» Dirichlet processes define distributions over mixture
distributions

» Sampled mixture is a noisy version of the base distribution

» Noise level is regularised by the effective number of
vectors and their individual noise level

NVIB
DP prior: ) DP: \ ~ mixture:
- inference e sampling
. . y . o

g
s
PNy
&
¥

set of pseudo-observations query denoising function
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Nonparametric Variational Auto-Encoder
We can define a VAE for Transformers (NVAE) using NVIB.

» Transformer encoder outputs pseudo-observations
» NVIB regularises the encoder-decoder interface
» Transformer decoder uses denoising attention

DP: \ ~ mixture:
P sampling
7

=N = |

s i

o
o,

g =%
o %%
& e
'S ° 2
S > o

set of pseudo-observations query denoising function

Transformer Transformer
encoder decoder
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Nonparametric Variational Auto-Encoder
NVAE trained as an auto-encoder.

» Loss for cross-entropy of reconstructing the input sentence
> Loss for KL regulariser between the posterior and prior

» Hyperparameters to balance the reconstruction loss, and
the two KL terms for the Gaussians and pseudo-counts

DP: \ mixture:
VN - - |

sampling
o
[}

g =%

3 %
& e
IS 2 2
S 3 O

set of pseudo-observations query denoising function

Transformer Transformer
encoder decoder
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Inducing Representations of Text

We trained NVAE models on text data.
> Trained to reconstruct Wikipedia sentences
» Hyperparameter adjusts the sparsity rate
» Up to 2/3 of vectors can be dropped before reconstruction

is degraded
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Inducing Compressed Representations

Baselines don’t drop the right number of vectors. |
» Variational Transformer Pooled only keeps L

one vector
» Variational Transformer keeps all the vectors * *
» NVAE can adjust the number of vectors e
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Inducing a Smooth Representation Space
Compressed representations generate text distributions better.
» Keeping all vectors

» reconstructs text well
» covers the space of texts well
» many representations generate garbage

» NVIB compressed representations

> reconstruct text well
» cover the space of texts well
» all representations generate good text

1.20 o e NVAE
x VT
" 1.3{ = vrp
_1.15 3 —_
2 o 2 12
— e 1
T 1.10 O.) ® z
. - e '
a4 i » & w
L 5 1.1
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.oV 0 1.0l @ @ 99 @) enrwue o c@rey
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BLEU (1) BLEU (1)

generation coverage vs reconstruction

generation quality vs reconstruction



Inducing a Smooth Representation Space

Compressed representation space has smoother interpolation.
» Keeping all vectors does not interpolate well

> decodes to the same sentence over a large region
» generates unrelated text in between sentences

» NVIB induces a latent space with good interpolation

» smoothly transitions between sentences
» generates related sentences in between

100 —— NVAE
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interpolation between sentences S1 and S2



Inducing Representations of Text

NVAE induces a better representation space.
» Has an appropriate number of vectors

> Generates text distributions better
» Has smoother interpolation

A better approximation to nonparametric variational Bayesian
DP:

models gives a better induced representation space.
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Summary of NVIB

> NVIB combines the effectiveness of Transformers with the
regulariser of Variational AutoEncoders.

» NVIB has a good inductive bias for natural language.

; \VIB )
DP: mixture:
| \ sampling !
1 \ N i | | |
1 e . | [ = 1
1 I
| é‘ff %(%; |
1 ~§ X 2 1
{set of pseudo-observations query denoising functionf

Transformer Transformer
encoder decoder
Denoising is all you need Denoising is all you need

A VAE for Transformers with Nonparametric Variational Information
Bottleneck. James Henderson and Fabio Fehr. ICLR 2023.


https://openreview.net/forum?id=6QkjC_cs03X
https://openreview.net/forum?id=6QkjC_cs03X

Why do Transformers work so well?

Transformers are nonparametric variational Bayesian models.
» Their latent representations are
nonparametric mixture distributions

» Their encoders approximate
nonparametric variational Bayesian inference
» Thier decoders approximate

nonparametric Bayesian generative models
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Why do Transformers work so well?

Hypothesis: Transformers work well because human thoughts
are Dirichlet processes.

» Transformers are models of Dirichlet processes.
» Transformers are astoundingly good models of language.
» Language is (approximately) isomorphic to thought.
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