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1. Two views of linguistic structure: Constituency = phrase
structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents

0

Starting unit: words j%u,
5

the, cat, cuddly, by, door _H44./l

Ik N Ady P A7 oy

Words combine into phrases
e the cuddly cat] [t:y&he doorjjmg W
pra

Phrases can combine into bigger phrases
the cuddly cat by the door
o W — _M__
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Two views of linguistic structure: Constituency = phrase structure I
grammar = context-free grammars (CFGs)

redmm g Lorieen,
Phrase structure organizes words into nested constituents. } NS Oiﬁ
N S ed
(= _ 7 4
the cat N?%ﬂ@% MT\) gﬂ i{@“’\ﬂ/
a dog PP P N P f 3
. 0w
large in a crate VP Vv Py )
barking on the table W VP /3 Jm}k
._9
cuddly tyt\hidﬁgr 5 Wﬁ‘”<€j\
J " large barking

talk to ho o WG”\’LJ Johind tho Atj

I walked behind
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Two views of linguistic structure: Dependency structure

¢ Dependency structure shows which words depend on (modify, attach to, or are

arguments of) which other words. N /m

Lok, The KmT@“

“w v
Look in the large crate in the kitchen by the door
P ~

I 7 Slide from Christopher Manning



Why do we need sentence structure?

Humans communicate complex ideas by composing words together
into bigger units to convey complex meanings

Listeners need to work out what modifies [attaches to] what

A model needs to understand sentence structure in order to be
able to interpret language correctly

I ° Slide from Christopher Manning



Prepositional phrase attachment ambiguity

San Jose cops kill
EE a Sign in

>

Home @ Video @ World US&Canada UK Business = Tech  Science

Science & Environment

Scientists count whales from space

By Jonathan Amos
BBC Science Correspondent

Slide from Christopher Manning
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Prepositional phrase attachment ambiguity

g

Scientists count whales from space

Scientists count whales from space
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PP attachment ambiguities multiply o

¢ A key parsing decision istiow we ‘attach’ vari

* PPs, adverbial orparticipial phrases, iifinitives, coordinations,

A
oA NfMa
The board approvedO[it§ acquisition] [by Royal Trustco Ltd.] NT\@A

Y Aot Ll iy

fof Toronto
[for $27 a share]
-

[at its monthly meeting].
-
Catalan numbers: C, = 2n)!/[(n+1)!n!]
An exponentially growing series, which arises in many tree-like contexts:
« E.g., the number of possible triangulations of a polygon with n+2 sides
Slide from ChristophelTMQﬁnL/ﬁd" triangulation of probabilistic graphical models (CS228)....



Coordination scope ambiguity

e

N

K;Shuttle veterar;Sand longtime NASA executive Fred Gregory|appointed to board
bt

WO”l

[Shuttle veteran and longtime NASA executive\Fred Gregory appointed to board

Slide from Christopher Manning
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Coordination scope ambiguity
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Dependency paths help extract semantic interpretation —
simple practical example: extracting protein-protein interaction

demonstrated
ns‘u,V ccomp
results mark _interacts nmod:with
det that ) advmod SasA
The nsubj case‘z/\ conj:and

KaiC rythmically yith KaiA and KaiB
conj:and cc

a C nsubj |nteracts nmod:with Q\Sasy .
@g(-nsubj m;&azcﬁts nmod:with =» SasA conj: and%ﬁg‘
KaiC €nsubj interacts nmod with =» SasA conj:and=®» KaiB’

[Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]
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2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted
Bills were Brownback
ports
by Senator Republican
on and immigration 1
Kansas
of

Slide from Christopher Manning



Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted
The arrows are .
nsuly:@/ aux obl
commonly typed — — —
with the name of ntolllS were Brownback
grammahcal ' ports case far N2PPOS
relations (subject, 0 senator Reoubls
ers . case con enator epu ican
prepositional object, cc 4 Y P
apposition, etc.) on and immigration nmod 1
Kansas
casel
of

Slide from Christopher Manning



Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

An arrow connects a head
(governor, superior,
regent) with a dependent
(modifier, inferior,
subordinate)

Usually, dependencies

form a tree (a connected,
. . T~

gclcﬂc, single-root graph)

=,

Slide from Christopher Manning
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Cv\//j\z“ “\y CAT/ \[
(submitteds
nsubj:pas | aux obl
\/7 E_lls were Brownback
nmod|
ports case flat aprpos
case,” Jcc conj by Senator Republican
on and immigration ””’Odl
Kansas
casel
of



Panini’s grammar (c. 5th century BCE)

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg
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Dependency Grammar/Parsing History

The idea of dependency structure goes back a long way

e To Panini’s grammar (c. 5th century BCE)

¢ Basic approach of 1st millennium Arabic grammarians
Constituency/context-free grammar is a new-fangled invention

e 20th century invention (R.S. Wells, 1947; then Chomsky 1953, etc.)
Modern dependency work is often sourced to Lucien Tesniere (1959)

* Was dominant approach in “East” in 20t Century (Russia, China, ...)
¢ Good for free-er word order, inflected languages like Russian (or Latin!)

