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1. Two views of linguistic structure: Constituency = phrase 
structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents

Starting unit: words 
the,   cat,   cuddly,   by,   door

Words combine into phrases

the cuddly cat,       by the door

Phrases can combine into bigger phrases
the cuddly cat by the door
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Two views of linguistic structure: Constituency = phrase structure 
grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

the            cat
a                dog

large                 in a crate
barking            on the table

cuddly              by the door
large           barking

talk to
walked behind
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Two views of linguistic structure: Dependency structure

• Dependency structure shows which words depend on (modify, attach to, or are 
arguments of) which other words.

Look  in  the  large  crate  in the kitchen by  the  door
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Why do we need sentence structure?

Humans communicate complex ideas by composing words together 
into bigger units to convey complex meanings

Listeners need to work out what modifies [attaches to] what

A model needs to understand sentence structure in order to be 
able to interpret language correctly
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Prepositional phrase attachment ambiguity
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Prepositional phrase attachment ambiguity

Scientists count whales from space

Scientists count whales from space

✓

❌
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PP attachment ambiguities multiply

• A key parsing decision is how we ‘attach’ various constituents
• PPs, adverbial or participial phrases, infinitives, coordinations, 

etc.

• Catalan numbers: Cn = (2n)!/[(n+1)!n!]

• An exponentially growing series, which arises in many tree-like contexts:
• E.g., the number of possible triangulations of a polygon with n+2 sides

• Turns up in triangulation of probabilistic graphical models (CS228)….12
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Coordination scope ambiguity

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board
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Coordination scope ambiguity
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Dependency paths help extract semantic interpretation –
simple practical example: extracting protein-protein interaction

KaiC çnsubj interacts  nmod:with è SasA
KaiC çnsubj interacts nmod:with è SasA conj:andè KaiA
KaiC çnsubj interacts nmod:with è SasA conj:andè KaiB

[Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]

demonstrated

results

KaiC

interacts

rythmically

nsubj

The

mark
det

ccomp

that
nsubj

KaiBKaiA

SasA

conj:and

conj:and
advmod

nmod:with

with and
cc

case
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2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted

Bills were

Senatorby

immigration

Brownback

andon

ports

Republican

of

Kansas
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Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

The arrows are 
commonly typed
with the name of 
grammatical 
relations (subject, 
prepositional object, 
apposition, etc.)

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod

ports flat

Republican

of
case

nmod

Kansas

appos
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Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

An arrow connects a head
(governor, superior, 
regent) with a dependent
(modifier, inferior, 
subordinate)

Usually, dependencies 
form a tree (a connected, 
acyclic, single-root graph)

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod

ports flat

Republican

of
case

nmod

Kansas

appos
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Pāṇini’s grammar (c. 5th century BCE)

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg
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Dependency Grammar/Parsing History

• The idea of dependency structure goes back a long way
• To Pāṇini’s grammar (c. 5th century BCE)
• Basic approach of 1st millennium Arabic grammarians

• Constituency/context-free grammar is a new-fangled invention
• 20th century invention (R.S. Wells, 1947; then Chomsky 1953, etc.)

• Modern dependency work is often sourced to Lucien Tesnière (1959)
• Was dominant approach in “East” in 20th Century (Russia, China, …)
• Good for free-er word order, inflected languages like Russian (or Latin!)

• Used in some of the earliest parsers in NLP, even in the US:
• David Hays, one of the founders of U.S. computational linguistics, built early (first?) 

dependency parser (Hays 1962) and published on dependency grammar in Language
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ROOT Discussion of the outstanding issues was completed  .

• Some people draw the arrows one way; some the other way! 
• Tesnière had them point from head to dependent – we follow that convention

• We usually add a fake ROOT so every word is a dependent of precisely 1 other node

Dependency Grammar and Dependency Structure
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The rise of annotated data & Universal Dependencies treebanks

Brown corpus (1967; PoS tagged 1979); Lancaster-IBM Treebank (starting late 1980s); 
Marcus et al. 1993, The Penn Treebank, Computational Linguistics;
Universal Dependencies: http://universaldependencies.org/
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The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than writing a grammar 
(by hand)

But a treebank gives us many things
• Reusability of the labor
• Many parsers, part-of-speech taggers, etc. can be built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems

26
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What are the sources of information for dependency parsing?
1. Bilexical affinities    The dependency [discussion à issues] is plausible
2. Dependency distance   Most dependencies are between nearby words
3. Intervening material     Dependencies rarely span intervening verbs or punctuation
4. Valency of heads  How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed  .

