EE-608: Deep Learning For NLP:
Language Modelling, Recurrent Neural
Networks, LSTMs

James Henderson

sssssssssssssssss

Idiap Research Institute

DLNLP, Lecture 2

Outline

Language Modelling

Recurrent Neural Networks

Deep Backprop with RNNs (LSTMs)

Bigger is Better with RNNs

Background on Neural Networks and Derivatives

Everyone should make sure they know the material covered in
€s224n-2023-lecture03-neuralnets.pdf at
http://web.stanford.edu/class/cs224n/

http://web.stanford.edu/class/cs224n/

Outline

Language Modelling

2. Language Modeling

Language Modeling is the task of predicting what word comes next
books

the students opened their /‘/v laptops
\\‘ exams

minds
More formally: given a sequence of words =W 2@ . 2®,

compute the probability distribution of the next word w(t“)
t+1 t 1
Px® Y| 2® . 2W)
where """ can be any word in the vocabulary V' = {w1, ..., wv |}

A system that does this is called a Language Model

Slide from Christopher Manning

Language Modeling

¢ You can also think of a Language Model as a system that
assigns a probability to a piece of text

» For example, if we have some text (1), ..., z(T), then the
probability of this text (according to the Language Model) is:

PeW,...,2MD) = P(®) x P(@@| 2M) x ... x P(eD] £T-Y . z0)

P®| 1 . W)

=

1

%—J

This is what our LM provides

10

Slide from Christopher Manning

You use Language Models every day!

e I'll meet you at the @ >

airport

11

Slide from Christopher Manning

You use Language Models every day!

Google

what is the |

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky

12

Slide from Christopher Manning

(=

n-gram Language Models
the students opened their

* Question: How to learn a Language Model?
* Answer (pre- Deep Learning): learn an n-gram Language Model!

* Definition: An n-gram is a chunk of n consecutive words.
* unigrams: “the”, “students”, “opened”, "their”
* bigrams: “the students”, “students opened”, “opened their”
 trigrams: “the students opened”, “students opened their”
« four-grams: “the students opened their”

* Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

13

Slide from Christopher Manning

n-gram Language Models

* First we make a Markov assumption: x @D depends only on the preceding n-1 words

n-1 words
P |z® . zW) = p(att)|z® . gt-rt2) (assumption)
b of a n-
prob of a n-gram \:Ip(w(f,ﬂ)’m(t)7 o 7w(t—n+2))| (definition of
/7_.| P(x®, ... w(t*””))l -
prob of a (n-1)-gram LN conditional prob)

* Question: How do we get these n-gram and (n-1)-gram probabilities?
* Answer: By counting them in some large corpus of text!

., count(@), 2, ... 2(t-"+2) (statistical
~ t t—n+2 . .
count(z(®), ... xlt-n+2)) approximation)
14

Slide from Christopher Manning

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

Wemné@heebek—fhestudents opened thelr

discard

cond|t|on on this

count(students opened their w)
count(students opened their)

P(w|students opened their) =

For example, suppose that in the corpus:
* “students opened their” occurred 1000 times
* “students opened their books” occurred 400 times
* > P(books | students opened their) = 0.4 Should we have discarded
* “students opened their exams” occurred 100 times the “proctor” context?
* > P(exams | students opened their) =

15

Slide from Christopher Manning

Sparsity Problems with n-gram Language Models

16

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w has
probability 0!

(Partial) Solution: Add small §

to the count foreveryw € V.
This is called smoothing.

P(w|students opened their) =

count(students opened their w)

~ jcount(students opened their)|

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in

(Partial) Solution: Just condition

data? Then we can’t calculate
probability for any w!

on “opened their” instead.
This is called backoff.

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Slide from Christopher Manning

Storage Problems with n-gram Language Models

Storage: Need to store
count for all n-grams you
saw in the corpus.

\c01111t(st11<1e11ts opened their w)

P(w|students opened their) =
(w] P) count(students opened their)

Increasing n or increasing
corpus increases model size!