Used in some of the earliest parsers in NLP, even in the US:

* David Hays, one of the founders of U.S. computational linguistics, built early (first?)
dependency parser (Hays 1962) and published on dependency grammar in Language

Slide from Christopher Manning



Dependency Grammar and Dependency Structure

//Ar\m

"~ ROOT Discussion of the outstanding issues was completed .
—_— ——

e Some people draw the arrows one way; some the other way!
e Tesniere had them point from head to dependent — we follow that convention
e We usually add a fake ROOT so every word is a dependent of precisely 1 other node

I # Slide from Christopher Manning



The rise of annotated data & Universal Dependenaes treebanks

e

Brown corpus (1967; PoS tagged 1979); Lancaster-IBM Treebank (starting late 1980s);
Marcus et al. 1993, The Penn Treebank, Computational Linguistics;
Universal Dependencies: http://universaldependencies.org/

—

[context] [conllu]

thmk M|ramar was a famuus goa

[context] [conllu]

-’/ [DETY " \?""’“""’“‘ “""""‘m\’*

77 Why is the called Miramar 2

[context] [conllu]

‘;“M’”" -"““ nm—‘“lim\—

84, Do you think there koreans in Miramar 2

Slide from Christopher Manning



The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than writing a grammar
(by hand)

But a treebank gives us many things
o Reusablllty of the labor

U Many parsers, part-of-speech taggers, etc. can be built on it
 Valuable resource for linguistics

[ o Broad coverage not just a few intuitions
\ . reguenues and dlstrlbutlonal |nf0rmat|on
* A way to evaluate NLP systems )

Slide from Christopher Manning



Dependency Conditioning Preferences

What are the sources of information for dependency parsing?

1.
2
3. :
4. Valency of hééds How many dependents on which side are usual for

Bilexical affinities The dependency [discussion = issues] is plausible
Dependency distance Most dependencies are between nearby words

Intervenin g material Dependencies rarely span intervening verbs or punctuat

= ,
df
%MM?PJ

wly

/A AV A

ROOT Discussion of the outstanding issues was completed .
=2 b= ettty
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Dependency Parsing

e A sentence is parsed by choosing for each word what other word (including ROOT) it is
a dependent of

¢ Usually some constraints:

(e Only one word is a dependent of ROOT
%\- Don’t want cyclesA - B,B > A
'/,Ihis makes the dependencies a tree

'\\ Final issue is whether arrows can cross (be non-projective) or not

AN

ROOT Il give l a talk tomorrow L on  neural networks

=5

AV S —
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Projectivity

* Definition of a projective parse: There are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words
¢ Dependencies corresponding to a CFG tree must be projective
¢ |.e., by forming dependencies by taking 1 child of each category as head
e Most syntactic structure is projective like this, but dependency theory normally does
allow non-projective structures to account for displaced constituents
* You can't easily get the semantics of certain constructions right without these

nonprojective dependencies
ﬂo"‘

) [V
Who did Bill buy the coffee from yesterday ?

Slide from Christopher Manning



3. Methods of Dependency Parsing

1. Dynamic programming
Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items
with heads at the ends rather than in the middle

2. Graph algorithms
You create a Minimum Spanning Tree for a sentence

McDonald et al.’s (2005) MSTParser scores dependencies independently using an ML
classifier (he uses MIRA, for online learning, but it can be something else)

Neural graph-based parser: Dozat and Manning (2017) et seq. — very successful!
3. Constraint Satisfaction

Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.
4. “Transition-based parsing” or “deterministic dependency parsing”

Greedy choice of attachments guided by good machine learning classifiers

E.g., MaltParser (Nivre et al. 2008). Has proven highly effective.

Slide from Christopher Manning



Summary of Syntactic Structure

» Syntactic structure is a fundamental property of all natural
languages

» Syntax is an interface between the meanings of words and
the meaning of text

» Two modern traditions for syntactic structure:

» Constituency structure:

group words into phrases, recursively
» Dependency structure:

link words by their roles, in a tree



Outline

Syntactic Dependency Parsing



Greedy transition-based parsing [Nivre 2003]

¢ Asimple form of greedy discriminative dependency parser
e The parser does a sequence of bottom-up actions
¢ Roughly like “shift” or “reduce” in a shift-reduce parser, but the “reduce” actions are
specialized to create dependencies with head on left or right
e The parser has:
e astack o, written with top to the right
¢ which starts with the ROOT symbol
e a buffer B, written with top to the left
¢ which starts with the input sentence
* aset of dependency arcs A
¢ which starts off empty
* aset of actions

Slide from Christopher Manning



Basic transition-based dependency parser

| Start: 0= [ROOT], B=wy, ..., w,, A= 0

| 1. Shift g, w|[5 ADolw,B, A

\%z Left-Arc, o|»\@,| . B, A o|w, B, AU{r( w)}
3. Right- Arc 0|w |texy, B,A=>o|w,B, AU{r(w,,w)}
Finish:o=[w],B=0 /) T

NS \;«] 7M\

I 32 Slide from Christopher Manning



Arc-standard transition-based parser
(there are other transition schemes ...)
Analysis of “I ate fish”

Start
\QWJ] I ate | fish |
Shift
[root] |1

‘ate | fish |

J

shift
[root] | late

\

fish

)

I 3 Slide from Christopher Manning

Start: o =[ROOT], B =wy, ..., w,, A=@

1. Shift o, w;|B, A c|w,B, A
2. Left-Arc,  o|w;|w;, B, A=

o|w;, B, AU{r(w;,w,)}
i Right-Arc, o|w;|w;, B,A>

o|w;, B, AU{r(w;w;)}
Finish:0=[w],B=0



Arc-standard transition-based parser
Analysis of “I ate fish”

