
EE-608: Deep Learning For NLP:
Language Modelling, Recurrent Neural

Networks, LSTMs

James Henderson

Idiap Research Institute

DLNLP, Lecture 2

Outline

Language Modelling

Recurrent Neural Networks

Deep Backprop with RNNs (LSTMs)

Bigger is Better with RNNs

Background on Neural Networks and Derivatives

Everyone should make sure they know the material covered in
cs224n-2023-lecture03-neuralnets.pdf at
http://web.stanford.edu/class/cs224n/

http://web.stanford.edu/class/cs224n/

Outline

Language Modelling

Recurrent Neural Networks

Deep Backprop with RNNs (LSTMs)

Bigger is Better with RNNs

• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words ,
compute the probability distribution of the next word :

where can be any word in the vocabulary

• A system that does this is called a Language Model

2. Language Modeling

exams
minds

laptops
books

9

Slide from Christopher Manning

Language Modeling

• You can also think of a Language Model as a system that
assigns a probability to a piece of text

• For example, if we have some text , then the
probability of this text (according to the Language Model) is:

10

This is what our LM provides

Slide from Christopher Manning

You use Language Models every day!

11

Slide from Christopher Manning

You use Language Models every day!

12

Slide from Christopher Manning

n-gram Language Models

the students opened their ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

13

Slide from Christopher Manning

n-gram Language Models

14

• First we make a Markov assumption: 𝑥(&'!) depends only on the preceding n-1 words

(statistical
approximation)

(definition of
conditional prob)

(assumption)

n-1 words

prob of a n-gram

prob of a (n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer: By counting them in some large corpus of text!

Slide from Christopher Manning

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have discarded
the “proctor” context?

15

Slide from Christopher Manning

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students
opened their 𝑤” never
occurred in data? Then 𝑤 has
probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 𝛿
to the count for every 𝑤 ∈ 𝑉.
This is called smoothing.

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

16

Slide from Christopher Manning

Storage Problems with n-gram Language Models

17

Storage: Need to store
count for all n-grams you
saw in the corpus.

Increasing n or increasing
corpus increases model size!

Slide from Christopher Manning

n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

Sparsity problem:
not much granularity

in the probability
distribution

Business and financial news

18

Slide from Christopher Manning

Generating text with a n-gram Language Model

19

You can also use a Language Model to generate text

today the _______

condition
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

sample

Slide from Christopher Manning

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price _______

condition
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability
distribution

sample

20

Slide from Christopher Manning

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of _______

condition
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability
distribution

sample

21

Slide from Christopher Manning

Generating text with a n-gram Language Model

22

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size…

Slide from Christopher Manning

How to build a neural language model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob. dist. of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 2:

23
in Paris are amazingmuseums

LOCATION

Slide from Christopher Manning

A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window

24

Slide from Christopher Manning

A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

25

Slide from Christopher Manning

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!
• 𝑥(!) and 𝑥(") are multiplied by

completely different weights in 𝑊.
No symmetry in how the inputs are
processed.

We need a neural architecture
that can process any length input

26

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Slide from Christopher Manning

Outline

Language Modelling

Recurrent Neural Networks

Deep Backprop with RNNs (LSTMs)

Bigger is Better with RNNs

3. Recurrent Neural Networks (RNN)

27

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights 𝑊 repeatedlyA family of neural architectures

outputs
(optional)

Slide from Christopher Manning

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

28

Slide from Christopher Manning

RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from
many steps back

• Model size doesn’t increase for
longer input context

• Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps
back

More on
these later

29

Slide from Christopher Manning

Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

30

Slide from Christopher Manning

Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

31

Predicted
prob dists

Slide from Christopher Manning

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

32

Predicted
prob dists

= negative log prob
of “opened”

Slide from Christopher Manning

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

33

Predicted
prob dists

= negative log prob
of “their”

Slide from Christopher Manning

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

34

Predicted
prob dists

= negative log prob
of “exams”

Slide from Christopher Manning

Training an RNN Language Model

+ + + + … =

the students opened their …exams

…

35

Corpus

Loss

Predicted
prob dists

“Teacher forcing”

Slide from Christopher Manning

Training a RNN Language Model

• However: Computing loss and gradients across entire corpus at once is
too expensive (memory-wise)!

• In practice, consider as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

• Compute loss for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

36

Slide from Christopher Manning

Backpropagation for RNNs

37

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight

is the sum of the gradient
w.r.t. each time it appears”

Why?

Slide from Christopher Manning

Multivariable Chain Rule

38

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Slide from Christopher Manning

Training the parameters of RNNs: Backpropagation for RNNs

39

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

equals

equals

equals

equals

equals

Apply the multivariable chain rule:
= 1

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Slide from Christopher Manning

Generating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my
sample

favorite
sample

season
sample

is

is40

sample

spring

spring

sample

</s>

Slide from Christopher Manning

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

41

Slide from Christopher Manning

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

42

Slide from Christopher Manning

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

43

Slide from Christopher Manning

Generating text with a RNN Language Model

44

Let’s have some fun!
• You can train a RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)

Slide from Christopher Manning

Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss :

45

Inverse probability of corpus, according to Language Model

Normalized by
number of words

Lower perplexity is better!

