
EE-608: Deep Learning For Natural
Language Processing:

Pre-Training

James Henderson

Idiap Research Institute

DLNLP, Lecture 5

Outline

Pretraining

Pretraining Transformers

Outline

Pretraining

Pretraining Transformers

Overview of Pretraining Models

We saw with word embeddings that the distributions in large
text corpora have a lot of information about the meaning of text.
Can we also exploit this information in contextualised word
representations for transfer to a new task?

▶ BERT:
▶ Transformer trained on predicting masked words
▶ Fine-tuned to perform a new task

▶ T5:
▶ Transformer encoder-decoder trained on masked span

prediction
▶ Fine-tuned to perform several tasks

▶ GPT (2,3):
▶ Transformer trained as a left-to-right language model
▶ Mined for information implicit in the language model

BERT: Devlin, Chang, Lee, Toutanova (2018)

58
Slide from Christopher Manning

Peters et al. (2018): ELMo: Embeddings from Language
Models
Deep contextualized word representations. NAACL 2018.
https://arxiv.org/abs/1802.05365
• Breakout version of word token vectors or

contextual word vectors
• Learn word token vectors using long contexts not context

windows (here, whole sentence, could be longer)
• Learn a deep Bi-NLM and use all its layers in prediction

20
Slide from Christopher Manning

Peters et al. (2018): ELMo: Embeddings from Language
Models
• Train a bidirectional LM
• Aim at performant but not overly large LM:

• Use 2 biLSTM layers
• Use character CNN to build initial word representation (only)
• 2048 char n-gram filters and 2 highway layers, 512 dim projection

• User 4096 dim hidden/cell LSTM states with 512 dim
projections to next input

• Use a residual connection
• Tie parameters of token input and output (softmax) and tie

these between forward and backward LMs

21
Slide from Christopher Manning

Peters et al. (2018): ELMo: Embeddings from Language
Models
• ELMo learns task-specific combination of biLM representations
• This is an innovation that improves on just using top layer of

LSTM stack

• !"#$% scales overall usefulness of ELMo to task;
• &"#$% are softmax-normalized mixture model weights
22

Slide from Christopher Manning

Peters et al. (2018): ELMo: Use with a task

• First run biLM to get representations for each word
• Then let (whatever) end-task model use them

• Freeze weights of ELMo for purposes of supervised model
• Concatenate ELMo weights into task-specific model
• Details depend on task
• Concatenating into intermediate layer as for TagLM is typical
• Can provide ELMo representations again when producing outputs,

as in a question answering system

23
Slide from Christopher Manning

Outline

Pretraining

Pretraining Transformers

Section Plan

1. Motivating model pretraining from word embeddings
2. Model pretraining three ways

2.1 Decoders
2.2 Encoders
2.3 Encoder-Decoders

3. Interlude: what do we think pretraining is teaching?
4. Very large models and in-context learning

Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

7

Slide from John Hewitt

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

This quote is a summary of distributional semantics, and motivated word2vec. But:

“… the complete meaning of a word is always contextual,

and no study of meaning apart from a complete context

can be taken seriously.” (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]

Slide from John Hewitt

Where we were: pretrained word embeddings

Circa 2017:

• Start with pretrained word embeddings (no
context!)

• Learn how to incorporate context in an LSTM
or Transformer while training on the task.

Some issues to think about:

• The training data we have for our
downstream task (like question answering)
must be sufficient to teach all contextual
aspects of language.

• Most of the parameters in our network are
randomly initialized!

9

… the movie was …

ෝ𝒚

Not pretrained

pretrained
(word embeddings)

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]

Slide from John Hewitt

Where we’re going: pretraining whole models

In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

• This has been exceptionally effective at
building strong:

• representations of language

• parameter initializations for strong NLP
models.

• Probability distributions over language that
we can sample from

10

… the movie was …

ෝ𝒚

Pretrained jointly

[This model has learned how to represent
entire sentences through pretraining]

Slide from John Hewitt

What can we learn from reconstructing the input?

11

Stanford University is located in __________, California.

Slide from John Hewitt

What can we learn from reconstructing the input?

12

I put ___ fork down on the table.

Slide from John Hewitt

What can we learn from reconstructing the input?

13

The woman walked across the street,

checking for traffic over ___ shoulder.

Slide from John Hewitt

What can we learn from reconstructing the input?

14

I went to the ocean to see the fish, turtles, seals, and _____.

Slide from John Hewitt

What can we learn from reconstructing the input?

15

Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was ___.

Slide from John Hewitt

What can we learn from reconstructing the input?

16

Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______.

Slide from John Hewitt

What can we learn from reconstructing the input?

