The space shuttle has deployed a 20 km-long tether. At the end, there is a relatively light satellite. The shuttle is at the bottom end and the satellite at the top.

The tether is cut. What happens?

A Nothing, the satellite and space shuttle stay at their pre-cut altitude	0 X
B The satellite climbs significantly	0 🗸
C The shuttle climbs significantly	0 ×
D The shuttle lowers its altitude significantly	0 X
E The shuttle lowers its altitude slightly	0 🗸

What's a rideshare launch?

A A rocket that deploys a few satellites into very well defined orbits	0 ×
B A rocket that deploys tens to hundred satellites into a defined injection orbit	0 🗸
C A rocket that injects satellites into different orbits (there are multiple injection/manoeuvre sequences)	0 X

What are example of old space?

A The Starlink constellation	0 ×
B The Hubble Space Telescope	0 🗸
C The ISS	0 🗸
D The James Webb Space Telescope	0 🗸
E Umbra - A private radar observation constellation	0 ×

What is a satellite constellation?

A A group of satellites working together	0 🗸
B A group of satellites that appear just like astronomical constellation in the night sky	0 X
C A group of satellites made by the same manufacturer that have different missions	0 ×
D A group of satellites that have the same mission, but different manufacturer, orbits and operations	0 ×

What does street of coverage mean?

A A region devoid of coverage	0 ×
B The region of coverage by a single satellite	0 X
C The number of satellites needed for contiuous global coverage	0 X
D A region of continuous coverage by mutliple satellites	0 🗸

Which statement about the Outer Space Treaty is wrong?

A The Treaty bans the use of weapons of mass destruction in space	0 ×
B The Treaty states that space exploration should be for the benefit for all	0 X
C The Treaty grants territorial claims to the first arrived state	0 🗸
D The State that launches a space object retains jurisdiction and control over that object.	0 ×

What is the probability of collision Pc?

A Pc is the probability that two objects will be at the same altitude and inclination	0 X
Pc is the probability that the miss distance between two objects is less than the sum of their safety-radii.	0 🗸
C Pc is the probability that the radio emissions of 2 objects collide	0 ×
D Pc is the collision probability between 2 objects which cannot be computed analytically	0 ×

What statement is wrong about a collision avoidance (COLA) manoeuvre?

A COLA aims at maximising the miss-distance	0 X
B COLA aims at minimising the Δv	0 X
C COLA occurs one to a few orbits before TCA	0 X
D To compute the COLA, one can assume that there is only one encounter and no other object	0 🗸