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A Bayesian Approach to Auto-Encoders

▶ Auto-encoders learn to compress the observations into a
smaller latent representation

▶ Thus learning a representation where underlying
correlations are captured

But what does “smaller” mean? Can’t we encode an arbitrary
amount of information in continuous values?



A Bayesian Approach to Auto-encoders

Adding noise to the latent representation controls the amount of
information that can pass through it.
▶ Information Bottleneck: minimise the amount of

information that passes through the latent representation
▶ Reconstruction Loss: ensure that enough information is

passed to reconstruct the input



A Variational Bayesian Approach to Auto-Encoders

But Bayesian inference in deep models is intractable!
▶ Variational Information Bottleneck: train a deep

variational approximation to the intractable parts of
Bayesian inference

[Auto-Encoding Variational Bayes, Kingma and Welling, 2014]

https://arxiv.org/abs/1312.6114


A Variational Bayesian Approach to Auto-Encoders

But how can we backprop through a stochastic model?
▶ Reparameterisation Trick: move the noise to an input so

that everything we need to backprop through is
deterministic

[Auto-Encoding Variational Bayes, Kingma and Welling, 2014]

https://arxiv.org/abs/1312.6114
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Taxonomy of Generative Models

31

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow 
- Ffjord
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Some background first: Autoencoders

43

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. 

But we can’t generate new 
images from an autoencoder 
because we don’t know the 
space of z.

How do we make autoencoder a  
generative model?
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Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - May 11, 202146

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc. 
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

 



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - May 11, 202148

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.

Conditional p(x|z) is complex (generates 
image) => represent with neural network

 

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 
of training dataDecoder 

network



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - May 11, 202153

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 
of training data

Q: What is the problem with this?
Intractable!

Decoder 
network
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network

✔ ✔



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - May 11, 202157

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

��✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

��✔ ✔

Monte Carlo estimation is too high variance



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - May 11, 202159

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
��✔ ✔

Posterior density:

Intractable data likelihood
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Solution: In addition to modeling pθ(x|z), learn qɸ(z|x) that approximates the true 
posterior pθ(z|x). 

Will see that the approximate posterior allows us to derive a lower bound on the 
data likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from 
only the observed data x
 

Posterior density also intractable:
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Variational Autoencoders
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Variational Autoencoders

Taking expectation wrt. z 
(using encoder network) will 
come in handy later
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders

The expectation wrt. z (using 
encoder network) let us write 
nice KL terms
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Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

We want to 
maximize the 
data 
likelihood

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling. 
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

We want to 
maximize the 
data 
likelihood
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder:
reconstruct
the input data

Encoder: 
make approximate 
posterior distribution 
close to prior
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Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the KL 
divergence between the estimated 
posterior and the prior given some data
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Have analytical solution
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Not part of the computation graph!
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 

Part of computation graph

Input to 
the graph
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Maximize likelihood of original 
input being reconstructed
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

For every minibatch of input 
data: compute this forward 
pass, and then backprop!
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE: 
use decoder network & sample z from prior!
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 12 - May 11, 202185

Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

88

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.



Backprop from Decoder to Encoder

The decoder and encoder are deep neural networks, so we
know how to backprop through those.
▶ In between the encoder and decoder, we sample from the

posterior distribution qϕ(z|x), so we need to backprop
through this sampling step.

▶ In general, it is hard to get a good estimate of the
derivative of a sampling step.

▶ But because qϕ(z|x) is a Gaussian, there is a simple
solution.

Reparameterisation Trick: rewrite the sampling noise as an
input ϵ, so that everything we need to backprop through is
deterministic.
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Conditional VAEs

What if we want to generate something which is appropriate for
a given context?
▶ Condition the encoder and decoder on the context c,

pθ(x |z, c) qϕ(z|x , c)
▶ Use a deep neural network to learn a representation of the

context (if needed)
▶ Everything else stays the same



Class-Conditional VAE

So far, we haven’t used the labels y . A
class-conditional VAE provides the
labels to both the encoder and the
decoder.