17

Slide from Christopher Manning

n-gram Language Models in practice

* You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

Business and financial news

today the

get probability
distribution

company (0.153) | Sparsity problem:
ba|:1k 0.153 not much granularity
price 0.077 in the probability
italian 0.039 B
emirate ©.039 distribution
Otherwise, seems reasonable! * Try fory https://nlpforhackers.io/language-models

18

Slide from Christopher Manning

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the

H_J—
Condltlon get probability

on this distribution

company ©.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

sample

19

Slide from Christopher Manning

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price
Condltlon get probability
on this distribution
[of 0.308 sample
for 0.050
it 0.046
to 0.046
is 0.031

20

Slide from Christopher Manning

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of
H_J
Condltlon get probability

on thlS distribution
the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018 sample

21

Slide from Christopher Manning

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,

and increases model size...
22

Slide from Christopher Manning

How to build a neural language model?

¢ Recall the Language Modeling task:
* Input: sequence of words ™M,z ... 2®
« Output: prob. dist. of the next word P(z“*V| z® ... M)

¢ How about a window-based neural model?
* We saw this applied to Named Entity Recognition in Lecture 2:

LOCATION
lu
(e00000000000)
[w
(0000 0000 0000 0000 0000]

i ! i i i

museums in Paris are amazing

23

Slide from Christopher Manning

24

A fixed-window neural Language Model

S———rr T StoT et ire—rfork

discard

Slide from Christopher Manning

the
AN

students opened

their
J

Y
fixed window

25

A fixed-window neural Language Model

books

laptops
output distribution
§ = softmax(Uh + by) € R

a 200

U

’:'d_de;('?’;;%) (e00000000000)
= 1

w
concatenated word embeddings
o= [e): 6@ e®:] [..f. ..f. ..f. ..f.]
words / one-hot vectors the students opened their
2D, 2 2@ @ o) 22 23 =@

Slide from Christopher Manning

26

A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Improvements over n-gram LM:
* No sparsity problem
* Don't need to store all observed n-grams

Remaining problems:

* Fixed window is too small

* Enlarging window enlarges W

* Window can never be large enough!

« xM and x®@ are multiplied by
completely different weights in .
No symmetry in how the inputs are
processed.

We need a neural architecture
that can process any length input

Slide from Christopher Manning

books
laptops

U
(e00000000000)
w

(o000 0000 0000 0000]

T

the students opened their
20 e e)) 2@

Outline

Recurrent Neural Networks

3. Recurrent Neural Networks (RNN) Core idea: Apply the same
A family of neural architectures weights W repeatedly

outputs
(optional) {

hidden states

input sequence
(any length) {

2@ z® @

27

Slide from Christopher Manning

. g = P(x®|the students opened their
A Simple RNN Language Model 7 =7 i e e

laptops

output distribution

9 = softmax (Uh(") + b;) eRrlVI

N
[}
o

h@

=
=
©
=
e

hidden states
h =o (Wl,h('fl) + Weel) + bl)

h(9) is the initial hidden state

W, Wy, Wy,

(e0ce)-(soee]
w(e00s)(s0es)
wleses)(seee)’
wleves(eeee) -

word embeddings e e?) e®) e)
e® = EBg®)
E E E
words / one-hot vectors the students opened their
z® e RIVI 20 JNE) NE) 2@

Note: this input sequence could be much
longer now!

Slide from Christopher Manning

books

RNN Language Models

RNN Advantages:

e Can process any length input

* Computation for step t can (in
theory) use information from
many steps back

Model size doesn’t increase for

h(0)

=
=
©
<

F
F

Wy,

h#

9 = P(z®|the students opened their)

laptops

N
[}
o

longer input context

Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

—>[oooo]§>[oooo]
—>[0000]§>[0000]
—>[oooo]g>[oooo]”

e e®) e®)
RNN Disadvantages:
* Recurrent computation is slow
 In practice, difficult to access More on B E E
information from many steps [theselater the students opened
T xr "

back
29

Slide from Christopher Manning

&)

?[oooo]?[oooo]?