17

I was thinking about the sequence that goes

1, 1, 2, 3, 5, 8, 13, 21, ____

Slide from John Hewitt

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability
distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language
modeling on a large amount of text.

• Save the network parameters.

18

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Slide from John Hewitt

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

19

(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

(Transformer, LSTM, ++)

☺/

… the movie was …

Slide from John Hewitt

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

• Consider, provides parameters ෠𝜃 by approximating min
𝜃

ℒpretrain 𝜃 .

• (The pretraining loss.)

• Then, finetuning approximates min
𝜃

ℒfinetune 𝜃 , starting at ෠𝜃.

• (The finetuning loss)

• The pretraining may matter because stochastic gradient descent sticks (relatively)

close to ෠𝜃 during finetuning.

• So, maybe the finetuning local minima near ෠𝜃 tend to generalize well!

• And/or, maybe the gradients of finetuning loss near ෠𝜃 propagate nicely!

20

Slide from John Hewitt

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a
“representation learning” perspective?

▶ Latent representations computed by θ̂ are useful for any
NLP task.

Lecture Plan

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

21

Slide from John Hewitt

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

22

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide from John Hewitt

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

23

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide from John Hewitt

ℎ1, … , ℎ𝑇

Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

24

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖 ∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are
“masked out.” If ෤𝑥 is the masked version of 𝑥,
we’re learning 𝑝𝜃(𝑥| ෤𝑥). Called Masked LM.

I [M] to the [M]

went store

𝐴, 𝑏

[Devlin et al., 2018]

Slide from John Hewitt

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

25

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of
the time

• Leave input word unchanged 10% of the time (but
still predict it!)

• Why? Doesn’t let the model get complacent and not
build strong representations of non-masked words.
(No masks are seen at fine-tuning time!)

[Predict these!]

I pizza to the [M]

went store

Transformer
Encoder

[Devlin et al., 2018]

to

[Masked][Replaced] [Not replaced]

Slide from John Hewitt

BERT: Bidirectional Encoder Representations from Transformers

26

• The pretraining input to BERT was two separate contiguous chunks of text:

• BERT was trained to predict whether one chunk follows the other or is randomly
sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]

Slide from John Hewitt

BERT: Bidirectional Encoder Representations from Transformers

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

27 [Devlin et al., 2018]

Slide from John Hewitt

BERT: Bidirectional Encoder Representations from Transformers

BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks.

28

• QQP: Quora Question Pairs (detect paraphrase
questions)

• QNLI: natural language inference over question
answering data

• SST-2: sentiment analysis

• CoLA: corpus of linguistic acceptability (detect
whether sentences are grammatical.)

• STS-B: semantic textual similarity

• MRPC: microsoft paraphrase corpus

• RTE: a small natural language inference corpus

[Devlin et al., 2018]

Slide from John Hewitt

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

29

If your task involves generating sequences, consider using a pretrained decoder; BERT and other
pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

Pretrained Encoder

Iroh goes to [MASK] tasty tea

make/brew/craft

Pretrained Decoder

Iroh goes to make tasty tea

goes to make tasty tea END

Slide from John Hewitt

Extensions of BERT

You’ll see a lot of BERT variants like RoBERTa, SpanBERT, +++

30

Some generally accepted improvements to the BERT pretraining formula:

• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

[Liu et al., 2019; Joshi et al., 2020]

BERT

[MASK] irr## esi## sti## [MASK] good

It’s

SpanBERT

bly

It’ [MASK] good

irr## esi## sti## bly

[MASK][MASK][MASK]

Slide from John Hewitt

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder.

31 [Liu et al., 2019; Joshi et al., 2020]

Slide from John Hewitt

Full Finetuning vs. Parameter-Efficient Finetuning

Finetuning every parameter in a pretrained model works well, but is memory-intensive.

But lightweight finetuning methods adapt pretrained models in a constrained way.

Leads to less overfitting and/or more efficient finetuning and inference.

32 [Liu et al., 2019; Joshi et al., 2020]

(Transformer, LSTM, ++)

☺/

… the movie was …

Full Finetuning

Adapt all parameters

(Transformer, LSTM, ++)

☺/

… the movie was …

Lightweight Finetuning

Train a few existing or new parameters

Slide from John Hewitt

Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.

The prefix is processed by the model just like real words would be.

Advantage: each element of a batch at inference could run a different tuned model.

33 [Li and Liang, 2021; Lester et al., 2021]

(Transformer, LSTM, ++)

☺/

… the movie was …
Learnable prefix
parameters

Slide from John Hewitt

Parameter-Efficient Finetuning: Low-Rank Adaptation

Low-Rank Adaptation Learns a low-rank “diff” between the pretrained and finetuned
weight matrices.

