EE-608: Deep Learning for
Natural Language Processing:

Diffusion

James Henderson

EEEEEEEEEEEEEEEEE

Idiap Research Institute

DLNLP, Lecture 12

Outline

Diffusion

Outline

Diffusion

Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise
Reverse denoising process (generative)
Sohl-Dickstein et al., Deep Unsupervised Learning using ! Ther ICML 2015
Ho et al., Denoising Diffusion ilistic Models, NeurlPS 2020
Song et al. Based Gt Modeling through ic Differential Equations, ICLR 2021 30

slide from https://cvpr2022-tutorial-diffusion-models.github.io

Slide from Ruigi Gao

Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise
Xo Xy X, X3 X4 X7
~— Y ~— Y~ T~~~
I I I I I I
T
q(xelxi-1) = N(xe; V1 — Bxeo1, BI) = q(xrrlx0) = H‘I(Xf|Xf—1) (joint)
t=1

Similar to the inference model in hierarchical VAEs.

slide from https://cvpr2022-tutorial-diffusion-models.github.io

Slide from Ruigi Gao

Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define ar = [[(1=Bs) = a(xe|xq) = N(xr:v/arxo, (1 — a)I)) (Diffusion Kernel)
s=1

For sampling: x; = v/a; xo+ /(1 —a;) ¢ where € ~ N(0,1)

B¢ values schedule (i.e., the noise schedule) is designed such that a7 — 0 and ¢(x7|x0) =~ N (x7;0,1))

slide from https://cvpr2022-tutorial-diffusion-models.github.io

Slide from Ruigi Gao

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that g(x7) ~ N (x7;0,1))

Generation:

Sample x7 ~ N (x7;0,I)

Iteratively sample X¢_1 ~ q(Xt71|Xp,)

True Denoising Dist.

In general, g(x;—1]x¢) o< q(x4—1)q(x¢|x¢—1) is intractable.

-

Xt

Diffused Data Distributions

alxo)

q(xy)

q(x,)

alxs)

alxq)

e~ "~ K7 W W

alxolx1)

alxy %)

alx;[xs)

alxs]x,)

LICCED)

Can we approximate q(x,g,l}xlt)? Yes, we can use a Gaussian distribution if B¢is small in each forward diffusion step.

slide from https://cvpr2022-tutorial-diffusion-

d

ithub.io.

Slide from Ruigi Gao

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data Noise
i i i i i A
(xr) = N 70,1 g
x7) = N(x7:0,
peer T o= pe(xor) = pxp) [] Palxe—1lxr)
po(xe—1]xt) = N (x¢—1: (¢, t), 071) =1
\ﬁ(_)
Trainable network Similar to the generative model in hierarchical VAEs.
(U-net, Denoising Autoencoder) u
slide from https://cvpr2022-tutorial-diffusion-models.github.io

Slide from Ruigi Gao

Learning Denoising Model

Variational upper bound

For training, we can form variational upper bound (negative ELBO) that is commonly used for training variational
autoencoders:

o PoX07)] -

By (x) [10g po(x0)] < Eyxy)g(x1.11x0) [’ q(x17]x%0)

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

L =E, | Dxv(q(xr|xo)||p(xr)) + E D (q(xi—1]x¢, %0)|[po(x—1]x)) — log pa(xo|x1))
8P R0l
7 t>1 D 2

where ¢(x¢—1|X¢, X0) is the tractable posterior distribution:
q(Xi-1]x1,%0) = N(xl,lzﬂ,(xl.xn). A1),

- Va—10, VI=05(1—a- 5 1- p
where fi,(x;, %) 1= il ! 1x0+ A — il l)x, and 3 := 126, B
1—ay 1—ay 1—ay

slide from https://cvpr2022-tutorial-diffusion-mod: ithub. io.