their
@

Training an RNN Language Model

» Get a big corpus of text which is a sequence of words (), ..., z(™)
¢ Feed into RNN-LM; compute output distribution ZJ(” for every step t.
* i.e., predict probability dist of every word, given words so far

e Loss function on step t is cross-entropy between predicted probability
distribution), and the true next word y(*) (one-hot for z(*+1):

J00) = CE@Y",59) =->" yPlog gl = —log g,
wevV

* Average this to get overall loss for entire training set:

1 1<
J10) =7 > aM) = = > —loggll)

t=1 t=1

30

Slide from Christopher Manning

Training an RNN Language Model

= negative log prob
of “students”

Loss —— [J0@)] s@@) e I00)

r

Predicted

prob dists o 9 v v
U U U U

h(©) hL) h?2) h®) h®

(])) [}

W, |@| W, |le| W, |@| Wi |@| Wi

[(] (] [

J (] ())

o (@] o o

e : e@| O O : e :

o [(©] (e} o
Te & & Ts

Corpus = the students opened their exams

20 e} E)) z@

31

Slide from Christopher Manning

Training an RNN Language Model

= negative log prob
of “opened”

Loss —— J0@) [J2@)] s@e) s90)

Predicted
g(1) (2) (3) (%)
prob dists Y Y Y Y
U U U U
h(©) hL) h?2) h®) h®
(])) [}
W, |@| W, |@|W. |@| Wi |@| W
[(] (] [
J (] ())
8| cofg] of8] .of8
(1) (2) (3)| © (4)
e %) e o e . e o
o [(©] (e} o
T 5 5 Te
Corpus = the students opened their exams
20 e} E)) z@

32

Slide from Christopher Manning

Training an RNN Language Model

= negative log prob

of “their”
Loss — JM)(h) J (6 (= (9) “(g)
Predicted T T T
g(1) (2) (3) (%)
prob dists Y v v v
U U
h(©) h(l) h?2) h®) h®
(] (] o [}
W, @ W, |@| W, |@| Wr |0 Wi
[@ [} [J
(*] @ [} (*]
T w w w
8| cofg] of8] .of8
2 3)| @ 4
e Q| e® e(). e(>.
o [(©] o o
e

T

Corpus = the students opened their exams
20 e} E)) z@

wl

33

Slide from Christopher Manning

Training an RNN Language Model

= negative log prob
of “exams”

Loss —— JO@O) J®@) IOE) [J90)

1

—

Predicted

(1) g(2) §(3) g4
prob dists Y Y Y Y
U U U U
h(©) hL) h?2) h®) h®
e (] (] [}
W, @ W, |@| W, |@| Wr |0 Wi
[(4) (]
® (]))
8| ofs] ofg] 8
(1) (2), (3)| @ (4)
e %) e o e . e o
© (@] o o
T Tz To s

Corpus = the students opened their

(1) 2 3 4
s T 22 3 @

Slide from Christopher Manning

Training an RNN Language Model | Teacher forcing”

T
Loss — JO(@) + JO@O) + JO@O) + JD@O) +.. = J(ﬂ):%ZJ‘”(m
[
PresisFid_. gv §@ §® g
prob dists
U U U U
h(©) hL) h?2) h®) h®
(] (] (] e
W, |@| W, |le| W, |@| Wi |@| Wi
[(] (] [
J (] ())
8| wofg] fS] 8
(1) (2) (3)| © (4)
e ° e ° e o e o
o (o] o o
T s 5 Te
Corpus = the students opened their exams
20 e} 23 z@

35

Slide from Christopher Manning

Training a RNN Language Model

+ However: Computing loss and gradients across entire corpus #™,...,z™ at once is
too expensive (memory-wise)!

1 T
JO) ==Y J1(0)

el

* In practice, consider ", ... (M as a sentence (or a document)

* Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

+ Compute loss J(8)for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

36

Slide from Christopher Manning

Backpropagation for RNNs

JO (0)

t— h(t=2) R-1) h®

h(t=3)

(] (] [} (]
wi 8] wi (8] w. [8] w 8] mi

:]

o & B8 @

Question: What'’s the derivative of J((#) w.r.t. the repeated weight matrix W}, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
() w.r.t. each time it appears”

9J® to9J®

Answer: —
W), = oW,

Why?

