EE-608: Deep Learning For Natural
Language Processing:
Pre-Training

James Henderson

EEEEEEEEEEEEEEE

Idiap Research Institute

DLNLP, Lecture 5



Outline

Pretraining

Pretraining Transformers



Outline

Pretraining



Overview of Pretraining Models

We saw with word embeddings that the distributions in large
text corpora have a lot of information about the meaning of text.
Can we also exploit this information in contextualised word
representations for transfer to a new task?

» BERT:
» Transformer trained on predicting masked words
» Fine-tuned to perform a new task

> T5:

» Transformer encoder-decoder trained on masked span
prediction

» Fine-tuned to perform several tasks
> GPT (2,3):

» Transformer trained as a left-to-right language model
» Mined for information implicit in the language model



BERT: Devlin, Chang, Lee, Toutanova (2018)

58

Slide from Christopher Manning



Peters et al. (2018): ELMo: Embeddings from Language
Models

Deep contextualized word representations. NAACL 2018.
https://arxiv.org/abs/1802.05365
e Breakout version of word token vectors or
contextual word vectors
e Learn word token vectors using long contexts not context
windows (here, whole sentence, could be longer)

e Learn a deep Bi-NLM and use all its layers in prediction

0
Slide from Christopher Manning



Peters et al. (2018): ELMo: Embeddings from Language
Models
e Train a bidirectional LM
e Aim at performant but not overly large LM:
* Use 2 biLSTM layers

* Use character CNN to build initial word representation (only)
* 2048 char n-gram filters and 2 highway layers, 512 dim projection

User 4096 dim hidden/cell LSTM states with 512 dim
projections to next input

Use a residual connection

* Tie parameters of token input and output (softmax) and tie
these between forward and backward LMs

21
Slide from Christopher Manning



Peters et al. (2018): ELMo: Embeddings from Language
Models

e ELMo learns task-specific combination of biLM representations

e Thisis an innovation that improves on just using top layer of
LSTM stack

%
R, = {x™ bt Wi |j=1,...,L}

(b [j = ,--.,L},
ELMOtask: (R @task taskzz EaSkhllcl,]j\'/I‘

o y®sKgcales overall usefulness of ELMo to task;

o sk gre softmax-normalized mixture model weights

22
Slide from Christopher Manning



Peters et al. (2018): ELMo: Use with a task

e First run biLM to get representations for each word
e Then let (whatever) end-task model use them
* Freeze weights of ELMo for purposes of supervised model

* Concatenate ELMo weights into task-specific model
¢ Details depend on task
* Concatenating into intermediate layer as for TagLM is typical

e Can provide ELMo representations again when producing outputs,
as in a question answering system

3
Slide from Christopher Manning



Outline

Pretraining Transformers



Section Plan

1. Motivating model pretraining from word embeddings
2. Model pretraining three ways

2.1 Decoders
2.2 Encoders
2.3 Encoder-Decoders

3. Interlude: what do we think pretraining is teaching?
4. Very large models and in-context learning



Outline

Motivating model pretraining from word embeddings

wn e

Slide from John Hewitt



Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:
“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
This quote is a summary of distributional semantics, and motivated word2vec. But:
“... the complete meaning of a word is always contextual,
and no study of meaning apart from a complete context
can be taken seriously.” (J. R. Firth 1935)

Consider | record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote
Slide from John Hewitt



Where we were: pretrained word embeddings

Circa 2017:

e Start with pretrained word embeddings (no y
context!)

A
e Learn how to incorporate context in an LSTM I“’I“‘I“'I‘*I"’I )
Not pretrained

or Transformer while training on the task.

Some issues to think about: i i i i i i } pretrained
(word embeddings)
4

* The training data we have for our
downstream task (like question answering)
must be sufficient to teach all contextual
aspects of language.

... the movie was ...

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]
* Most of the parameters in our network are

randomly initialized!

Slide from John Hewitt



Where we’re going: pretraining whole models

In modern NLP:

e All (or almost all) parameters in NLP y
networks are initialized via pretraining. e .

e Pretraining methods hide parts of the input ‘-’I"I‘-'I‘*I‘-’I
from the model, and train the model to Pretrained jointly
reconstruct those parts. 1 R

* This has been exceptionally effective at i i i i i i

+
bui|ding strong: ... the movie was ...
* representations of language
* parameter initializations for strong NLP [This model has learned how to represent
models. entire sentences through pretraining]
* Probability distributions over language that
we can sample from
10

Slide from John Hewitt



What can we learn from reconstructing the input?

Stanford University is located in , California.

11

Slide from John Hewitt



What can we learn from reconstructing the input?

| put ___ fork down on the table.

12

Slide from John Hewitt



What can we learn from reconstructing the input?