Left Arc

e ——— T ) A+=
[root] I \ﬁ\] m=p| [root] ' ate | nsubifate > 1)
Shift f” -

[root] @ ate :\l fish | mmp| [root] | ate fish \]
nght Arc

( i N A+=
\ [root]  ate | fISh ﬂﬂ [root] ate ,\] obilate > fish)
Ri h'g
[root] | ate

. ) A+=
- ‘ [I"OOt] \ root([root] 9ate)
— F|n|sh I

Slide from Christopher Manning



MaltParser [Nivre and Hall 2005]

e We have left to explain how we choose the next action ¥
¢ Answer: Stand back, | know machine learning!

e Each action is predicted by a discriminative classifier (e.g., softmax classifier) over each
legal move

e Max of 3 untyped choices; max of |R| X 2+ 1 when typed
e Features: top of stack word, POS; first in buffer word, POS; etc.
e There is NO search (in the simplest form)
e But you can profitably do a beam search if you wish (slower but better): You keep k
good parse prefixes at each time step
e The model’s accuracy is fractionally below the state of the art in dependency parsing,
but
e |t provides very fast linear time parsing, with high accuracy — great for parsing the web

Slide from Christopher Manning



Conventional Feature Representation

Stack Buffer

binary, spars
binary, sparse o pp A PP B b LD P D]

—_—

Feature templates: usually a combination of 1-3
elements from the configuration

: slw—ggd/\slt—JJ :
;sQw has A s2.t = VBZ A sl.w = good :
le(s2).t= PRP A sy.t = VBZ A sy £ = 1] '

Indicator featureé

lc(32) w=HeA lc(sz) l= nsub_] A sg.w = has :

Slide from Christopher Manning



Evaluation of Dependency Parsing: (labeled) dependency accuracy

Acc = # correct deps :

\ - /‘—\ \ #}gfqdeps ) P)

ROOT Sh he video | BT U0 T e
e saw the video lecture l—AS - 2/5 = 40%

o 1 2 3 4 5
Parsed
& nsubj <11 _2 She nsubj
2 0 root /12 0) saw root
| 1375 the det 3 4 the det
| |4 5 video nn 4 5 video nsubj
‘ 5 2 lecture obj 5 2 lecture ccomp

I v Slide from Christopher Manning



Handling non-projectivity

e The arc-standard algorithm we presented only builds projective dependency trees
e Possible directions to head:
1. Just declare defeat on nonprojective arcs ¥
2. Use dependency formalism which only has projective representations
¢ A CFG only allows projective structures; you promote head of projectivity violations

3. Use a postprocessor to a projective dependency parsing algorithm to identify and
resolve nonprojective links

4. Add extra transitions that can model at least most non-projective structures (e.g.,
add an extra SWAP transition, cf. bubble sort)

5. Move to a parsing mechanism that does not use or require any constraints on
projectivity (e.g., the graph-based MSTParser or Dozat and Manning (2017))
6. Add dependency edges which projectivise local nonprojective structures

3g  Slide from Christopher Manning, except 6.



Graph-based dependency parsers

e Compute a score for every possible dependency for each word

 Doing this well requires good “contextual” representations of each word token,
which we will develop in coming lectures

* And repeat the same process for each other word

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

Slide from Christopher Manning



Graph-based dependency parsers

» Given O(n?) scores score(i, j|x) (for first-order algorithms),
find:

argmax Z score(f, ¥i|x)
yev(x)

» where Y(x) is the set of trees over x
» using an algorithm like Minimum Spanning Tree (O(n®))



Summary of Syntactic Dependency Parsing

» Syntactic parsing is a benchmark task for ML models of
structured prediction

» Dependency parsing finds the syntactic dependencies for
a sentence
» Two ways to decompose the score of a parse:
» Graph-based:
estimate scores independently, then choose the optimal
combination with dynamic programming (MST)
> Transition-based:
estimate scores conditioned on history, and search greedily
(or with beam search)
» Transition-based parsing tends to be faster, but
graph-based is more accurate



Outline

Transition-based Neural Network Parsing



Sequence-to-Sequence Parsing (vinyals et al. NIPS 2015)

S

I
John has a dog . — NP /VP\ .

I ~ ™~
NNP VBZ NP
~ ™~
DT NN

John has a dog . — (S (NP NNP )xp (VP VBZ (NP DT NN )xp )vp - )s

» Parses can be represented as bracketed sequences
» Neural networks can generate sequences
» Why not do parsing like machine translation?



Sequence-to-Sequence Parsing (vinyals et al. NIPS 2015)

. )s END
e — U
T T T
T T T
T T T T T T 0 T T
Go END (S (VP XX WP : )s

» Use a 2015-SoA neural machine traslation system

» stacked LSTM encoder, stacked LSTM decoder with
attention to encoder

» Train it to generate valid bracketed sequences



Sequence-to-Sequence Parsing (vinyals et al. NIPS 2015)

Parser Training Set WSJ 22 | WSJ23
baseline LSTM+D WSJ only <70 <70
LSTM+A+D ‘WSJ only 88.7 88.3
LSTM+A+D ensemble ‘WSJ only 90.7 90.5
baseline LSTM BerkeleyParser corpus 91.0 90.5
LSTM+A high-confidence corpus 92.8 92.1
Petrov et al. (2006) [12] WSJ only 91.1 90.4
Zhu et al. (2013) [13] WSJ only N/A 90.4
Petrov et al. (2010) ensemble [14] ‘WSJ only 92.5 91.8
Zhu et al. (2013) [13] semi-supervised N/A 913
Huang & Harper (2009) [15] semi-supervised N/A 913
McClosky et al. (2006) [16] semi-supervised 924 92.1