Slide from Ruigi Gao

Parameterizing the Denoising Model

Since both ¢(x;—1|x¢,X() and Pg(x¢—1|x¢)are Normal distributions, the KL divergence has a simple form:

Ly = Dxcw(q(xe-1]xt, %0) |po(xe-1x1)) = E, [) 5172 (1, x0) = po(x1, 1) |] +C
Recall that x; = v/ay x0 + /(1 — @) € . Ho et al. NeurIPS 2020 observe that:
i) 1 B
1\ X, X)) = —F——= | Xt — —F———F€
(Xt, Xo Vi t Vi—a
They propose to represent the mean of the denoising model using a noise-prediction network:

Ho(Xp, t) =

1 By
3 (X/ Joa ep(xt,))

With this parameterization

52
2071~ B)(1 —)

[le = eo(v/ar xo + V1 —ay (.,)”2} +C
N J

Li-1 = Exynqxo .N\ml)[

X
slide from https://cvpr2022-tutorial-diffusion-models.github.io/ t

Slide from Ruigi Gao

Training Objective Weighting

Trading likelihood for perceptual quality

32 _ - ;
Li-1 = Exyoylxg) e~N(0) [m\\‘ —eo(Var xo+ VI —ar e, f/)HZ}
2(1—
«)

At
The time dependent \; ensures that the training objective is weighted properly for the maximum data likelihood training.
However, this weight is often very large for small t’s.
Ho et al. NeurlPS 2020 observe that simply setting Ay = 1 improves sample quality. So, they propose to use:

Laimple = Baxggxo).cno1)t~u(17) [|l€ = €0(v/@ xo + VT = @ €, 1)[|*]
R S

Xt

slide from https://cvpr2022-tutorial-diffusion-models.github.io/
Slide from Ruigi Gao

Summary

Training and Sample Generation

Algorithm 1 Training Algorithm 2 Sampling
;: repeat (x0) 1: x7 ~N(0,1)
¢ X0 giXo 2: fort="T,...,1d
3: ¢t~ Uniform({1,...,T}) 3: °er N(E) 1)7 °
4. e~ N(0,I) ’ * T
5: Take gradient descent step on 4 X1 = \/}:Tt (xt - \}T—&‘:Ge(xt,t)) +oiz
e aam VIal 3
6: until converged 6: return xo

slide from https://cvpr2022-tutorial-diffusion-

dels.github.io.

Slide from Ruigi Gao

Implementation Considerations
Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent eg(xy, t)

l > €g(Xy,t)

Time Representation

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurIPS 2021)

slide from https://cvpr2022-tutorial-diffusion-models.github.io

39

Slide from Ruigi Gao

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical
VAEs.

However, in diffusion models:

The inference model is fixed: easier to optimize

The latent variables have the same dimension as the data. mREmmmmmmmanees
The ELBO is decomposed to each time step: fast to train

Can be made extremely deep (even infinitely deep)

0600

The model is trained with some reweighting of the ELBO.

Inference model Generative model

qa(zlx) p(x,2)
Vahdat and Kautz, NVAE: A Deep Hierarchical Variational NeurlPS 2020
Senderby, et al.. Ladder variational autoencoders, NeurlPS 2016 40

Slide from Ruigi Gao

Hierarchical VAEs

“Flat” VAEs suffer from simple priors

Making both inference model and generative
model hierarchical

49(21,2,31%) = 44 (211%)q4(22|21) g4 (23]22)

Po(21,2,3) = po(23)po(22|23)po(21]22)pe (x|21)

Better likelihoods are achieved with hierarchies of
latent variables

0600

Inference model Generative model

alzlx) p(x,2)
slide by Durk Kingma [Kingma and Welling, 201

Slide from Ruigi Gao

How to make sampling faster?

One bottleneck of diffusion models is its slowness in sampling: need 10-1000+ steps to generate high
quality samples

Generative models need to be fast for practical use.
One solution: distill diffusion models into models using just 4-8 sampling steps!

Progressive distillation for fast sampling of diffusion models, Salimans & Ho, ICLR 2022
On Distillation of Guided Diffusion Models, Meng et al., CVPR 2023

Slide from Ruigi Gao

Progressive distillation

How to make sampling faster?
Distill a deterministic ODE sampler (i.e. DDIM sampler) to the same model architecture.
At each stage, a “student” model is learned to distill two adjacent sampling steps of the “teacher”
model to one sampling step.