The woman walked across the street,
checking for traffic over ___ shoulder.

13

Slide from John Hewitt



What can we learn from reconstructing the input?

| went to the ocean to see the fish, turtles, seals, and

14

Slide from John Hewitt



What can we learn from reconstructing the input?

Overall, the value | got from the two hours watching
it was the sum total of the popcorn and the drink.
The movie was ___.

15

Slide from John Hewitt



What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.
Zuko left the

16

Slide from John Hewitt



What can we learn from reconstructing the input?

| was thinking about the sequence that goes
1,1,2,3,5,8,13, 21,

17

Slide from John Hewitt



Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model pg(w¢|wy.t—1), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

¢ Train a neural network to perform language
modeling on a large amount of text. roh goes to make tasty tea

¢ Save the network parameters.

18

Slide from John Hewitt



The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!

goes to make tasty tea END

©/®

Iroh  goes to make tasty tea ... the movie was ...

19

Slide from John Hewitt



Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

+ Consider, provides parameters 8 by approximating mgin Lpretrain(8).
* (The pretraining loss.)
* Then, finetuning approximates mgin Leinetune(8), starting at 8.

* (The finetuning loss)

* The pretraining may matter because stochastic gradient descent sticks (relatively)
close to 8 during finetuning.

* So, maybe the finetuning local minima near 8 tend to generalize well!

+ And/or, maybe the gradients of finetuning loss near @ propagate nicely!

20

Slide from John Hewitt



Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a

“representation learning” perspective?

> Latent representations computed by & are useful for any
NLP task.



Lecture Plan

1.

2.

3. Model pretraining three ways
1. Encoders
2. Encoder-Decoders
3. Decoders

21

Slide from John Hewitt



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

] Decoders

122271 Decoders

22

Slide from John Hewitt

Gets bidirectional context — can condition on future!
How do we train them to build strong representations?

Good parts of decoders and encoders?
What's the best way to pretrain them?

Language models! What we’ve seen so far.
Nice to generate from; can’t condition on future words



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

* Gets bidirectional context — can condition on future!

Encoders . . .
How do we train them to build strong representations?

23

Slide from John Hewitt



Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words.

went store

hq, ..., hy = Encoder(wy, ..., wr)
Yi ~ AWL' +b

Only add loss terms from words that are
“masked out.” If X is the masked version of x,
we're learning pg (x|X). Called Masked LM.

| [M] to the [M]

[Devlin et al., 2018]

24

Slide from John Hewitt



BERT: Bidirectional Encoder Representations from Transformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a

pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:
* Predict a random 15% of (sub)word tokens.
* Replace input word with [MASK] 80% of the time
 Replace input word with a random token 10% of
the time
 Leave input word unchanged 10% of the time (but
still predict it!)
¢ Why? Doesn’t let the model get complacent and not
build strong representations of non-masked words.
(No masks are seen at fine-tuning time!)

25

Slide from John Hewitt

[Predict these!] went to store
[} 4 [}
Transformer
Encoder

[ |
| pizza to the [M]

1

[Replaced] [Not replaced] [Masked]

[Devlin et al., 2018]



BERT: Bidirectional Encoder Representations from Transformers

* The pretraining input to BERT was two separate contiguous chunks of text:

s (o) (o) o) () () ) () ) ) ) )

Token
Embeddings

Segment
Embeddings

Position
Embeddings

* BERT was trained to predict whether one chunk follows the other or is randomly
sampled.

* Later work has argued this “next sentence prediction” is not necessary.

26 [Devlin et al., 2018, Liu et al., 201

Slide from John Hewitt



BERT: Bidirectional Encoder Representations from Transformers

Details about BERT
* Two models were released:
* BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
* BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
* Trained on:
* BooksCorpus (800 million words)
* English Wikipedia (2,500 million words)
* Pretraining is expensive and impractical on a single GPU.
* BERT was pretrained with 64 TPU chips for a total of 4 days.
* (TPUs are special tensor operation acceleration hardware)
* Finetuning is practical and common on a single GPU
* “Pretrain once, finetune many times.”

27 [Devlin et al., 2018]

Slide from John Hewitt



BERT: Bidirectional Encoder Representations from Transformers

BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-

the-art results on a broad range of tasks.

* QQP: Quora Question Pairs (detect paraphrase ©
questions)

¢ QNLI: natural language inference over question®

ColA: corpus of linguistic acceptability (detect
whether sentences are grammatical.)