» Given a sentence, generate a bracketed string
» Convert the string into a parse tree
» Measure accuracy of the resulting parses

» (Optionally, constrain predictions to valid sequences at test
time)



Output-Dependent Model Structure

Sh LAy RA, Sh  RA, Sh Re Re

> Need a bias towards learning correlations which are
structurally local

» Structure is determined by the parser output

» = Model structure can be incrementally constructed based
on output structure



Neural Network Augmentations of Symbolic Models
(Henderson, NAACL 2003; Henderson and Titov, JMLR 2011)

» Recurrent neural networks (RNN)
» powerful probability estimators
» induced history representations
» inductive bias in model structure

» Symbolic models
» unbounded generalisation
» domain-appropriate structural locality bias
» efficient decoding strategies



Neural Network Augmentations of Symbolic Models
(Henderson, NAACL 2003; Henderson and Titov, JMLR 2011)

» Recurrent neural networks (RNN)
» powerful probability estimators
» induced history representations
» inductive bias in model structure

» Symbolic models
» unbounded generalisation
» domain-appropriate structural locality bias
» efficient decoding strategies

» Incremental Neural Networks (INN) (a.k.a. SSN, ISBN)
» RNN estimates derivation decision probabilities
> with incrementally-specified model structure
> and efficient beam search decoding
This is the ground breaking work on integrating decoding and
structured prediction with neural networks.



Syntactic parsing with INNs

» Constituency parser with left-corner derivations
(Henderson, NAACL 2003)

» Dependency parser with arc-eager derivations
(Titov and Henderson, IWPT 2007)

» Faster beam search with discriminative training
(Yazdani and Henderson, CoNLL 2015)

The worlds best parser in 2017 (from Google) was based on
the design from (Titov and Henderson, IWPT 2007).

/w\
ROOT subj adv
,/xruns/—\

Mary often



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

ROOT NNP/Mary VBZ/runs
o

Sh



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

subj
N
ROOT NNP/Mary VBZ/runs

Sh LAy,



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

subj
ROOT mZ/runs

®  NNP/Mary

S=S



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

/\rooi
subj
ROOT mZ/runs RB/often

®  NNP/Mary




INN dependency parsing example
(Titov and Henderson, IWPT 2007)

N adv
subj R
ROOT .~ VBZ/uns RBJoften

NNP/Mary ®

Sh o LAypj RAge Sh RAy,



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

N adv
subj R
ROOT ,~ VBZ/uns RBJoften

NNP/Mary ®

Sh LAy RAgy Sh RAy, Sh



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

/\rooi adv
subj RN
ROOT ~ VBZiuns RBJoften

NNP/Mary ®

Sh LAy RA,, Sh RA,, Sh  Re



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

/\mm\
ROOT /ﬁm&g\

NNP/Mary RB/often

Sh LAy RA,, Sh RA, Sh  Re Re



INN dependency parsing example
(Titov and Henderson, IWPT 2007)

/w\
ROOT subj adv
o y VBZiums

NNP/Mary RB/often

1

Sh LAy RA,, Sh RA, Sh  Re Re

end




Discriminative modelling of beam search
(Yazdani and Henderson, CoNLL 2015)

Replace the word predictions of the generative model with a
Correctness Probability output

» Trained discriminatively to distinguish between correct
and incorrect parse prefixes

» Allows beam search with pruning just at Shift actions



Discriminative modelling of beam search
(Yazdani and Henderson, CoNLL 2015)

Replace the word predictions of the generative model with a
Correctness Probability output

» Trained discriminatively to distinguish between correct
and incorrect parse prefixes
» Allows beam search with pruning just at Shift actions
Better feature parametrisation:

» Low-frequency word-role pair features are factorised into
word vectors multiplied by role matrices



Results on English
better than (Yazdani and Henderson, CoNLL 2015)

CoNLL 2009 English syntactic dependencies:

Model LAA | wrd/sec
MALT s 86.0 | 7549
Chen&Manning 86.5 | 9589
MST 871 290
Generative INN, beam 1 77.8 | 1122

Generative INN, beam 10 87.7 107
Generative INN, large beam | 88.7 NA

DINN, beam 1 89.0| 4890
DINN, beam 10 89.8 544

» Discriminative parser with a beam of 1 is 50 times faster
than the generative model with beam 10, with higher
accuracy.



Multilingual Results

Diverse CoNLL 2009 languages, syntactic dependencies:

Model German | Spanish | Czech
Chen&Manning 81.9 81.5 58.5
MALT 80.7 82.4 67.3
MST 84.1 82.7 73.4
DINN 86.0 85.4 77.5

» Better at generalising to new languages without feature
engineering.