Dependency Conditioning Preferences
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Dependency Parsing

• A sentence is parsed by choosing for each word what other word (including ROOT) it is 
a dependent of

• Usually some constraints:
• Only one word is a dependent of ROOT
• Don’t want cycles A → B, B → A

• This makes the dependencies a tree
• Final issue is whether arrows can cross (be non-projective) or not

I give a on neuraltalk tomorrowROOT ’ll networks
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• Definition of a projective parse: There are no crossing dependency arcs when the 
words are laid out in their linear order, with all arcs above the words

• Dependencies corresponding to a CFG tree must be projective
• I.e., by forming dependencies by taking 1 child of each category as head

• Most syntactic structure is projective like this, but dependency theory normally does 
allow non-projective structures to account for displaced constituents
• You can’t easily get the semantics of certain constructions right without these 

nonprojective dependencies

Who  did  Bill  buy  the  coffee  from  yesterday  ?

Projectivity
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3. Methods of Dependency Parsing

1. Dynamic programming
Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items 
with heads at the ends rather than in the middle

2. Graph algorithms
You create a Minimum Spanning Tree for a sentence
McDonald et al.’s (2005) MSTParser scores dependencies independently using an ML 
classifier (he uses MIRA, for online learning, but it can be something else)
Neural graph-based parser: Dozat and Manning (2017) et seq. – very successful!

3. Constraint Satisfaction 
Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.

4. “Transition-based parsing” or “deterministic dependency parsing”
Greedy choice of attachments guided by good machine learning classifiers
E.g., MaltParser (Nivre et al. 2008). Has proven highly effective.
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Summary of Syntactic Structure

▶ Syntactic structure is a fundamental property of all natural
languages

▶ Syntax is an interface between the meanings of words and
the meaning of text

▶ Two modern traditions for syntactic structure:
▶ Constituency structure:

group words into phrases, recursively
▶ Dependency structure:

link words by their roles, in a tree
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Greedy transition-based parsing [Nivre 2003]

• A simple form of greedy discriminative dependency parser
• The parser does a sequence of bottom-up actions

• Roughly like “shift” or “reduce” in a shift-reduce parser, but the “reduce” actions are 
specialized to create dependencies with head on left or right

• The parser has:
• a stack σ, written with top to the right
• which starts with the ROOT symbol

• a buffer β, written with top to the left
• which starts with the input sentence

• a set of dependency arcs A
• which starts off empty

• a set of actions

31
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Basic transition-based dependency parser

Start: σ = [ROOT], β = w1, …, wn , A = ∅
1. Shift              σ, wi|β, A è σ|wi, β, A
2. Left-Arcr σ|wi|wj, β, A è σ|wj, β, A∪{r(wj,wi)} 
3. Right-Arcr σ|wi|wj, β, A è σ|wi, β, A∪{r(wi,wj)}
Finish: σ = [w], β = ∅

32
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Arc-standard transition-based parser
(there are other transition schemes …)
Analysis of “I ate fish”

ate fish[root]
Start

I

[root]
Shift

I ate fish

ate[root] fish
Shift

I

Start: σ = [ROOT], β = w1, …, wn , A = ∅
1. Shift              σ, wi|β, A è σ|wi, β, A
2. Left-Arcr σ|wi|wj, β, A è

σ|wj, β, A∪{r(wj,wi)} 
3. Right-Arcr σ|wi|wj, β, A è

σ|wi, β, A∪{r(wi,wj)}
Finish: σ = [w], β = ∅
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Arc-standard transition-based parser
Analysis of “I ate fish”

ate[root] ate[root]
Left Arc

I
A +=
nsubj(ate → I)

ate fish[root] ate fish[root]
Shift

ate[root] [root]
Right Arc

A +=
obj(ate → fish)fish ate

ate[root] [root]
Right Arc

A +=
root([root] → ate)
Finish
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MaltParser [Nivre and Hall 2005]

• We have left to explain how we choose the next action 🤷
• Answer: Stand back, I know machine learning!

