What is 1 AU?

A The average Moon-Earth distance - 384,400 km	0 ×
B The average Earth-Sun distance - 150 M km	0 🗸
C The size of the solar system	0 X
D The radius of Jupiter	0 X

What statement does *NOT* apply to the concept of sphere of influence (SOI)?

A Within the SOI, we can consider only the two-body problem to compute the trajectory	0 X
B To compute the size of the SOI, we study the ratio of the perturbation in an heliocentric frame and in a planetocentric frame	0 X
C Within the SOI, there are at least two massive bodies	0 🗸
D The SOI depends on the average distance of the massive object and their relative mass	0 ×

On a Hohmann transfer from Earth to Venus (i.e. sunwards), what would be the trajectory within Earth's SOI?

A A circle	0 ×
B A parabola	0 ×
C An ellipse	0 ×
D An hyperbola	0 🗸

What is the correct equation for the hyperbolic excess velocity?

A
$$V_d^2 = (V_d^{\infty})^2 + V_{Esc}^2$$
 .

$$\mathbf{B} \quad \mathbf{V}_{d} = (\mathbf{V}_{d}^{\infty}) + \mathbf{V}_{Esc} \quad .$$

c
$$v_d^2 = (v_d^\infty + v_{Esc})^2 +$$
 .

$$V_d = V_d^{\infty} .$$

On a Hohmann transfer from Earth to Venus (i.e. sunwards), how should the departure hyperbolic excess velocity and the planetary velocity be aligned?

A Parallel, in the same direction	0 ×
B Perpendicular, with the hyperbolic excess velocity pointing away from the Sun	0 X
C Parallel, but in opposite direction	0 🗸
D Perpendicular, with the hyperbolic excess velocity pointing towards the Sun	0 ×

What is the heliocentric velocity right after leaving the SOI?

$$A V_D = V_P + v^{\infty} .$$

$$V_D^2 = V_P^2 + (v^{\infty})^2 .$$

$$C V_D = V_P + v^{\infty} - 2v^{\infty}V_P \cos(\beta) .$$

D
$$v_d^2 = (v_d^{\infty})^2 + v_{Esc}^2$$
 .

On a Hohmann transfer from Earth to Venus (i.e. sunwards), what would be the trajectory in the heliocentric phase?

A A circle	0 X
B A parabola	0 X
C An ellipse	0 🗸
D An hyperbola	0 X

Is the treatment of the arrival phase similar to the departure phase?

A No, it is always an elliptical orbit	0 X
B Yes, with the arrival hyperbolic excess velocity defining the semi-major axis of the planetocentric phase	0 🗸
C No, it is always a parabolic orbit.	0 X
D No, the total mecanical energy is not conserved	0 X

How can the probe get gravitationally bound to the planet on arrival?

A It will always be bound after entering the arrival SOI	0 X
B It can perform a braking Delta-v using its thrusters	0 🗸
C It can perform an aerocapture maneouvre	0 🗸