Stack-LSTM Dependency Parser

“Transition-Based Dependency Parsing with Stack Long
Short-Term Memory”, Dyer, Ballesteros, Ling, Matthews and
Smith. ACL 2015.
» Model structure is defined in terms of the parser’s data
structures
» General mechanism for applying LSTMs to stack data
structures



Transformer Transition-Based Dependency Parsing

(
[ Update Parser State J Transition Classifier

L

Graph input

Previous Action

“Graph-to-Graph Transformer for Dependency Parsing”,
Mohammadshahi and Henderson, 2020

» Transformer computes token embeddings for parser state
» Additional inputs to reflect parser state and history
» Parser actions predicted from relevant tokens (top of stack)



=L Agenda

m PhD Oral Exam

= Motivation

= Graph-to-Graph Transformer
 Transition-based Dependency Parsing
» Graph-based Iterative Refinement
» Semantic Role Labelling
= Compression of Massively Multilingual Models
« Impacts on different biases
« Distillation of these models for low-resource languages

= Conclusion and Future Directions

Slide from Alireza Mohammadshahi
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=PFL

Graph-to-Graph Findings of EMNLP 2020
Transformer for

Transition-based Authors:

Dependency ParSing Alireza Mohammadshabhi

A James Henderson

Slide from Alireza Mohammadshahi



=PFL

m PhD Oral Exam

Previous Work

= Add a Graph Encoder on top of sequence encoder (i et al,2019)

il Sequence Encoder Graph Encoder -

= Add a hard bias toward graph structure (strubel et al,2018)
= Recursively use neural networks (oyer et al,2015)

Slide from Alireza Mohammadshahi
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EPFL

Graph-to-Graph Transformer

Input Sequence G2G Transformer

Graph Sequence

W PhD Oral Exam

Slide from Alireza Mohammadshahi

Decoder

Alireza Mohammadshahi



=PFL

m PhD Oral Exam

Graph-to-Graph Transformer

< Input arbitrary graph in addition to input sequence
< Output a graph for the downstream task

< Combines both sequence encoder and graph encoder into one general
encoder

< Add a soft bias toward attention heads (no hard coding)

Slide from Alireza Mohammadshahi

B
B

Alireza Mohammadshahi



EPFL
Graph-to-Graph Transformer
Output
Probabilities
Compute output representations of
input sequence by stack of multi-head
self-attention layers
Each Layer:
< Multi-head attention layer
< Feed-forward position-wise NN
P Erining O ¢
Input Output
Embedding Embedding
g Inputs. Outputs
o (shifted right)
g Photo by Vaswani et al, 2017

Slide from Alireza Mohammadshahi
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=PFL

Graph-to-Graph Transformer

We have input sequence X, Transformer
finds Output representation Z:

Zi = Z aij(ij”)

J

Attention weights are calculated as:

@y = =7 e
Y Erexp(en) N Vd

m PhD Oral Exam

Slide from Alireza Mohammadshahi

exp(e;;) _ ;W) (x; W)

Output
Probabilties

Positional ®_( Positional
Encoding 9'@ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Photo by Vaswani et al, 2017

Alireza Mohammadshahi
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m PhD Oral Exam

Graph-to-Graph Transformer

To input a graph, we modify equations of original Transformer:

z; = Z a;; (WPl pi Wi
J
_ aW (W !+pijWL1) I
T Vi

p;j is the relation between token x; and x;

Slide from Alireza Mohammadshahi
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m PhD Oral Exam

Graph-to-Graph Transformer

= Matrix P can be any input graph

= Soft Bias. Each attention head can easily learn to attend only to
positions in a given relation, but it can also learn other structures in
combination with other input

= Output value representation can have both token-level and graph-
level information

= Can be applied to any NLP tasks which require to input a graph or
produce a graph over the same nodes

Slide from Alireza Mohammadshahi
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=PFL

m PhD Oral Exam

Dependency Parsing

= Extracting a dependency parse of a sentence that represents its
grammatical structure

= Defines the relationships between “head” words and words, which
modify those heads.

@ (omod)

I prefer the morning flight through Denver

Slide from Alireza Mohammadshahi
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EPFL

W PhD Oral Exam

Transition-based Models

= Iteratively build the dependency graph by predicting a new
transition at each step

= Transition classifier predicts the new action based on parser state

Sentence Encoder

Parser State .I Classifier

Slide from Alireza Mohammadshahi
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W PhD Oral Exam

Baselines + G2G-Tr

StateTr+G2G-Tr

Prev. action ] [ Graph Input(G)

Graph Output Mechanism
AA A
=l |
S .S S S s B B B .. s D DD ..

0
Model
S m g )
i
er=U_J [ I - | =
as

v S S Sy s By By By .. se Dy Dy Dy .

Composition Model

[
[ Input Embeddings

S

| Updte s |22

Slide from Alireza Mohammadshahi

SentTr+G2G-Tr

Input Sentence: W1,W2,W3,...
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Baselines + G2G-Tr

History Model Composition Model

det

compound

ht, ¢t = LSTM((R!™L, 1), at 4 1)

at and [* are predicted action T y'w i
and dependency label. ;
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Results

We evaluated our model on:
= English WSJ Penn Treebank arcus et a,1993)

= 13 Languages of UD Treebanks ive etal.2018)

Slide from Alireza Mohammadshahi
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Results