• Each action is predicted by a discriminative classifier (e.g., softmax classifier) over each 
legal move
• Max of 3 untyped choices; max of |R| × 2 + 1 when typed
• Features: top of stack word, POS; first in buffer word, POS; etc.

• There is NO search (in the simplest form)
• But you can profitably do a beam search if you wish (slower but better): You keep k

good parse prefixes at each time step
• The model’s accuracy is fractionally below the state of the art in dependency parsing, 

but
• It provides very fast linear time parsing, with high accuracy – great for parsing the web

35
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Conventional Feature Representation

Feature templates: usually a combination of 1–3 
elements from the configuration

Indicator features

0 0 0 1 0 0 1 0 0 0 1 0binary, sparse
dim =106 –107

…
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Evaluation of Dependency Parsing: (labeled) dependency accuracy

ROOT   She  saw   the   video   lecture 
0         1      2       3         4            5

Gold
1 2 She nsubj
2 0 saw root 
3 5 the det
4 5 video nn
5 2    lecture obj

Parsed
1 2 She nsubj
2 0 saw root 
3 4 the det
4 5 video nsubj
5 2    lecture ccomp

Acc =   # correct deps
# of deps

UAS =  4 / 5  =  80%
LAS  =  2 / 5  =  40%

37
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Handling non-projectivity

• The arc-standard algorithm we presented only builds projective dependency trees
• Possible directions to head:

1. Just declare defeat on nonprojective arcs 🤷
2. Use dependency formalism which only has projective representations
• A CFG only allows projective structures; you promote head of projectivity violations

3. Use a postprocessor to a projective dependency parsing algorithm to identify and 
resolve nonprojective links

4. Add extra transitions that can model at least most non-projective structures (e.g., 
add an extra SWAP transition, cf. bubble sort)

5. Move to a parsing mechanism that does not use or require any constraints on 
projectivity (e.g., the graph-based MSTParser or Dozat and Manning (2017))

38

6. Add dependency edges which projectivise local nonprojective structures
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Graph-based dependency parsers

50

• Compute a score for every possible dependency for each word
• Doing this well requires good “contextual” representations of each word token, 

which we will develop in coming lectures 
• And repeat the same process for each other word

ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”
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Graph-based dependency parsers

▶ Given O(n2) scores score(i , j |x) (for first-order algorithms),
find:

argmax
ŷ∈Y (x)

∑
i

score(i , ŷi |x)

▶ where Y (x) is the set of trees over x
▶ using an algorithm like Minimum Spanning Tree (O(n3))



Summary of Syntactic Dependency Parsing

▶ Syntactic parsing is a benchmark task for ML models of
structured prediction

▶ Dependency parsing finds the syntactic dependencies for
a sentence

▶ Two ways to decompose the score of a parse:
▶ Graph-based:

estimate scores independently, then choose the optimal
combination with dynamic programming (MST)

▶ Transition-based:
estimate scores conditioned on history, and search greedily
(or with beam search)

▶ Transition-based parsing tends to be faster, but
graph-based is more accurate
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Sequence-to-Sequence Parsing (Vinyals et al. NIPS 2015)

▶ Parses can be represented as bracketed sequences
▶ Neural networks can generate sequences
▶ Why not do parsing like machine translation?