37

Slide from Christopher Manning

Multivariable Chain Rule

« Given a multivariable function f(x7 y) and two single variable functions
m(t) and y(t), here's what the multivariable chain rule says:

d of dr Of dy
/W) =gmot ot

—_—————
Derivative of composition function

Gradients sum at outward branches

One final output f(a(t), y(t))

, / \ 7

rm.(.I.'.‘w“l»:‘yl.’,.‘m,vw.» :Z,‘(t) y(t) :

. \ / a=xr+y

One input t b—maxty.s) Of 0fda _ 9f 0b

f=ab Ay Oady = Oby
Source:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

38

Slide from Christopher Manning

Training the parameters of RNNs: Backpropagation for RNNs

JO(6)
h(t=3) h(t-2) R(t—=1) h(t)
(]
wi (8] wir [8] w8 wa [8] wi
o o
[
a9J®
oWy, ‘
I Apply the multivariable chain rule:
. . =1
Question: How do we calculate this?
1
Answer: Backpropagate over timesteps aJY _ aJ" aVVh'(Z)
i=t,..,0, summing gradients as you go. oW, o1 oW (i oW,
This algorithm is called “backpropagation i ®
through time” [Werbos, P.G., 1988, Neural — 9J
= Wil

39 Networks 1, and others]

Slide from Christopher Manning

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Generating with an RNN Language Model (“Generating roll outs”)

Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

m favorite season i spring </s>
fsamp\e sample sample sample Tsample Tsample
g g g® g® g™ g®
U U U U U U
RO h® h®) @ h® h®
[(] ([} (] (]]
oW, (0| W, |0 W, |@| W |0 W, |@
(] (] (]] (])
[@ @ @ (] @
o o o o (o] o
e : e : e® : e O e : e :
o (o] (o] o (6] o
T 5 Tz T8 Jz o

40 <s> my favorite season is spring

Slide from Christopher Manning

Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
* RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
41

Slide from Christopher Manning

Generating text with an RNN Language Model

Let’s have some fun!

* You can train an RNN-LM on any kind of text, then generate text in that style.
* RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“I'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the
spider hadn’t felt it seemed. He reached the teams too.

Source: https:

medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

42

Slide from Christopher Manning

Generating text with an RNN Language Model

Let’s have some fun!

* You can train an RNN-LM on any kind of text, then generate text in that style.

43

RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies
Yield: 6 Servings

2 tb Parmesan cheese —- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients

and stir in the chocolate and pepper.
Source: https://gist.github.com/nylki/lefbaa36635956d35bcc

Slide from Christopher Manning

Generating text with a RNN Language Model

Let’s have some fun!
* You can train a RNN-LM on any kind of text, then generate text in that style.
* RNN-LM trained on paint color names:

[Ghasty Pink 231 137 165 | Sand Dan 201 172 143
[Power Gray 151 124 112 I Grade Bat 48 94 83
| Navel Tan 199 173 140 [| Light Of Blast 175 150 147
Bock Coe White 221 215 236 I Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194
[Homestar Brown 133 104 85 Dope 219 209 179
N snader Brown 144 106 74 [Testing 156 101 106
Golder Craam 237 217 177 [stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132
Burf Pink 223 173 179 [stankyBean 197 162171
Rose Hork 230 215 198 [Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next) |

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

44

Slide from Christopher Manning

Evaluating Language Models

¢ The standard evaluation metric for Language Models is perplexity.