= G2G-Tr integration
= BERT pre-training

= Graph output mechanism

= Replacement with composition model

= UD Benchmark

Slide from Alireza Mohammadshahi

Kulmizev et al| BERT BERT
Laneusee| ooy StateTr+G2GT: | SentTr+G2GTH
Arabic 81.9 82.63 83.65
Basque 779 74.03 83.88
Chinese 837 8591 87.49
English 87.8 89.21 90.35
Finnish 85.1 80.87 89.47
Hebrew 85.5 87.0 88.75
Hindi 89.5 93.13 93.12
Ttalian 92.0 926 93.99
Japanese 929 95.25 9551
Korean 83.7 80.13 87.09
Russian 915 9234 93.30
Swedish 87.6 88.36 90.40
Turkish 64.2 56.87 67.77
Average 84.87 84.48 88.06

DevSet  TestSet
UAS LAS UAS LAS
Transition-based:
Dyeretal. 2015) 93.10 90.90
Weiss etal. (2015) 9426 91.42
Cross and Huang (2016) 93.42 91.36
Ballesteros et al. (2016) 93.56 92.41
Andor etal. (2016) 9461 92.79
Kiperwasser and Goldberg (2016) 93.90 91.90
Yang etal. 2017) 94.18 92.26
Seq2Seq-based:
Zhang etal. (2017) 93.71 91.60
Lictal. 2018) 9411 92.08
tateTr 9194 8907 9232 §9.69
StateTr+G2GTr 9253 90.16 93.07 9108
BERT StateTr 9466 9194 95.18 92.73
BERT StateCLSTr 9362 9095 9431 9185
BERT StateTr+G2GTr 9496 92.88 9558 93.74
BERT StateTr+G2CLSTr  94.29 92.13 9483 92.96
BERT StateTr+G2GTr+C 9441 92.25 94.89 92.93
BERT SentTr 9537 9329 9565 9385
BERT SentTr+G2GTr 95.66 93.60 96.06 94.26
BERT SentTr+G2GTr-7 layer95.78 9374 96.11 94.33

Alireza Mohammadshahi
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Conclusion

= Propose Graph-to-Graph Transformer Architecture

= Applied to transition-based dependency parsing

= Compatible with BERT pre-training

= Qutperforms previous work in the transition-based parsing

Slide from Alireza Mohammadshahi
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Outline

Graph-based Neural Network Parsing



A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]

* This paper revived interest in graph-based dependency parsing in a neural world
* Designed a biaffine scoring model for neural dependency parsing
¢ Also crucially uses a neural sequence model, something we discuss next week

¢ Really great results!

¢ But slower than the simple neural transition-based parsers
 There are n? possible dependencies in a sentence of length n

[Method _______UAs ]S (PTBWSJSD33

~7~  Chen & Manning 2014  92.0 89.7
G Weiss etal. 2015 93.99 92.05
G Andoretal. 2016 94.61 92.79

~7>~ Dozat & Manning 2017  95.74 94.08

Slide from Christopher Manning



LSTM-based Dependency Score Estimation

“Graph-based Dependency Parsing with Bidirectional LSTM”,
Wang and Chang. ACL 2016.

» Deep NN model computes context-dependent token
embeddings

» Scores estimated from the token embedding pairs
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Syntax-Aware Graph-
to-Graph Transformer
for Semantic Role
Labelling

o

Tl
E S

Slide from Alireza Mohammadshahi

Rep4NLP atACL 2023

Authors:
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Motivation
Semantic Role Labelling (SRL)

= Provides a shallow representation of the
semantics in a sentence

Graph-Types:

0 Dependency-based
Q Span-based

Applications:

v Question Answering

v Machine Translation

v Natural Language Inference (NLI)
Vo

Slide from Alireza Mohammadshahi

Decoder |
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‘Span-based SRL
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Motivation
Syntactic Knowledge for SRL

‘? Open Questions:

= Is Syntax beneficial for SRL?
= How can one efficiently encode it?

Previous Work:
= Use separate graph encoder (e.g. GNN)
= Hard coding of attention heads in Transformer

= Joint Training of Syntax and Semantic

Slide from Alireza Mohammadshahi
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Syntax-Aware Graph-to-Graph
Transformer (SynG2G-Tr)

= Integrate the graph relations into the self-
attention mechanism

= Soft bias (the model can still learn other
structures)

= Efficient as it adds linear complexity to the
computation

< In this work, we use syntactic dependency
graph

Slide from Alireza Mohammadshahi

Ms Haag plays Ellanti

SynG2G Transformer
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Attention Mechanism

To input a graph, we modify equations of original Transformer:

Zj Zaij(ij")

[(x,-WQ)(ijK)T XiWQ(TijWR)T +TijWR(XjWK)T]]

L
- Vd

el-j

735 is the relation between token x; and x;

Slide from Alireza Mohammadshahi
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Results

Span-based SRL
Evaluation data: CoNLL 2005 benchmark

Without BERT:
> SynG2G-Tr outperforms strubell et al. (2018)
> Benefit of soft bias instead of hard-coding

With BERT:

> Outperforms by 5.4%/8.8% F1 relative error
reduction (RER) on average in both in-domain
and out-of-domain settings