Sequence-to-Sequence Parsing (Vinyals et al. NIPS 2015)

▶ Use a 2015-SoA neural machine traslation system
▶ stacked LSTM encoder, stacked LSTM decoder with

attention to encoder
▶ Train it to generate valid bracketed sequences



Sequence-to-Sequence Parsing (Vinyals et al. NIPS 2015)

▶ Given a sentence, generate a bracketed string
▶ Convert the string into a parse tree
▶ Measure accuracy of the resulting parses
▶ (Optionally, constrain predictions to valid sequences at test

time)



Output-Dependent Model Structure

▶ Need a bias towards learning correlations which are
structurally local

▶ Structure is determined by the parser output
▶ ⇒ Model structure can be incrementally constructed based

on output structure



Neural Network Augmentations of Symbolic Models
(Henderson, NAACL 2003; Henderson and Titov, JMLR 2011)

▶ Recurrent neural networks (RNN)
▶ powerful probability estimators
▶ induced history representations
▶ inductive bias in model structure

▶ Symbolic models
▶ unbounded generalisation
▶ domain-appropriate structural locality bias
▶ efficient decoding strategies

▶ Incremental Neural Networks (INN) (a.k.a. SSN, ISBN)
▶ RNN estimates derivation decision probabilities
▶ with incrementally-specified model structure
▶ and efficient beam search decoding

This is the ground breaking work on integrating decoding and
structured prediction with neural networks.
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Syntactic parsing with INNs

▶ Constituency parser with left-corner derivations
(Henderson, NAACL 2003)

▶ Dependency parser with arc-eager derivations
(Titov and Henderson, IWPT 2007)

▶ Faster beam search with discriminative training
(Yazdani and Henderson, CoNLL 2015)

The worlds best parser in 2017 (from Google) was based on
the design from (Titov and Henderson, IWPT 2007).

ROOT subj adv

root

Mary often

runs

 



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

Sh

NNP/MaryROOT VBZ/runs

 

 



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

VBZ/runsNNP/MaryROOT

subj

Sh subjLA

 

Q=S



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

VBZ/runs

root

NNP/Mary

subj
ROOT

Sh LAsubj rootRA

S=S

 

S=LQ
Q=Q



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

Sh LAsubj RAroot Sh

VBZ/runs

root

NNP/Mary

subj
RB/oftenROOT

 

S=LQ

S=HS
S=S
Q=Q



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

VBZ/runs

root

NNP/Mary

subj
ROOT

adv

RB/often

Sh LAsubj RAroot advSh RA

 

S=LS

S=HS
Q=S



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

adv

RB/oftenVBZ/runs

root

ROOT

NNP/Mary

subj

Sh LAsubj RAroot RAadvSh Sh

 

S=HS
S=LS

S=S
Q=Q



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

adv

RB/oftenVBZ/runs

root

subj

Sh LAsubj RAroot RAadv ShSh Re

ROOT

NNP/Mary

 

S=HS
Q=S



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

VBZ/runs

root

RB/often

subj adv

Sh LAsubj RAroot RAadv Sh ReSh Re

ROOT

NNP/Mary

S=S

 

S=LS

S=HS

S=RS
Q=Q



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

Sh LAsubj RAroot RAadv Sh ReSh Re

 

end

ROOT
VBZ/runs

RB/often

subj adv

NNP/Mary

root



Discriminative modelling of beam search
(Yazdani and Henderson, CoNLL 2015)

Replace the word predictions of the generative model with a
Correctness Probability output
▶ Trained discriminatively to distinguish between correct

and incorrect parse prefixes

▶ Allows beam search with pruning just at Shift actions
Better feature parametrisation:
▶ Low-frequency word-role pair features are factorised into

word vectors multiplied by role matrices
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Results on English
better than (Yazdani and Henderson, CoNLL 2015)

CoNLL 2009 English syntactic dependencies:
Model LAA wrd/sec
MALTAE 86.0 7549
Chen&Manning 86.5 9589
MST 87.1 290
Generative INN, beam 1 77.8 1122
Generative INN, beam 10 87.7 107
Generative INN, large beam 88.7 NA

DINN, beam 1 89.0 4890
DINN, beam 10 89.8 544

▶ Discriminative parser with a beam of 1 is 50 times faster
than the generative model with beam 10, with higher
accuracy.



Multilingual Results

Diverse CoNLL 2009 languages, syntactic dependencies:

Model German Spanish Czech
Chen&Manning 81.9 81.5 58.5
MALT 80.7 82.4 67.3
MST 84.1 82.7 73.4
DINN 86.0 85.4 77.5

▶ Better at generalising to new languages without feature
engineering.