Since the latent code z no longer has to
model the image category, it can focus
on modeling the stylistic features.

If we’re lucky, this lets us disentangle
style and content. (Note:
disentanglement is still a dark art.)

See Kingma et al., “Semi-supervised
learning with deep generative models.”

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 17: Variational Autoencoders 24 / 28



Beta VAEs

▶ In practice, the two loss terms of a VEA are weighted by a
hyperparameter β

L(θ, ϕ) = Ez∼qϕ(z|x) log pθ(x |z)− βDKL(qϕ(z|x)||pθ(z))

▶ Reducing β below 1 can help prevent “mode collapse”,
where only the prior is learned

▶ Increasing β greater than 1 is used to force very
compressed representations, which give more
“disentangled” latent representations.

[beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. Irina Higgins, Loic Matthey, Arka Pal,
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, Alexander Lerchner. 2017]

https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl


Vector-Space VAEs in NLP
Most work applying VAEs to language has focussed on
generating text, particularly with conditional VAEs, or
explainability.
▶ Generating Sentences from a Continuous Space. Samuel R.

Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal
Jozefowicz, Samy Bengio. 2015

▶ Neural Variational Inference for Text Processing. Yishu Miao, Lei
Yu, Phil Blunsom. 2015

▶ Educating Text Autoencoders: Latent Representation Guidance
via Denoising. Tianxiao Shen, Jonas Mueller, Regina Barzilay,
Tommi Jaakkola. 2019

▶ A transformer-based variational autoencoder for sentence
generation. Danyang Liu, Gongshen Liu. 2019

▶ Variational Transformers for Diverse Response Generation.
Zhaojiang Lin, Genta Indra Winata, Peng Xu, Zihan Liu, Pascale
Fung. 2020

▶ Disentangling generative factors in natural language with
discrete variational autoencoders. Giangiacomo Mercatali and
André Freitas. 2021.

https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1511.06038
https://arxiv.org/abs/1905.12777
https://arxiv.org/abs/1905.12777
https://ieeexplore.ieee.org/document/8852155
https://ieeexplore.ieee.org/document/8852155
https://arxiv.org/abs/2003.12738
https://aclanthology.org/2021.findings-emnlp.301
https://aclanthology.org/2021.findings-emnlp.301


Summary of Variational Auto-Encoders

▶ Auto-encoders are an unsupervised approach to
representation learning

▶ Deep Variational Bayesian approaches bring information
and probability theory to representation learning

▶ Variational Auto-Encoders (VAE) are a variational Bayesian
approach to auto-encoders

▶ VAEs have been widely applied, and are the basis of many
approaches to disentanglement

Also see:
An Introduction to Variational Autoencoders,
Diederik P Kingma, 2019

https://arxiv.org/abs/1906.02691
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Variational Auto-Encoders with an Attention-Based
Latent Space

A vector space is not an adequate latent represention for
language; we need an attention-based latent space.
▶ Texts vary widely in length, so a fixed dimensionality is

often either too big or too small
▶ Attention-based models have a variable number of vectors

in their latent spaces, depending on the number of tokens
in the text

▶ Empirically, attention-based representations are much
much better than fixed-dimentional representation

How do we define distributions over attention-based latent
representations?
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Attention-based Transformer Embeddings

A Transformer encoder passes information to a Transformer
decoder using attention.
▶ Encoder embeds the input in a sequence of vectors
▶ Decoder issues a query to access the embedding
▶ Attention returns an average of the vectors near the query

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



The Latent Space of Transformers

▶ Attention function is permutation invariant in the vectors

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



The Latent Space of Transformers

▶ Attention function is permutation invariant in the vectors
▶ Attention imposes a normalised weighting over vectors

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



The Latent Space of Transformers

▶ Attention function is permutation invariant in the vectors
▶ Attention imposes a normalised weighting over vectors
▶ Attention supports a variable number of vectors