STS-B: semantic textual similarity

answering data *  MRPC: microsoft paraphrase corpus
* SST-2:sentiment analysis « RTE: a small natural language inference corpus
System MNLL-(w/mm) QQP QNLI SST2 ColLA STS-B MRPC RTE  Average
392k 363k 108k 67k 85k 57k 35k 25k N
Pre-OpenAl SOTA 80.6/30.1 661 823 932 350 810 860 617 740
BILSTM+ELMo+Attn  76.4/76.1 643 798 904 360 733 849 568 710
OpenAl GPT 82.1/81.4 703 874 913 454 800 823 560 751
BERTgAse 84.6/83.4 712 905 935 521 858 889 664 7196
BERTLsrcEe 86.7/85.9 721 927 949 605 865 83 701 821

28

Slide from John Hewitt

[Devlin et al., 2018]



Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

If your task involves generating sequences, consider using a pretrained decoder; BERT and other

pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

make/brew/craft goes to make tasty tea END

T S A —— —

Pretrained Decoder

Iroh  goes to [MASK] tasty tea Iroh  goes make tasty tea

29

Slide from John Hewitt



Extensions of BERT

You’ll see a lot of BERT variants like ROBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:
¢ ROBERTa: mainly just train BERT for longer and remove next sentence prediction!
¢ SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

It's bly
b 4

BERT

[MASK] irr## esitt#t  stit# [MASK] good

30

Slide from John Hewitt

irrit  esi#t stit# bly

SpanBERT

I [MASK] [MASK] [MASK] [MASK] good

[Liu et al., 2019; Joshi et al., 2020]




Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining

even when not changing the underlying Transformer encoder.

SQuAD
Model data  bsz steps W1L1/2.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (53.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer  160GB 8K 500K 94.6/89.4 90.2 96.4
BERT .xrae
with BOOKS + WIKI I3GB 256 IM  90.9/81.8 86.6 93.7

31

Slide from John Hewitt

[Liu et al., 2019; Joshi et al., 2020]




Full Finetuning vs. Parameter-Efficient Finetuning

Finetuning every parameter in a pretrained model works well, but is memory-intensive.
But lightweight finetuning methods adapt pretrained models in a constrained way.
Leads to less overfitting and/or more efficient finetuning and inference.

Full Finetuning Lightweight Finetuning
Adapt all parameters Train a few existing or new parameters

©/® O®

... the movie was ... ... the movie was ...
32 [Liu et al., 2019; Joshi et al., 2020]

Slide from John Hewitt



Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.
The prefix is processed by the model just like real words would be.
Advantage: each element of a batch at inference could run a different tuned model.

©/®

. ... the movie was ...
Learnable prefix

parameters
[Li and Liang, 2021; Lester et al., 202

33
Slide from John Hewitt



Parameter-Efficient Finetuning: Low-Rank Adaptation
Low-Rank Adaptation Learns a low-rank “diff” between the pretrained and finetuned

weight matrices.
Easier to learn than prefix-tuning.

B e kad

gach weight matrix

Ae Rdxk

W + AB

... the movie was ...

34 [Hu et al., 2021]

Slide from John Hewitt



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

7 Encoder- * Good parts of decoders and encoders?
2 Decoders ° What's the best way to pretrain them?

35

Slide from John Hewitt



Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

Wri2, )
hq, ..., iy = Encoder(wy, ..., wr)

Ary1, -, by = Decoder(wy, ...,wr, by, ..., hy)
y; ~Ah; +b,i >T ,_%T

The encoder portion benefits from %@
bidirectional context; the decoder portion is Wi, s Wor
used to train the whole model through

language modeling.
Wi, oo, Wr

[Raffel et al., 2018]

36

Slide from John Hewitt



Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Targets
<X> for inviting <v> last <z>

Original text

Thank you fef inviting me to your party [a}stweek. [ % ]

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective

that looks like language modeling at Ippts v p
the decoder side. Thank you <X> me to your party <v> week.

37

Slide from John Hewitt



Pretraining encoder-decoders: what pretraining objective to use?

Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

and span corruption (denoising) to work better than language modeling.

Architecture Objective  Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 2765
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers  Denoising P M/2  80.88 18.97 77.59 68.42 26.38  38.40  26.95
Language model  Denoising P M 74.70 17.93 61.14 55.02 25.09 3528 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27  39.17  26.86
Enc-dec, shared LM r M 79.60 18.13 76.35 63.50 26.62  39.17  27.05
Enc-dec, 6 layers LM P M/2  78.67 18.26 75.32 64.06 26.13 38.42 26.89
Language model LM P M 73.78 17.54 53.81 56.51 25.23 3431 25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 2628 3751 26.76

Slide from John Hewitt



Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property
of T5: it can be
finetuned to answer a
wide range of
questions, retrieving
knowledge from its
parameters.

NQ: Natural Questions
WQ: WebQuestions
TQA: Trivia QA

All “open-domain”
versions

Slide from John Hewitt

Pre-training

Fine-tuning

President Franklin D.
Roosevelt was born
in January 1882.