Stack-LSTM Dependency Parser

“Transition-Based Dependency Parsing with Stack Long
Short-Term Memory”, Dyer, Ballesteros, Ling, Matthews and
Smith. ACL 2015.
▶ Model structure is defined in terms of the parser’s data

structures
▶ General mechanism for applying LSTMs to stack data

structures



Transformer Transition-Based Dependency Parsing

“Graph-to-Graph Transformer for Dependency Parsing”,
Mohammadshahi and Henderson, 2020
▶ Transformer computes token embeddings for parser state
▶ Additional inputs to reflect parser state and history
▶ Parser actions predicted from relevant tokens (top of stack)



▪ Motivation

▪ Graph-to-Graph Transformer

• Transition-based Dependency Parsing

• Graph-based Iterative Refinement

• Semantic Role Labelling

▪ Compression of Massively Multilingual Models

• Impacts on different biases

• Distillation of these models for low-resource languages

▪ Conclusion and Future Directions
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Findings of EMNLP 2020

Authors:

Alireza Mohammadshahi

James Henderson
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▪ Add a Graph Encoder on top of sequence encoder (Ji et al,2019)

▪ Add a hard bias toward graph structure (strubell et al,2018)

▪ Recursively use neural networks (Dyer et al,2015)

Previous Work
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Graph-to-Graph Transformer
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Input Sequence

Graph Sequence

G2G Transformer Decoder Task
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❖ Input arbitrary graph in addition to input sequence

❖ Output a graph for the downstream task

❖ Combines both sequence encoder and graph encoder into one general 
encoder

❖ Add a soft bias toward attention heads (no hard coding)

Graph-to-Graph Transformer
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Compute output representations of 
input sequence by stack of multi-head 
self-attention layers

Each Layer:

❖ Multi-head attention layer

❖ Feed-forward position-wise NN

Graph-to-Graph Transformer
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We have input sequence 𝑋, Transformer 
finds Output representation 𝑍:

𝑧𝑖 =෍

𝑗

𝛼𝑖𝑗(𝑥𝑗𝑊
𝑣)

Attention weights are calculated as:

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

σ𝑘 exp(𝑒𝑖𝑘)
, 𝑒𝑖𝑗 =

(𝑥𝑖𝑊
𝑄)(𝑥𝑗𝑊

𝑘)

𝑑

Graph-to-Graph Transformer
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To input a graph, we modify equations of original Transformer:

𝑧𝑖 =෍

𝑗

𝛼𝑖𝑗(𝑥𝑗𝑊
𝑣 + 𝑝𝑖𝑗𝑊𝐿

2)

𝑒𝑖𝑗 =
(𝑥𝑖𝑊

𝑄)(𝑥𝑗𝑊
𝑘 + 𝑝𝑖𝑗𝑊𝐿

1)

𝑑

𝑝𝑖𝑗 is the relation between token 𝑥𝑖 and 𝑥𝑗

Graph-to-Graph Transformer
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▪ Matrix 𝑃 can be any input graph

▪ Soft Bias. Each attention head can easily learn to attend only to 
positions in a given relation, but it can also learn other structures in 
combination with other input

▪ Output value representation can have both token-level and graph-
level information

▪ Can be applied to any NLP tasks which require to input a graph or 
produce a graph over the same nodes

Graph-to-Graph Transformer
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▪ Extracting a dependency parse of a sentence that represents its 
grammatical structure

▪ Defines the relationships between “head” words and words, which 
modify those heads.