> Compatibility with BERT initialisation

Slide from Alireza Mohammadshahi

-

‘WSJ (in-domain) Brown (out-of-domain)
Model SA P R H P R FI
end-to-end
Heetal. (2017) X 850 843 846 749 724 736
He etal. (2018a) X 812 839 85 97 719 708
Strubell et al. (2018) v/ 8553 8445 8499 758 7354 7466
Lietal. 2019) X - - 80 - - -
Xia etal. (2019) v/ %43 838 841 737 720 729
Xia et al. (2020) V8305 8449 8449 7347 7492 7419
SynG2G-Tr (wio BERT) /8448 8646 8545 7392 7665 7526
+pre-training
He etal. (2018a) X 848 872 860 739 784 761
Strubelletal. 018)f v/ 87.13 8667 869 7902 7749 7825
Lietal. 2019) X 852 875 863 747 781 764
SynG2G-Tr v/ 8686 883 8757 5001 8107 8053
given predicate
Tan etal. (2017) X 845 852 848 735 746 741
He etal. (2018a) x - - 89 - - B
Swubelletal. 018)f /8602 8605 8604 7665 7644 7654
Ouchi et al. (2018) X 847 823 85 760 704 731
Xia et al. (2020) v/ 8512 850 8506 763 7542 7536
SynG2G-Tr (wio BERT) /8646 8656 8650 7773 77.18 7745

[ +pre-training

He etal. (2018a) x - - - - 804
Ouchi et al. (2018) X 882 870 799 715 787
Lietal. 2019) X 819 815 806 804 805
Jindal et al. (2020) X 8170 8815 8152 8136 8144
Zhang et al. (2021) X 8870 88.00 8030 8010 8020
Jiaetal. (2022) x - - = - 8L
SynG2G-Tr v 8901 8874 8393 8250 8321

Alireza Mohammadshahi



EPFL

W PhD Oral Exam

Results

Dependency-based SRL
Evaluation data: CoNLL 2009 benchmark

Without BERT:

= Outperforms previous work in both in-domain and out-of-domain
settings

With BERT:

Significantly outperforms previous work in end-to-end
setting with 3.2%/10.4% F1 RER in both in-domain and
out-of-domain

Has competitive performance in given-predicate setting

Outperforms Fei et al. (2021), which shows the benefit of
SynG2G-Tr compared to GNN

Slide from Alireza Mohammadshahi

{

WSJ (in-domain)

Brown (out-of-domain)

Model sA
end-to-end

He etal. (2018b) Vo839 827 83 - - -
Caietal. 2018) X 847 852 850 - - 1S
Lietal. (2019) X - - 851 - - -
SynG2G-Tr (Wo BERT) v/ 8410 87.07 8559 7366 7256 7311
“pre-training

Lietal. (2019) X 845 861 853 746 T38 742
SynG2G-Tr v/ 8638 8978 88.05 8035 8357 8193
given predicate

Marcheggiani etal. 2017) X 887 8638 794 762 717
M&T(2017) v 891 868 85 159 712
He etal. (2018b) v 897 893 819 769 793
Caietal. 2018) X 899 892 798 783 790
Caiand Lapata 2019%) v/ 905 886 805 782 794
Kasai etal. (2019) /890 882 780 712 716
SynG2G-Tr (w/o BERT) /8978 9028 8132 8215 8173
“+pre-training

Lietal. (2019) X 896 912 904 817 814 8IS
Kasai etal. (2019) V903 90 92 810 805 808
Lyu etal. (2019) x - - 9099 - - 828
Chen etal. (2019) X 9074 9138 9106 8266 8278 8272
He etal. (2019) v 9041 9132 9086 8615 8670 8642
Caiand Lapata (20192)  / 9L1 904 907 821 813 816
Munir et al. (2021) v 912 906 909 831 826 828
SynG2G-Tr v/ 9131 9116 9123 8640 8647 8643
‘gold syntax

Fei et al. (2021) v/ 925 95 925 86 853 854
SynG2G-Tr+Gold v/ 9271 9337 9303 8827 8831 8829

Alireza Mohammadshahi
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Conclusion

= Propose SynG2G-Tr model for encoding the dependency parsing
graph in the SRL task

= Evaluated our model on CoNLL 2005 and CoNLL 2009 datasets
and outperform previous comparable models in most cases of both
in-domain and out-of-domain sets

m PhD Oral Exam
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Outline

lterative-Refinement Neural Network Parsing
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Recursive Non-
Autoregressive Graph-
to-Graph Transformer
for Dependency
Parsing with Iterative
Refinement

Slide from Alireza Mohammadshahi

Transactions of ACL 2021

Authors:

Alireza Mohammadshabhi
James Henderson
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Motivation
Need an architecture to find the graph structure:

Autoregressive
Model types -[

Non-Autoregressive
Non-Autoregressive Structure Prediction:

Predict all edges of the graph in parallel ?

Problem: Not considering between-edge information! S

Slide from Alireza Mohammadshahi
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Our Proposal

We propose Recursive Non-Autoregressive Graph-to-Graph
Transformer (RNGTTr) architecture:

= Refines arbitrary graphs in an iterative non-autoregressive
manner with conditioning on the complete graph.

= Defines a general Transformer-based encoder to input both
sequences and graphs.

= Evaluated on dependency parsing and achieved SOTA on UD and
Penn Treebanks.

m PhD Oral Exam
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RNGTr Model

= Start with an initial parser (G°)

= Refinement mechanism:

[Zt = ERNG(1y, P,Gt—l)]

[ Gt — DRNG(zt) ]
t=1,.5F

= GT is the final graph

m PhD Oral Exam
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Attention Mechanism

To input a graph, we modify equations of original Transformer:

Jj [ i
_ (xiWQ)(ijk + LN(TijWLl)

eij \/H

735 is the relation between token x; and x;

Slide from Alireza Mohammadshahi
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Attention Mechanism

For labelled dependency graph:

(€ =1)),

Slide from Alireza Mohammadshahi

;= ind,

= ind, + |L|

CLS| ROOT | How | ae | you | 2 [SEP]

Cls | o 0 0 0 0 0 0
ROOT| 0 0 0 10roct o oo
How | 0 0 0 |idsaumostl| 0 [ 0 [0
are | 0 oot idagumos 0 nguti[[Gpunct| 0
you | 0 0 0 el | 0 o |o
2 | o 0 0 ioneILl | 0 0 |0

SEP | 0 o 0 0 o o 0

!