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



The Latent Space of Transformers

▶ Attention function is permutation invariant in the vectors
▶ Attention imposes a normalised weighting over vectors
▶ Attention supports a variable number of vectors

Like a nonparametric space of mixture distributions

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



The Latent Space of Transformers

Transformer embeddings are:
nonparametric mixtures of impulse distributions

Attention function is:
Bayesian query denoising

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



Query Denoising Attention Function

z1, . . . , zn



Query Denoising Attention Function

z1, . . . , zn u



Query Denoising Attention Function

a1z1, . . . , anzn



Query Denoising Attention Function

a1z1, . . . , anzn

n∑
i=1

aiz i



Denoising Attention

The attention function is query denoising using a mixture of
impulses.
▶ Attention takes a sequence of vectors and a query vector

and returns an attention vector
▶ Denoising takes a prior distribution and a noisy

observation and returns its expected value

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)∑n

i=1 exp(
1√
d

uz i)



Denoising Attention
Query denoising is a generalisation of attention.
▶ The prior distribution can be any mixture distribution
▶ Gaussian mixtures make denoising easy to compute



Denoising Attention



Denoising Attention



Denoising Attention



Denoising Attention



Attention-based Representation generalise to
Mixture Distributions

Every attention-based representation has an equivalent
mixture distribution.
▶ Sets-of-vectors can be replaced by mixtures of impulse

distributions
▶ Attention function can be replaced by denoising attention



Attention-based Representation generalise to
Mixture Distributions

Mixture distribution are more general than set-of-vector
representations.
▶ Sets-of-vectors can parameterise any mixture distribution
▶ Denoising attention function applies to any mixture

distribution



Outline

Overview of Variational Auto-Encoders (VAE)

Variational Auto-Encoders with a Latent Vector Space
Extensions to VAEs

Variational Auto-Encoders for Transformers
Attention-based Representation are Mixture Distributions
A Variational Bayesian Framework for Attention Layers
Nonparametric Variational Auto-Encoder for Transformers



Variational Information Bottleneck

Variational Auto-Encoders use a Variational Information
Bottleneck (VIB) to regularise their latent representation.
▶ Latent space is a vector space (previously)
▶ Encoder outputs a distribution over vectors



Variational Information Bottleneck

VIB only allows required information to pass from encoder to
decoder.
▶ Sampling noise controls the information that passes
▶ KL divergence with a prior regularises the noise level



Variational Information Bottleneck for Transformers

We can define a VIB for mixture distributions (NVIB) with
Bayesian nonparametrics
▶ Defines distributions over mixture distributions for the

posterior and prior
▶ Defines sampling, means, and inference of the posterior



Nonparametric Variational Information Bottleneck
Bayesian nonparametrics provides an extensive theory on
mixture distributions
▶ Dirichlet processes specify distributions over mixtures of

impulse distributions
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Nonparametric Variational Information Bottleneck
Bayesian nonparametrics provides an extensive theory on
mixture distributions
▶ Dirichlet processes specify distributions over mixtures of

impulse distributions
▶ Mean of the samples is a continuous mixture distribution
▶ Dirichlet processes are conjugate priors



Inference of the Dirichlet Process Posterior
▶ One pseudo-observation

per encoder token
▶ Each is a Gaussian Gi and

its pseudo-count αi

▶ Prior DP is a Gaussian Gp
0

and its pseudo-count αp
o

F ∼ DP (G0, α0)

α0 = αp
0 +

n∑
i=1

αi

G0 =
αp

0
α0

Gp
0 +

n∑
i=1

αi

α0
Gi

▶ Posterior DP is a mixture G0 of the Gaussians
and a total α0 of the pseudo-counts