Slide from Christopher Manning

RNNs greatly improved perplexity over what came before

n-gram model

Increasingly
complex RNNs

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

46

Slide from Christopher Manning

5. Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM (despite some problems)

• RNNs are also useful for much more!
60

Slide from Christopher Manning

Why should we care about Language Modeling?

61

• Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

• Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

• Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

Slide from Christopher Manning

Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN

62

Slide from Christopher Manning

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

e.g., sentiment classification

63

Slide from Christopher Manning

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

equals

How to compute
sentence encoding?

Basic way:
Use final hidden

state

e.g., sentiment classification

64

Slide from Christopher Manning

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

e.g., sentiment classification

65

Slide from Christopher Manning

RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure …

Beethoven ?what nationality wasQuestion:

Here the RNN acts as an
encoder for the Question (the
hidden states represent the
Question). The encoder is part
of a larger neural system.

Answer: German

lots o
f n

eural

arch
ite

ctu
re

lots of neural

architecture

66

Slide from Christopher Manning

RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail starting next lecture.

67

Input (audio)

<START>

conditioning

RNN-LM

Slide from Christopher Manning

Terminology and a look forward

By the end of the course: You will understand phrases like
“stacked bidirectional LSTMs with residual connections and self-attention”

The RNN described in this lecture = simple/vanilla/Elman RNN

Next lecture: You will learn about other RNN flavors

like LSTM and GRU

68

and multi-layer RNNs

Slide from Christopher Manning

Summary of Language Modelling and RNNs

▶ Modelling the distribution over strings of words in natural
language is a fundamental task

▶ This task can be decomposed into predicting the next word
given the prefix of previous words

▶ Recurrent neural networks (RNNs) can encode arbitrarily
long prefixes by passing information through arbitrarily
many hidden representations

▶ Log-likelihood training gives probability estimates for the
next word

▶ Using the same weights for every position allows RNNs to
generalise across sequence positions and lengths

Outline

Language Modelling

Recurrent Neural Networks

Deep Backprop with RNNs (LSTMs)

Bigger is Better with RNNs

1. Problems with RNNs: Vanishing and Exploding Gradients

4

Slide from Christopher Manning

Vanishing gradient intuition

5

?

Slide from Christopher Manning

Vanishing gradient intuition

chain rule!

6

Slide from Christopher Manning

Vanishing gradient intuition

chain rule!

7

Slide from Christopher Manning

Vanishing gradient intuition

chain rule!

8

Slide from Christopher Manning

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further
9

Slide from Christopher Manning

Vanishing gradient proof sketch (linear case)

• Recall:
• What if were the identity function, ?

• Consider the gradient of the loss on step , with respect
to the hidden state on some previous step . Let

10

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets
exponentially problematic as becomes large

(value of)

Slide from Christopher Manning

Vanishing gradient proof sketch (linear case)

• What’s wrong with ?
• Consider if the eigenvalues of are all less than 1:

• We can write using the eigenvectors of as a basis:

• What about nonlinear activations (i.e., what we use?)
• Pretty much the same thing, except the proof requires
for some dependent on dimensionality and

11 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(eigenvectors)

Approaches 0 as grows, so gradient vanishes

sufficient but
not necessary

Slide from Christopher Manning

Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are basically updated only with respect to near effects, not long-term effects.

12

Slide from Christopher Manning

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time

• In practice a simple RNN will only condition ~7 tokens back [vague rule-of-thumb]

13

Slide from Christopher Manning

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

14

learning rate

gradient

Slide from Christopher Manning

Gradient clipping: solution for exploding gradient

15

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

Slide from Christopher Manning

How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• Could we design an RNN with separate memory which is added to?

16

Slide from Christopher Manning

Long Short-Term Memory RNNs (LSTMs)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the problem of
vanishing gradients

• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) 💜

• Only started to be recognized as promising through the work of S’s student Alex Graves c. 2006
• Work in which he also invented CTC (connectionist temporal classification) for speech recognition

• But only really became well-known after Hinton brought it to Google in 2013
• Following Graves having been a postdoc with Hinton

18

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf
Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015

Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.
https://www.cs.toronto.edu/~graves/icml_2006.pdf

Slide from Christopher Manning

Long Short-Term Memory RNNs (LSTMs)

• On step t, there is a hidden state 𝒉(") and a cell state 𝒄(")

• Both are vectors length n
• The cell stores long-term information
• The LSTM can read, erase, and write information from the cell

• The cell becomes conceptually rather like RAM in a computer

• The selection of which information is erased/written/read is controlled by three corresponding gates
• The gates are also vectors of length n
• On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
• The gates are dynamic: their value is computed based on the current context

19

Slide from Christopher Manning

We have a sequence of inputs 𝑥("), and we will compute a sequence of hidden states ℎ(") and cell states
𝑐("). On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e

le
ng

th
 n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

20
Gates are applied using element-wise

(or Hadamard) product: ⊙

Slide from Christopher Manning

Long Short-Term Memory (LSTM)

21

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Slide from Christopher Manning

ct-1

ht-1

ct

ht

ft
it ot

ct

ct~

Long Short-Term Memory (LSTM)

22

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

The + sign is the secret!