1 1T
perplexity = H ((@] 20, :1:(1))) ™~ Normalized by

number of words
N)

Y
Inverse probability of corpus, according to Language Model

+ This is equal to the exponential of the cross-entropy loss J(6):

T 1/T 1 T
=11 (NO)) =exp (f > - 10gy§f,’+1) = exp(J(0))

t=1 3t+1 t=1

| Lower perplexity is better! |

45

Slide from Christopher Manning

RNNs greatly improved perplexity over what came before

Model Perplexity

n-gram model — | Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 51.3

RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3

Increasingly Sparse Non-negative Matrix factorization (Shazeer et 52.9

complex RNNs il 2015) =

LSTM-2048 (Jozefowicz et al., 2016) 43.7

2-Tayer LSTM-8192 (Jozefowicz et al., 2016) 30

Ours small (LSTM-2048) 43.9

Ours large (2-layer LSTM-2048) 39.8

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words

46

Slide from Christopher Manning

5. Recap
* Language Model: A system that predicts the next word

* Recurrent Neural Network: A family of neural networks that:
* Take sequential input of any length
* Apply the same weights on each step
* Can optionally produce output on each step

* Recurrent Neural Network # Language Model
* We've shown that RNNs are a great way to build a LM (despite some problems)
* RNNs are also useful for much more!

60

Slide from Christopher Manning

Why should we care about Language Modeling?

* Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

* Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:
* Predictive typing
* Speech recognition
* Handwriting recognition
* Spelling/grammar correction
* Authorship identification
* Machine translation
* Summarization
* Dialogue
* etc.

* Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM!

61

Slide from Christopher Manning

Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

—[e0ce} =
—(eeee} g

(0000} =
—(e00e} 2

the startled cat knocked over the vase

62

Slide from Christopher Manning

RNNs can be used for sentence classification

e.g., sentiment classification
positive How to compute
sentence encoding?

Sentence
encoding

seoe)
soeo)
soeo)
soeo)
seoe)

lot

overall li enjoyed the movie

Q

63

Slide from Christopher Manning

RNNs can be used for sentence classification

e.g., sentiment classification
positive How to compute
sentence encoding?

Sentence Basic way:
encoding Use final hidden
state
eUa/g

ecoo]

i

overall / enjoyed the movie

ecoo)

D

Q

lot

64

Slide from Christopher Manning

RNNs can be used for sentence classification
e.g., sentiment classification
positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

lot

overall li enjoyed the movie

Q

65

Slide from Christopher Manning

RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Here the RNN acts as an
encoder for the Question (the
hidden states represent the
Question). The encoder is part

Answer: German

of a larger neural system. Context: Ludwig

van Beethoven was
a German
composer and
pianist. A crucial
figure ...

Question: what nationality was Beethoven ?
66

Slide from Christopher Manning

RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

RNN-LM
A
r N\
what’s the weather

Input (audio)

<START> what’s the

This is an example of a conditional language model.
We'll see Machine Translation in much more detail starting next lecture.

67

Slide from Christopher Manning

Terminology and a look forward

The RNN described in this lecture = simple/vanilla/ElIman RNN f

Next lecture: You will learn about other RNN flavors

like LSTM % and GRU T and multi-layer RNNs

&

By the end of the course: You will understand phrases like
“stacked bidirectional LSTMs with residual connections and self-attention”

- —

68

Slide from Christopher Manning

Summary of Language Modelling and RNNs

>

>

Modelling the distribution over strings of words in natural
language is a fundamental task

This task can be decomposed into predicting the next word
given the prefix of previous words

Recurrent neural networks (RNNs) can encode arbitrarily
long prefixes by passing information through arbitrarily
many hidden representations

Log-likelihood training gives probability estimates for the
next word

Using the same weights for every position allows RNNs to
generalise across sequence positions and lengths

Outline

Deep Backprop with RNNs (LSTMs)

1. Problems with RNNs: Vanishing and Exploding Gradients
JA(6)

h1) h(2 h®)

(e0oe]
(oo

Slide from Christopher Manning

Vanishing gradient intuition

&

R h

JA(6)

X

aJW

Oh1)

Slide from Christopher Manning

Vanishing gradient intuition
JD(6)

A h® h()

S
o)
S
ook
s

aJ W 9n® W

R0~ R 9R®

chain rule!

Slide from Christopher Manning

Vanishing gradient intuition

J(4)(9)
) h(®) h®) h(4)
wo[o| w8 w [8
(] () '
@) @
oJW Oh®? on® 9J@

Oh1) Oh(1)

Slide from Christopher Manning

Oh(2) * Oh3)

chain rule!