Dependency Parsing
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▪ Iteratively build the dependency graph by predicting a new 
transition at each step

▪ Transition classifier predicts the new action based on parser state

Transition-based Models
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Sentence Encoder Parser State Classifier

Stack Buffer
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StateTr+G2G-Tr SentTr+G2G-Tr

Baselines + G2G-Tr
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History Model                           Composition Model

Baselines + G2G-Tr
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𝑎𝑡 and 𝑙𝑡 are predicted action 

and dependency label.
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We evaluated our model on:

▪ English WSJ Penn Treebank (Marcus et al,1993)

▪ 13 Languages of UD Treebanks (Nivre et al,2018)
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Results
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▪ G2G-Tr integration

▪ BERT pre-training

▪ Graph output mechanism

▪ Replacement with composition model

▪ UD Benchmark
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▪ Propose Graph-to-Graph Transformer Architecture

▪ Applied to transition-based dependency parsing

▪ Compatible with BERT pre-training

▪ Outperforms previous work in the transition-based parsing

Conclusion
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Outline

Syntactic Structure

Syntactic Dependency Parsing

Transition-based Neural Network Parsing

Graph-based Neural Network Parsing

Iterative-Refinement Neural Network Parsing



A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]

51

• This paper revived interest in graph-based dependency parsing in a neural world
• Designed a biaffine scoring model for neural dependency parsing
• Also crucially uses a neural sequence model, something we discuss next week

• Really great results!
• But slower than the simple neural transition-based parsers
• There are n2 possible dependencies in a sentence of length n

Method UAS LAS (PTB WSJ SD 3.3
Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79
Dozat & Manning 2017 95.74 94.08
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LSTM-based Dependency Score Estimation

“Graph-based Dependency Parsing with Bidirectional LSTM”,
Wang and Chang. ACL 2016.
▶ Deep NN model computes context-dependent token

embeddings
▶ Scores estimated from the token embedding pairs



Rep4NLP at ACL 2023

Authors:

Alireza Mohammadshahi

James Henderson
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Syntax-Aware Graph-

to-Graph Transformer 

for Semantic Role 

Labelling
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Semantic Role Labelling (SRL)  

▪ Provides a shallow representation of the 
semantics in a sentence

Graph-Types:

❑ Dependency-based

❑ Span-based

Applications:

✓ Question Answering

✓ Machine Translation

✓ Natural Language Inference (NLI)

✓ …

Motivation
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Syntactic Knowledge for SRL

Open Questions:

▪ Is Syntax beneficial for SRL?

▪ How can one efficiently encode it?

Previous Work:

▪ Use separate graph encoder (e.g. GNN)

▪ Hard coding of attention heads in Transformer

▪ Joint Training of Syntax and Semantic

Motivation
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▪ Integrate the graph relations into the self-
attention mechanism

▪ Soft bias (the model can still learn other 
structures)

▪ Efficient as it adds linear complexity to the 
computation

❖ In this work, we use syntactic dependency 
graph

Syntax-Aware Graph-to-Graph 
Transformer (SynG2G-Tr)
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To input a graph, we modify equations of original Transformer:

𝑧𝑖 =෍

𝑗

𝛼𝑖𝑗(𝑥𝑗𝑊
𝑣)

𝑒𝑖𝑗 =
1

𝑑
[ 𝑥𝑖𝑊

𝑄 𝑥𝑗𝑊
𝐾 𝑇

+ 𝑥𝑖𝑊
𝑄 𝑟𝑖𝑗𝑊

𝑅 𝑇
+ 𝑟𝑖𝑗𝑊

𝑅 𝑥𝑗𝑊
𝐾 𝑇

]

𝑟𝑖𝑗 is the relation between token 𝑥𝑖 and 𝑥𝑗

Attention Mechanism
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Span-based SRL

Evaluation data: CoNLL 2005 benchmark

Without BERT:

➢ SynG2G-Tr outperforms Strubell et al. (2018)

➢ Benefit of soft bias instead of hard-coding

With BERT:

➢ Outperforms by 5.4%/8.8% F1 relative error 
reduction (RER) on average in both in-domain 
and out-of-domain settings

➢ Compatibility with BERT initialisation
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Dependency-based SRL

Evaluation data: CoNLL 2009 benchmark

Without BERT:

▪ Outperforms previous work in both in-domain and out-of-domain 

settings

With BERT:

▪ Significantly outperforms previous work in end-to-end 

setting with 3.2%/10.4% F1 RER in both in-domain and 

out-of-domain

▪ Has competitive performance in given-predicate setting

▪ Outperforms Fei et al. (2021), which shows the benefit of 

SynG2G-Tr compared to GNN
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▪ Propose SynG2G-Tr model for encoding the dependency parsing 
graph in the SRL task

