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Proofs of LEO approximations

Under the assumption that we are in LEO and that all changes are negligible with respect to their
magnitude (ie ∆A

A < 10−3 ∀A ∈ (r, x, v)). We will prove the following approximations:

A) ∆x ≈ 3π∆r

B) ∆r
r ≈ 4∆v

v

Hints:
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2 ∀x|x ≪ 1

�
1

1+x ≈ 1− x ∀x|x ≪ 1

Solution.

A) Approach 1. In the expression ∆x ≈ v∆T , one can determine the ∆T easily assuming that the
change in x produces a small change in r. We can therefore only keep the first order in ∆r:
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Moreover, knowing the expression of the orbital speed v =
√

µ
r , we can replace in the above last

statement:
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Approach 2. The horizontal distance of two spacecrafts, after each orbit, is equal to the difference
between the orbital paths travelled in one orbit by the two spacecrafts.

∆x = Ccirc − Tv = 2π(r +∆r)− 2π

√
r3

µ

√
µ

r +∆r

= 2π

(
r +∆r − r

√
r

∆r + r

)
≈ 2π

(
r +∆r − r

√
1

1 + ∆r
r

)
≈ 2π

(
r +∆r − r

√
1− ∆r

r

)

≈ 2π

(
r +∆r − r

{
1− ∆r

2r

})
= 2π (∆r +∆r/2) = 3π∆r

■

B) The semi-major axis of an orbit with a perigee at r and an apogee at r +∆r is given by:
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2
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Therefore, the expression of the velocity at the perigee is given by :
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where vcirc is the orbital velocity for a circular orbit. The speed at the perigee of any given orbit
is greater than the circular orbit (vp ≥ vcirc) and therefore for a slightly eccentric orbit we have:
vp = vcirc +∆v. This yields :
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vcirc
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