Vanishing gradient intuition
JD(6)

€
G

hM h

S
[@ees)
s
ok
N

970 on® oh®) ohY 9JW
R oR FCk R 9h®
chain rule!

Slide from Christopher Manning

Vanishing gradient intuition
JD(6)

h1) h(h®)
w o [olw [o| aw
(] (]
@ @
oJ@) oh2) Oh®) oh® oJ@
oRm ~ |aRm|[* oR@[* RO Gh®

Vanishing gradient problem:
When these are small, the gradient

What happens if these are small? signal gets smaller and smaller as it
backpropagates further

Slide from Christopher Manning

Vanishing gradient proof sketch (linear case)

* Recall: O = o (Whh(‘—l) FWz® 4 bl)
* Whatif o were the identity function, o(z) =z ?
Oh® . , 3 '
DRE—D — diag (‘7 (Whh(t D4 Woz® + bl)) W, (chain rule)
=IW;, =W,

* Consider the gradient of the loss JD(9) on step i, with respect
to the hidden state h(Y) on some previous step j. Let { = — j

aJD(0) 9D (0) Oh®)
oRG) — oR® DR (chain rule)
j<t<i
0} (i)
= 97(0) H W), = M) (value of _0h)

Oh() i<i<i Oh(t—1)

If Wy, is “small”, then this term gets
exponentially problematic as £ becomes large

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
10 (and supplemental materials), at http://proceedings.mir.press/v28/pascanul3-supp.pdf

Slide from Christopher Manning

Vanishing gradient proof sketch (linear case)

sufficient but

* What’s wrong with w7, ? not necessary

N . r
* Consider if the eigenvalues of W}, are all less than 1:
Ay Ay Ap < 1

41,92 ---,49n (eigenvectors)

aJ@

* We can write gh(ff’) w using the eigenvectors of W), as a basis:

h

aJ®(0) -
R0 Wi = Zci ~ 0 (for large ()
Approaches 0 as £ grows, so gradient vanishes

* What about nonlinear activations o (i.e., what we use?)
 Pretty much the same thing, except the proof requires \; <y
for some v dependent on dimensionality and «

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013, htto://oroceedings. mir press/y
an: materials), at htto://proceedings.mlr.press/v28/pa
1 d Is), at b g 28,

pascanu13.pdf
nu13-supp.pdf

Slide from Christopher Manning

Why is vanishing gradient a problem?
J2)(6) J®(0)

h1) h(2 h3)

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are basically updated only with respect to near effects, not long-term effects.

12

Slide from Christopher Manning

Effect of vanishing gradient on RNN-LM

* LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

* To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7t step and the target word “tickets” at the end.

* Butif the gradient is small, the model can’t learn this dependency

* So, the model is unable to predict similar long-distance dependencies at test time

* In practice a simple RNN will only condition ~7 tokens back [vague rule-of-thumb]

13

Slide from Christopher Manning

Why is exploding gradient a problem?

 If the gradient becomes too big, then the SGD update step becomes too big:

learning rate

grew = 9ol — oV, (6)

_v_l
gradient

* This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in lowa

* Inthe worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

14

Slide from Christopher Manning

Gradient clipping: solution for exploding gradient

* Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g <— 90

if ||g|| > threshold then

threshold 4
R -

end if

 Intuition: take a step in the same direction, but a smaller step

* In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

15 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf

Slide from Christopher Manning

How to fix the vanishing gradient problem?

16

The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

In a vanilla RNN, the hidden state is constantly being rewritten
RO =0 (Whh(t‘l) + Woz® 4+ b)

Could we design an RNN with separate memory which is added to?