When was Franklin D.
Roosevelt born? . |5

NQ WQ TQA

dev test
Karpukhin et al. (2020) 41.5 424 579 -
T5.1.1-Base 257 282 242 306
T5.1.1-Large 273 295 285 372
T5.1.1-XL 295 324 360 451
T5.1.1-XXL 328 356 429 525
T5.1.1-XXL + SSM 352 428 519 6L6

220 million params
770 million params
3 billion params
11 billion params

[Raffel et al., 2018]



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

* Language models! What we’ve seen so far.
122271 Decoders i . N
* Nice to generate from; can’t condition on future words

* All the biggest pretrained models are Decoders.
40

Slide from John Hewitt



Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model p(W¢|wy.c_1)-

We can finetune them by training a classifier
on the last word’s hidden state.

hi, ..., hy = Decoder(wy, ..., wr)
Where A and b are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

41

Slide from John Hewitt

@/G?
Linear A, b

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]



Pretraining decoders

It's natural to pretrain decoders as language models and then

use them as generators, finetuning their pg (W |wy.;_1)!

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

* Dialogue (context=dialogue history)

* Summarization (context=document)

hq, ..., hy = Decoder(wy, ..., wr)
Wy ~ Ah‘t—l + b

Where A, b were pretrained in the language

model!
42

Slide from John Hewitt

Wy W3 Wq Wg Wg
LS S S S’
' Ab

Wi W, Wz W, Ws

[Note how the linear layer has been pretrained.]



Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!

43

Transformer decoder with 12 layers, 117M parameters.
768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges
Trained on BooksCorpus: over 7000 unique books.
 Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

[Devlin et al., 2018]
Slide from John Hewitt



Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral
Premise: The man is in the doorway .

) ) entailment
Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.
Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

44

Slide from John Hewitt



Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.

45

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - -
CAFE [58] 78.7 77.9 88.5 833

GenSen [64] 714 71.3 - - 823 59.2
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 617
Finetuned Transformer LM (ours) 82.1 81.4 89.9 88.3 88.1 56.0

Slide from John Hewitt



Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Slide from John Hewitt



GPT-3, In-context learning, and very large models

So far, we've interacted with pretrained models in two ways:
* Sample from the distributions they define (maybe providing a prompt)
* Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.
GPT-3 has 175 billion parameters.

47

Slide from John Hewitt



GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci
hello -> bonjour
mint -> menthe
otter -> ”

Output (conditional generations):

loutre...”

48

Slide from John Hewitt



GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

Learning via SGD during unsupervised pre-training N\
= ¥ 5
5+8=13 8 gaot s> goat 8 thanks == merci 2
= 3 3
- - -
7+2=9 [ sakne => snake - hello == banjour -
- - -
3 o o
1+@=1 o brid == bird = mint => menthe =
= S 4
= 3 3
3+4=7 =1 fsih == fish a wall == mur a
5+8 =14 douk => duck otter == loutre
9+8=17 caihp => chimp bread == pain
W W W
sequence #1 sequence #2 sequence #3

49

Slide from John Hewitt



Scaling Efficiency: how do we best use our compute

GPT-3 was 175B parameters and trained on 300B tokens of text.

Roughly, the cost of training a large transformer scales as parameters*tokens

Did OpenAl strike the right parameter-token data to get the best model? No.

50

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion
Chinchilla 70 Billion 1.4 Trillion

This 70B parameter model is better than the much larger other models!

Slide from John Hewitt



The prefix as task specification and scratch pad: chain-of-thought

51

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

Slide from John Hewitt

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

oo ~

answer is 9.

[Wei et al., 2023]




Outline

4. What do we think pretraining is teaching?

52

Slide from John Hewitt



What kinds of things does pretraining teach?

There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language. Taking our examples from the start of class:

53

Stanford University is located in , California. [Trivia]

I put___ fork down on the table. [syntax]

The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and _____. [lexical semantics/topic]

Overall, the value | got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was ___. [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning — this is harder]

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

Models also learn — and can exacerbate racism, sexism, all manner of bad biases.
More on all this in the interpretability lecture!

Slide from John Hewitt



Summary of Pretraining

Pretraining is hugely successful at improving the SOTA in many
tasks, by inducing transferable abstract representations

>

>

BERT models are Transformers pretrained on masked
language modelling (and next sentence prediction)

T5 are large Transformer encoder-decoder models trained
on masked span prediction

GPT (2,3) are very large Transformers trained on
left-to-right language modelling

GPT (2,3) have lots of information in the language model

Finetuning changes or adds weights which specialise the
model for the task on a dataset

Prompting adds context which tells the model about the
task using abstract patterns it knows



	Pretraining
	Pretraining Transformers