Easier to learn than prefix-tuning.

34 [Hu et al., 2021]

(Transformer, LSTM, ++)

☺/

… the movie was …

𝑊 ∈ ℝ𝑑×𝑑

𝐴 ∈ ℝ𝑑×𝑘

𝐵 ∈ ℝ𝑘×𝑑

𝑊 +𝐴𝐵

Slide from John Hewitt

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

35

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide from John Hewitt

Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

36

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

ℎ𝑇+1, … , ℎ2 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑤1, … , 𝑤𝑇 , ℎ1, … , ℎ𝑇
𝑦𝑖 ∼ 𝐴ℎ𝑖 + 𝑏, 𝑖 > 𝑇

The encoder portion benefits from
bidirectional context; the decoder portion is
used to train the whole model through
language modeling.

[Raffel et al., 2018]

𝑤1, … , 𝑤𝑇

𝑤𝑇+1, … , 𝑤2𝑇

𝑤𝑇+2, … ,

Slide from John Hewitt

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

37

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

Slide from John Hewitt

Pretraining encoder-decoders: what pretraining objective to use?

Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

and span corruption (denoising) to work better than language modeling.

Slide from John Hewitt

Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property
of T5: it can be
finetuned to answer a
wide range of
questions, retrieving
knowledge from its
parameters.

NQ: Natural Questions

WQ: WebQuestions

TQA: Trivia QA

All “open-domain”
versions

[Raffel et al., 2018]

220 million params

770 million params

3 billion params

11 billion params

Slide from John Hewitt

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

40

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

• All the biggest pretrained models are Decoders.

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Slide from John Hewitt

ℎ1, … , ℎ𝑇

Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model 𝑝 𝑤𝑡 𝑤1:𝑡−1).

41

We can finetune them by training a classifier
on the last word’s hidden state.

ℎ1, … , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑦 ∼ 𝐴ℎ𝑇 + 𝑏

Where 𝐴 and 𝑏 are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

☺/

𝑤1, … , 𝑤𝑇

Linear 𝐴, 𝑏

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

Slide from John Hewitt

Pretraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1)!

42

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

• Dialogue (context=dialogue history)

• Summarization (context=document)

ℎ1, … , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑤𝑡 ∼ 𝐴ℎ𝑡−1 + 𝑏

Where 𝐴, 𝑏 were pretrained in the language
model!

𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

[Note how the linear layer has been pretrained.]

𝐴, 𝑏

ℎ1, … , ℎ𝑇

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Slide from John Hewitt

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers, 117M parameters.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

43 [Devlin et al., 2018]

Slide from John Hewitt

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

44

entailment

Slide from John Hewitt

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.

45

Slide from John Hewitt

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Increasingly convincing generations (GPT2) [Radford et al., 2018]

Slide from John Hewitt

GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.

GPT-3 has 175 billion parameters.

47

Slide from John Hewitt

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci

hello -> bonjour

mint -> menthe

otter -> ”

Output (conditional generations):

loutre…”

48

Slide from John Hewitt

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

49

Slide from John Hewitt

Scaling Efficiency: how do we best use our compute

GPT-3 was 175B parameters and trained on 300B tokens of text.

Roughly, the cost of training a large transformer scales as parameters*tokens

Did OpenAI strike the right parameter-token data to get the best model? No.

50

This 70B parameter model is better than the much larger other models!

Slide from John Hewitt

The prefix as task specification and scratch pad: chain-of-thought

51
[Wei et al., 2023]

Slide from John Hewitt

Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

52

Slide from John Hewitt

What kinds of things does pretraining teach?
There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language. Taking our examples from the start of class:

• Stanford University is located in __________, California. [Trivia]

• I put ___ fork down on the table. [syntax]

• The woman walked across the street, checking for traffic over ___ shoulder. [coreference]

• I went to the ocean to see the fish, turtles, seals, and _____. [lexical semantics/topic]

• Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was ___. [sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the ______. [some reasoning – this is harder]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

• More on all this in the interpretability lecture!
53

Slide from John Hewitt

Summary of Pretraining

Pretraining is hugely successful at improving the SOTA in many
tasks, by inducing transferable abstract representations

▶ BERT models are Transformers pretrained on masked
language modelling (and next sentence prediction)

▶ T5 are large Transformer encoder-decoder models trained
on masked span prediction

▶ GPT (2,3) are very large Transformers trained on
left-to-right language modelling

▶ GPT (2,3) have lots of information in the language model

▶ Finetuning changes or adds weights which specialise the
model for the task on a dataset

▶ Prompting adds context which tells the model about the
task using abstract patterns it knows

	Pretraining
	Pretraining Transformers