Self-Attention Mechanism
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Initial Parsers

= Syntactic Transformer:
* RNGTr model without the graph input

z° = ERNG(w,P)
GO = DRNG(zO)

= For UD Treebanks: UDify
= For Penn Treebank: Biaffine parser
= Empty parser

Slide from Alireza Mohammadshahi
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UD Treebanks

= Integration with UDify
= Integration with SynTr

= Empty Parser

Slide from Alireza Mohammadshahi

g

B

Language Trin  Mono  Muli Muli Muli+Mono WMono ~ Mono Y Mono

SU98€  Gize (1] UDPipe | UDify UDfy+RNGTr | SynTr SynTr+RNGTr | Empty+RNGTr
Arabic 61K 818 8294 | 8288 85.93(+17.81%) 8623 86.31(+0.58%) 86.05
Basque 54K 798 8286 |80.97 87.55(+34.57%) 8749 88.2(+5.68%) 87.96
Chinese 4K 834 805 [8375 89.05(+32.62%) 89.53 90.48 (+9.08%) 89.82
English 125K 876 8697 885 0123 (+23.74%) 9141 9152 (+1.28%) 9123
Finnish 122K 839 8746 |82.03 9187 (+5476%) 91.80 9192 (+1.46%) 9178
Hebrew 52K 859  86.86 |88.11 90.80 (+22.62%) 91.07 91.32 (+2.79%) 90.56
Hindi 133K 908 9183 | 9146 93.94(+29.04%) 9395 94.21 (+4.3%) 93.97
Ialian 130K 917 9154 9360 9465 (+1521%) 95.08 9516 (+1.62%) 94.96
Japanese  T.IK 921 9373 |92.08 95.41(+42.06%) 95.66 95.71(+1.16%) 95.56
Korean 44K 842 8424 | 7426 89.12(+57.73%) 8929 $9.45(+1.5%) 89.1
Russian 488K 910 9232 |93.13 94.51(+20.09%) 94.60 94.47 (—2.4%) 9431
Swedish 43K 869 8661 |89.03 92.02(+27.26%) 92.03 9246 (+5.4%) 92.40
Turkish 37K 649 6756 | 6744 72.07 (+1422%)| 7252 73.08 (+2.04%) 71.99

Average 849 8581 \85.18 8986 A 9005 9033 B
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Penn Treebank

= Integration with Biaffine

= Integration with SynTr

Slide from Alireza Mohammadshahi

Model English (PTB) Chinese (CTB) German (CoNLL)
Type UAS LAS UAS LAS UAS LAS
Chen and Manning (2014) T 918 896 839
Dyeretal. (2015) T 931 909 872 - -
Ballesteros et al. (2016) T 9356 9142 87.65 8883 86.10
Cross and Huang (2016) T 9342 9136 8635 - -
Weiss et al. (2015) T 9426 9241 - - -
Andor et al. (2016) T 9461 9279 — — 9091 8915
Mohammadshahi and Henderson (2020) T 911 9433 — - - -
Ma etal. (2018) T 9587 9419 9059 8929 9365 9211
Femdndez-Gonzdlez and Gmez-Rodriguez (2019) T 9604 9443  — - - -
Kiperwasser and Goldberg (2016) G 9.0 910 866 8.1 - =
Wang and Chang (2016) G 9408 9182 8755 8623 - -
Cheng et al. (2016) G 9410 9149 881 857 - -
Kuncoro et al. (2016) G 9426 9206 8887 §7.30 9160 8924
Ma and Hovy (2017) G 9488 9298 89.05 8§7.74 9258  90.54
Jietal. 2019) G 9597 9431 — - - -
Tietal. (2020)+ELMo G 9637 9457 9051 8945 - =
affine (Dozat and Manning, G 9574 9408 89.30 9346 9144
affine +RNGTr G 9644 9471 9185 90.12 9468 9330
(ST T oo T o x 2 2
SynTr+RNGTr G 9666 9501 9298 9118 9528  94.02

Alireza Mohammadshahi
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Conclusion

= We proposed a general structure refinement model, based on
Transformer architecture.

= We evaluated the model on the dependency parsing task.

= We achieved state-of-the-art results on UD and Penn Treebanks.
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Summary of Neural Network Syntactic Parsing

» Deep NNs are very good at encoding the context of a
parsing decision
» Deep NNs are very good at scoring dependency relations

> lterative refinement with Graph2Graph Transformer
improves accuracy on complex graphs



Summary of Graph Processing in Transformers

Transformers are latent graph processing models
(not only sequence-to-sequence models)

» self-attention does latent graph processing

» observed graph relations can be output with attention-like
functions

> observed graph relations can be input as features in the
attention function

» predicted graphs relations can be iteratively predicted and
encoded

G2G Transformers can jointly encode latent, observed and
predicted graphs in one set-of-vectors embedding
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