Slide from Christopher Manning

How does LSTM solve vanishing gradients?

• The LSTM architecture makes it much easier for an RNN to
preserve information over many timesteps
• e.g., if the forget gate is set to 1 for a cell dimension and the input gate

set to 0, then the information of that cell is preserved indefinitely.
• In contrast, it’s harder for a vanilla RNN to learn a recurrent weight

matrix Wh that preserves info in the hidden state
• In practice, you get about 100 timesteps rather than about 7

• However, there are alternative ways of creating more direct and linear
pass-through connections in models for long distance dependencies

23

Slide from Christopher Manning

Is vanishing/exploding gradient just an RNN problem?

24

• No! It can be a problem for all neural architectures (including feed-forward and
convolutional), especially very deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it

backpropagates
• Thus, lower layers are learned very slowly (i.e., are hard to train)

• Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example:
• Residual connections aka “ResNet”
• Also known as skip-connections
• The identity connection

preserves information by default
• This makes deep networks much

easier to train
"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Slide from Christopher Manning

Is vanishing/exploding gradient just a RNN problem?

25

Other methods:
• Dense connections aka “DenseNet”
• Directly connect each layer to all future layers!

• Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

• Highway connections aka “HighwayNet”
• Similar to residual connections, but the identity

connection vs the transformation layer is
controlled by a dynamic gate

• Inspired by LSTMs, but applied to deep
feedforward/convolutional networks

”Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

Slide from Christopher Manning

LSTMs: real-world success

• In 2013–2015, LSTMs started achieving state-of-the-art results
• Successful tasks include handwriting recognition, speech recognition, machine

translation, parsing, and image captioning, as well as language models
• LSTMs became the dominant approach for most NLP tasks

• Now (2019–2023), Transformers have become dominant for all tasks
• For example, in WMT (a Machine Translation conference + competition):
• In WMT 2014, there were 0 neural machine translation systems (!)
• In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

26

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

Slide from Christopher Manning

Summary of Deep Backprop with RNNs

▶ Backprop through time can be arbitrarily deep, which can
cause vanishing or exploding gradients

▶ Gated identity recurrent connections can address
vanishing gradients

▶ Gradient clipping can address exploding gradients
▶ LSTMs are effective ways to learn (relatively) long

dependencies
▶ Similar problems exist in all deep neural networks,

requiring skip connections or identity biases

Outline

Language Modelling

Recurrent Neural Networks

Deep Backprop with RNNs (LSTMs)

Bigger is Better with RNNs

4. Bidirectional and Multi-layer RNNs: motivation

32

terribly exciting !the movie was

positive

Sentence
encoding

element-wise mean/max element-wise mean/max

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

Task: Sentiment Classification

Slide from Christopher Manning

Bidirectional RNNs

33
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Slide from Christopher Manning

Bidirectional RNNs

34

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean
“compute one forward step of the
RNN” – it could be a simple RNN or
LSTM computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Slide from Christopher Manning

Bidirectional RNNs: simplified diagram

35

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be the

concatenated forwards+backwards states

Slide from Christopher Manning

Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence
• They are not applicable to Language Modeling, because in LM you only have left

context available.

• If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is
powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.
• You will learn more about transformers, including BERT, in a couple of weeks!

36

Slide from Christopher Manning

Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over many timesteps)

• We can also make them “deep” in another dimension by
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex representations
• The lower RNNs should compute lower-level features and the higher RNNs should

compute higher-level features.

• Multi-layer RNNs are also called stacked RNNs.

37

Slide from Christopher Manning

Multi-layer RNNs

38
terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1

Slide from Christopher Manning

Multi-layer RNNs in practice

• Multi-layer or stacked RNNs allow a network to compute more complex representations
– they work better than just have one layer of high-dimensional encodings!
• The lower RNNs should compute lower-level features and the higher RNNs should

compute higher-level features.
• High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or

feed-forward networks)
• For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4

layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
• Often 2 layers is a lot better than 1, and 3 might be a little better than 2
• Usually, skip-connections/dense-connections are needed to train deeper RNNs

(e.g., 8 layers)
• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
• You will learn about Transformers later; they have a lot of skipping-like connections

39 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

Slide from Christopher Manning

Summary of Bigger is Better with RNNs

▶ Bidirectional LSTMs (BiLSTMs) are useful as sentence
encoders

▶ Stacking RNNs adds depth, giving more complex abstract
features

	Language Modelling
	Recurrent Neural Networks
	Deep Backprop with RNNs (LSTMs)
	Bigger is Better with RNNs