▪ Evaluated our model on CoNLL 2005 and CoNLL 2009 datasets 
and outperform previous comparable models in most cases of both 
in-domain and out-of-domain sets
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Outline

Syntactic Structure

Syntactic Dependency Parsing

Transition-based Neural Network Parsing

Graph-based Neural Network Parsing

Iterative-Refinement Neural Network Parsing



Transactions of ACL 2021

Authors:

Alireza Mohammadshahi

James Henderson
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Recursive Non-

Autoregressive Graph-

to-Graph Transformer 

for Dependency 

Parsing with Iterative 

Refinement
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Need an architecture to find the graph structure:

Autoregressive

Model types 

Non-Autoregressive

Non-Autoregressive Structure Prediction:

Predict all edges of the graph in parallel

Problem: Not considering between-edge information!

Motivation
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We propose Recursive Non-Autoregressive Graph-to-Graph 
Transformer (RNGTr) architecture:

▪ Refines arbitrary graphs in an iterative non-autoregressive 
manner with conditioning on the complete graph.

▪ Defines a general Transformer-based encoder to input both 
sequences and graphs.

▪ Evaluated on dependency parsing and achieved SOTA on UD and 
Penn Treebanks.

Our Proposal
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▪ Start with an initial parser (𝐺0)

▪ Refinement mechanism:

𝑍𝑡 = 𝐸𝑅𝑁𝐺 𝑊,𝑃, 𝐺𝑡−1

𝐺𝑡 = 𝐷𝑅𝑁𝐺 𝑍𝑡

▪ 𝑡 = 1,… , 𝑇

▪ 𝐺𝑇 is the final graph

RNGTr Model
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To input a graph, we modify equations of original Transformer:

𝑧𝑖 =෍

𝑗

𝛼𝑖𝑗(𝑥𝑗𝑊
𝑣 + 𝑟𝑖𝑗𝑊𝐿

2)

𝑒𝑖𝑗 =
(𝑥𝑖𝑊

𝑄)(𝑥𝑗𝑊
𝑘 + 𝐿𝑁(𝑟𝑖𝑗𝑊𝐿

1))

𝑑

𝑟𝑖𝑗 is the relation between token 𝑥𝑖 and 𝑥𝑗

Attention Mechanism
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For labelled dependency graph:

𝑖 →𝑙 𝑗
𝑡
: ቐ

𝑟𝑖𝑗
𝑡 = 𝑖𝑛𝑑𝑙

𝑟𝑗𝑖
𝑡 = 𝑖𝑛𝑑𝑙 + |𝐿|

Attention Mechanism
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▪ Syntactic Transformer:

• RNGTr model without the graph input

𝑍0 = 𝐸𝑅𝑁𝐺 𝑊,𝑃

𝐺0 = 𝐷𝑅𝑁𝐺 𝑍0

▪ For UD Treebanks: UDify

▪ For Penn Treebank: Biaffine parser

▪ Empty parser

Initial Parsers
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▪ Integration with UDify

▪ Integration with SynTr

▪ Empty Parser

UD Treebanks
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▪ Integration with Biaffine

▪ Integration with SynTr

Penn Treebank
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▪ We proposed a general structure refinement model, based on 
Transformer architecture.

▪ We evaluated the model on the dependency parsing task.

▪ We achieved state-of-the-art results on UD and Penn Treebanks.

Conclusion
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Summary of Neural Network Syntactic Parsing

▶ Deep NNs are very good at encoding the context of a
parsing decision

▶ Deep NNs are very good at scoring dependency relations
▶ Iterative refinement with Graph2Graph Transformer

improves accuracy on complex graphs



Summary of Graph Processing in Transformers

Transformers are latent graph processing models
(not only sequence-to-sequence models)
▶ self-attention does latent graph processing
▶ observed graph relations can be output with attention-like

functions
▶ observed graph relations can be input as features in the

attention function
▶ predicted graphs relations can be iteratively predicted and

encoded
G2G Transformers can jointly encode latent, observed and
predicted graphs in one set-of-vectors embedding
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