Nonparametric Variational Information Bottleneck
Our Nonparametric Variational Information Bottleneck
required proposing some effective approximations:
▶ the KL divergence between the posterior and prior DPs to

regularise the posterior
▶ The reparameterisation trick for sampling from DPs with

backpropagation through the sampling step



Sparseness of the Dirichlet Process Posterior
NVIB regularises the number of components.
▶ Total pseudo-count α0 determines the effective number of

vectors in the sampled mixture, and thus its noise level
▶ KL divergence regularises the total pseudo-count to

encourage more noise
▶ A zero pseudo-count removes that component



Nonparametric Variational Information Bottleneck
NVIB only allows required information to pass from encoder to
decoder.
▶ Dirichlet processes define distributions over mixture

distributions
▶ Sampled mixture is a noisy version of the base distribution
▶ Noise level is regularised by the effective number of

vectors and their individual noise level



Outline

Overview of Variational Auto-Encoders (VAE)

Variational Auto-Encoders with a Latent Vector Space
Extensions to VAEs

Variational Auto-Encoders for Transformers
Attention-based Representation are Mixture Distributions
A Variational Bayesian Framework for Attention Layers
Nonparametric Variational Auto-Encoder for Transformers



Nonparametric Variational Auto-Encoder
We can define a VAE for Transformers (NVAE) using NVIB.
▶ Transformer encoder outputs pseudo-observations
▶ NVIB regularises the encoder-decoder interface
▶ Transformer decoder uses denoising attention



Nonparametric Variational Auto-Encoder
NVAE trained as an auto-encoder.
▶ Loss for cross-entropy of reconstructing the input sentence
▶ Loss for KL regulariser between the posterior and prior
▶ Hyperparameters to balance the reconstruction loss, and

the two KL terms for the Gaussians and pseudo-counts



Inducing Representations of Text

We trained NVAE models on text data.
▶ Trained to reconstruct Wikipedia sentences
▶ Hyperparameter adjusts the sparsity rate
▶ Up to 2/3 of vectors can be dropped before reconstruction

is degraded
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Inducing Compressed Representations

Baselines don’t drop the right number of vectors.
▶ Variational Transformer Pooled only keeps

one vector
▶ Variational Transformer keeps all the vectors
▶ NVAE can adjust the number of vectors
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Inducing a Smooth Representation Space
Compressed representations generate text distributions better.
▶ Keeping all vectors

▶ reconstructs text well
▶ covers the space of texts well
▶ many representations generate garbage

▶ NVIB compressed representations
▶ reconstruct text well
▶ cover the space of texts well
▶ all representations generate good text
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Inducing a Smooth Representation Space
Compressed representation space has smoother interpolation.
▶ Keeping all vectors does not interpolate well

▶ decodes to the same sentence over a large region
▶ generates unrelated text in between sentences

▶ NVIB induces a latent space with good interpolation
▶ smoothly transitions between sentences
▶ generates related sentences in between
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Inducing Representations of Text
NVAE induces a better representation space.
▶ Has an appropriate number of vectors
▶ Generates text distributions better
▶ Has smoother interpolation

A better approximation to nonparametric variational Bayesian
models gives a better induced representation space.



Summary of NVIB

▶ NVIB combines the effectiveness of Transformers with the
regulariser of Variational AutoEncoders.

▶ NVIB has a good inductive bias for natural language.

A VAE for Transformers with Nonparametric Variational Information
Bottleneck. James Henderson and Fabio Fehr. ICLR 2023.

https://openreview.net/forum?id=6QkjC_cs03X
https://openreview.net/forum?id=6QkjC_cs03X


Why do Transformers work so well?

Transformers are nonparametric variational Bayesian models.
▶ Their latent representations are

nonparametric mixture distributions
▶ Their encoders approximate

nonparametric variational Bayesian inference
▶ Thier decoders approximate

nonparametric Bayesian generative models



Why do Transformers work so well?

Hypothesis: Transformers work well because human thoughts
are Dirichlet processes.
▶ Transformers are models of Dirichlet processes.
▶ Transformers are astoundingly good models of language.
▶ Language is (approximately) isomorphic to thought.
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