At next stage, the “student” model from previous stage will serve as the new “teacher” model.

t=1 6 € €
Zm:/Zl)4
212 = f(23743m)4 ﬁ
v Lx = f(36)
2174 = f(z1/2:m)4 ﬂ
x = f(z1/4:0)1
&
t=0 X X X

Distillation stage

Salimans & Ho, “Prc ive distillation for fast sampling of diffusion models”, ICLR 2022.

Slide from Ruigi Gao

Algorithm 1 Standard diffusion training Algorithm 2 Progressive distillation

Require: Model xg(z;) to be trained Require: | Trained teacher model x,, (zt)l
Require: Data set D Require: Data set D
Require: Loss weight function w() Require: Loss weight function w()

Require: Student sampling steps N

for K i
0 <n > Init student from teacher
while not converged do while not converged do

x~D > Sample data x ~D

t~U[0,1] > Sample time t=1i/N, i~ Cat[l,2,...,N]
e~ N(0,1) > Sample noise e~ N(0,1)

z; = ayX + o€ > Add noise to data Z; = (uX + o€

2 steps of DDIM with teacher
t=t—05/N, t"=t—1/N

zy = apXy(2¢) + %‘f(zz — Xy (z¢))
2z = Xy (2r) + 7 (20 — avky(zv))

%X =x b Clean data is target for X pe = ffii—_(é:%i—i);',ﬁ > Teacher X target

A = log[a?/o?] > log-SNR A\t = logla?/o?]

Ly = w(A)[|% - %o(z)|[> Loss (Lo = wA)[% — %o (@[}

0« 0—~VgLy > Optimization < 60—~VoLg

end while end while
n<+ 6 > Student becomes next teacher
N < N/2 > Halve number of sampling steps
end for
Salimans & Ho, "Prc ive distillation for fast sampling of diffusion models”, ICLR 2022.

Slide from Ruigi Gao

Classifier Guidance

Sampler technique

Assume pairs of data (x, c). A classifier guidance diffusion model consists of
A trained conditional diffusion model

A trained classifier model on noisy data X;

During sampling, at each denoising step, modify the score function to

Vi, 10g Pg.¢(X¢|c) = V, log pp(x¢|c) + wVx, log ps(c|xy).

/

From the conditional From the classifier
diffusion model model

Upweight samples that the classifier assigns high probability with, better alignment with c.

Cons: need to train an additional classifier. Increase model complexity.

Dhariwal and Nichol, “Diffusion models beat GANs on image synthesis”, NeurlPS 2021.

Slide from Ruigi Gao

Classifier-free Guidance

Sampler technique

Assume there’re two diffusion models, one conditional model and one unconditional model.

By Bayes’ rule we can define an implicit classifier

po(clxt) o< po(xe|c)/po(xe)-
The modified score function during sampling then becomes
Vi, log po(x:|c) = (1 +w)Vx, log pg(x¢|c) — wVy, log pg ().

From the conditional From the unconditional
diffusion model diffusion model

The two models can share weights, with the unconditional model taking a null class label c.

Ho & Salimans, “Classifier-Free Diffusion Guidance”, 2021.

Slide from Ruigi Gao

Diffusion for Text

Diffusion for text is challenging due to its discrete nature
» add continuous noise to word embeddings

» add continuous noise to the probability simplex over
vocabulary

» add discrete noise as edits to text
Open issues
» how to add noise in the forward model
> predicting error versus predicting xg directly
> autoregressive versus non-autoregressive generation
» adding conditioning on previous prediction of xg

Summary of Diffusion

» Diffusion does generation by doing many steps of
denoising applied to random noise

» Diffusion trains a denoiser on real data with artificial noise
added

» Diffusion for text is challenging due to its discrete nature
» Diffusion for text is still a very open research topic

	Diffusion