Slide from Christopher Manning

Long Short-Term Memory RNNs (LSTMs)

* Atype of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the problem of
vanishing gradients

« Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) @

* Only started to be recognized as promising through the work of S’s student Alex Graves c. 2006
* Work in which he also invented CTC (connectionist temporal classification) for speech recognition

* But only really became well-known after Hinton brought it to Google in 2013
* Following Graves having been a postdoc with Hinton

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf

Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015
Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.
https://www.cs.toronto.edu/~graves/icml_2006.pdf

18

Slide from Christopher Manning

Long Short-Term Memory RNNs (LSTMs)

« Onstept, thereisa hidden state h(® and a cell state ¢(®
* Both are vectors length n
¢ The cell stores long-term information

¢ The LSTM can read, erase, and write information from the cell
* The cell becomes conceptually rather like RAM in a computer

* The selection of which information is erased/written/read is controlled by three corresponding gates
* The gates are also vectors of length n
* On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
* The gates are dynamic: their value is computed based on the current context

19

Slide from Christopher Manning

Long Short-Term Memory (LSTM)

We have a sequence of inputs x(), and we will compute a sequence of hidden states A and cell states
c®. On timestep t:

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \

FO = (th“—l) + Uz +b f)
N i® = (Wih(t—n +Uz® + b@.)
Output gate: controls what parts of

cell are output to hidden state ™~ o® = (Woh(t—l) +U,z® + bo)

Input gate: controls what parts of the
new cell content are written to cell

New cell content: this is the new >~
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

&® — tanh (Wch“—l) +U® + bc)
e® = $O 6 =D 4 40 a0

All these are vectors of same length n

Hidden state: read (“output”) some | , B () — o) ¢ tanh c® I)
content from the cell

Gates are applied using element-wise
20 (or Hadamard) product: ©

Slide from Christopher Manning

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

® ©
t t

&)
! N

I
©) ©

1 0 — > <

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

21 Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs,

Slide from Christopher Manning

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

| Write some new cell content | %

The + sign is the secret!

to the hidden state

Forget some
cell content \Q . 4/ IN L
Cr1 P—X t t
o,
t Output some cell content
Compute the i © I
forgetgate |
heip = X — h;
Compute the Xt Compute the Compute the
input gate new cell content output gate

— o — > <

Neural Network Pointwise Vector
Layer Operation Transfer ~ Comcatenate Copy

22

Slide from Christopher Manning

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs,

How does LSTM solve vanishing gradients?

* The LSTM architecture makes it much easier for an RNN to
preserve information over many timesteps

* e.g., if the forget gate is set to 1 for a cell dimension and the input gate
set to 0, then the information of that cell is preserved indefinitely.

* In contrast, it’s harder for a vanilla RNN to learn a recurrent weight
matrix W), that preserves info in the hidden state

* In practice, you get about 100 timesteps rather than about 7

* However, there are alternative ways of creating more direct and linear
pass-through connections in models for long distance dependencies

23

Slide from Christopher Manning

Is vanishing/exploding gradient just an RNN problem?

* Nol! It can be a problem for all neural architectures (including feed-forward and
convolutional), especially very deep ones.
 Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it
backpropagates
* Thus, lower layers are learned very slowly (i.e., are hard to train)
* Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example: x
e Residual connections aka “ResNet”

X
identity

« Also known as skip-connections

* The identity connection
preserves information by default

e This makes deep networks much Figure 2. Residual learning: a building block.
easier to train

"Deep Residual Learning for Image ition", He et al, 2015. htps://ankiv.ore/pdf/1512.03385 pdf

24

Slide from Christopher Manning

Is vanishing/exploding gradient just a RNN problem?

Other methods:
¢ Dense connections aka “DenseNet”
« Directly connect each layer to all future layers!

* Highway connections aka “HighwayNet”

* Similar to residual connections, but the identity
connection vs the transformation layer is
controlled by a dynamic gate

* Inspired by LSTMs, but applied to deep
feedforward/convolutional networks

” n @
\J ~{ H +(x
i Information A
ﬁ\ L ool oy
«C

Figure 1: A S-layer dense block with a growth rate of k = 4.
Each layer takes all preceding feature-maps as input. .

* Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

“Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993 pdf “Highway Networks", Srivastava et al, 2015. https://a

“Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

25

Slide from Christopher Manning

LSTMs: real-world success

* In 2013-2015, LSTMs started achieving state-of-the-art results
* Successful tasks include handwriting recognition, speech recognition, machine
translation, parsing, and image captioning, as well as language models
* LSTMs became the dominant approach for most NLP tasks

e Now (2019-2023), Transformers have become dominant for all tasks
* For example, in WMT (a Machine Translation conference + competition):

¢ In WMT 2014, there were 0 neural machine translation systems (!)
e In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
¢ In WMT 2019: “RNN” 7 times, "Transformer” 105 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
indings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
"Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

26

Slide from Christopher Manning

Summary of Deep Backprop with RNNs

» Backprop through time can be arbitrarily deep, which can
cause vanishing or exploding gradients

» Gated identity recurrent connections can address
vanishing gradients

» Gradient clipping can address exploding gradients

» LSTMs are effective ways to learn (relatively) long
dependencies

» Similar problems exist in all deep neural networks,
requiring skip connections or identity biases

Outline

Bigger is Better with RNNs

4. Bidirectional and Multi-layer RNNs: motivation

Task: Sentiment Classification

L. We can regard this hidden state as a
positive representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

Sentence
encoding

the movie was terribly exciting

32

Slide from Christopher Manning

These contextual
representations only
contain information
about the /eft context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

This contextual representation of “terribly”

Bidirectional RNNs has both left and right context!
—
(%)
o
o
Concatenated (0]
hidden states @
(]
(]
(]
(¢] (]
(¢] (]
Backward RNN) °
(€] (€]
° ° [_o
Forward RNN : : :
(] (] (]
the movie was terribly exciting !

33

Slide from Christopher Manning

Bidirectional RNNs

On timestep t:

Backward RNN %(t) = RNNBW(g(t‘H)’ :l:(t))

This is a general notation to mean
“compute one forward step of the
RNN” — it could be a simple RNN or
LSTM computation.

Forward RNN TL)(t) =(Tl)(t_l),:1:(t)) } Generally, these

two RNNs have
separate weights

Concatenated hidden states : [TL}(t); ﬁ(t)]

34

We regard this as “the hidden
state” of a bidirectional RNN.

This is what we pass on to the
next parts of the network.

Slide from Christopher Manning

Bidirectional RNNs: simplified diagram

sooe)
soso)
sees)
soeo)

the movie was terribly exciting

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be the
concatenated forwards+backwards states

35

Slide from Christopher Manning

Bidirectional RNNs

36

Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence

* They are not applicable to Language Modeling, because in LM you only have left
context available.

If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is
powerful (you should use it by default).

For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.

* You will learn more about transformers, including BERT, in a couple of weeks!

Slide from Christopher Manning

Multi-layer RNNs

* RNNs are already “deep” on one dimension (they unroll over many timesteps)

* We can also make them “deep” in another dimension by
applying multiple RNNs — this is a multi-layer RNN.

* This allows the network to compute more complex representations
* The lower RNNs should compute lower-level features and the higher RNNs should
compute higher-level features.

* Multi-layer RNNs are also called stacked RNNs.

37

Slide from Christopher Manning

Multi-layer RNNs The hidden states from RNN layer i
are the inputs to RNN layer i+1

YT

~
>
o

movie was terribly exciting

Slide from Christopher Manning

Multi-layer RNNs in practice

39

Multi-layer or stacked RNNs allow a network to compute more complex representations
— they work better than just have one layer of high-dimensional encodings!
* The lower RNNs should compute lower-level features and the higher RNNs should
compute higher-level features.
High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or
feed-forward networks)

For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4
layers is best for the encoder RNN, and 4 layers is best for the decoder RNN

* Often 2 layers is a lot better than 1, and 3 might be a little better than 2
¢ Usually, skip-connections/dense-connections are needed to train deeper RNNs
(e.g., 8 layers)
Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
* You will learn about Transformers later; they have a lot of skipping-like connections

“Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

Slide from Christopher Manning

Summary of Bigger is Better with RNNs

» Bidirectional LSTMs (BiLSTMs) are useful as sentence
encoders

» Stacking RNNs adds depth, giving more complex abstract
features

	Language Modelling
	Recurrent Neural Networks
	Deep Backprop with RNNs (LSTMs)
	Bigger is Better with RNNs

