How can a phasing manoeuvre can be conducted?

A By making a Hohmann transfer	0 🗸
B By solving Lambert's problem	0 🗸
C By going to an orbit with a non-zero catch-up rate	0 🗸
D By going to an orbit with a zero catch-up rate	0 X

What is the correct equation for approximate the catch-up between two objects on coplanar orbits?

$$\Delta r = 3.5 \Delta v$$

B
$$\Delta x = 3 \pi (r_{TGT} - a_{chaser})$$
 .

- C The equation for the 1st burn in a Hohmann transfer 0 X
- D I have to solve Lambert's problem 0 X

You are in a spacecraft at the same altitude as the ISS, but 20 km behind. What should you do to catch up with it in 1 orbit?

A Go to an elliptical orbit, with a SMA about 2 km above	0 X
B Go to an elliptical orbit, with a SMA 2 km below	0 🗸
C Go to an elliptical orbit, with a SMA 7 km above	0 X
D Go to an elliptical orbit, with a SMA 7 km above	0 X
E Can't be done!	0 ×

What would be the total Δv needed to conduct the rendevous from 20 km behind the ISS?

(Hint: remember the LEO approximation, $\Delta r=3.5\Delta v$)

A $\Delta v \sim 1.1 \text{ m/s}$	0	~
$B \Delta v \sim 0.6 \text{ m/s}$	0	×
C $\Delta v \sim 7.0 \text{ m/s}$	0	×
$D \Delta v \sim 0.3 \text{ m/s}$	0	×

You are in a spacecraft at the same altitude as the ISS, but 20 km behind. What happens if you increase the energy of your orbit by conducting one posigrade burn?

A The final orbit will circular	0 X
B You will catch-up with the ISS	0 X
C You will fall behind the ISS	0 🗸
D The final orbit's period will be shorter	0 ×

You are an astronaut conducting an EVA to work on the station's solar panel. At some point you lose a tool by accident. It floats away from you towards the center of the Earth. What is the trajectory of that object relative to the ISS?

A It will start trailing behind at a constant rate from the ISS	0 ×
B It will start moving in front of the ISS at a constant rate	0 X
C It will make an orbit around the ISS and potentially hit the station 15 ISS-orbits later	0 X
D It will make an orbit around the ISS and potentially hit the station 1 ISS-orbits later	0 🗸

What is the typical chaser configuration with respect to the target before starting a rendezvous?

A Below and behind	0 🗸
B Below and ahead	0 ×
C Above and behind	0 ×
D On orbits with different inclinations	0 ×

What does LVLH mean?

A A geocentric non-inertial frame	0 X
B A Local Vertical Local Horizontal comoving reference frame	0 🗸
C Louis Vuitton Moët Hennessy	0 X
D A helocentric inertial frame	0 X

What are debris-generating events?

A The process of removing non-operational satellites from orbit	0 X
B A process that add inert pieces on orbit	0 🗸
C E.g. a satellite re-entry	0 ×
D E.g. a rocket fragmentation	0 🗸
E E.g. a satellite collision	0 🗸

What can you do to mitigate the debris risk?

A Making sure the satellite exploses at the end of its mission	0 X
B Dispose of the satellite by re-entry or put it in a graveyard orbit	0 🗸
C Add redundancy to critical systems	0 🗸
D Make very large and very heavy satellites	0 🗸