What is the condition for a Sun-synchronous orbit?

A A nodal regression of 2°/d	0 ×
B Alt ~ 36 000 km	0 ×
C A nodal progression of 0.986°/d	0 🗸
D An inclination of < 90°	0 ×

As orbital altitude increases, how does the orbital period T and the orbital velocity v behave?

A T is independant of the altitude	0 X
B T decreases	0 X
C Tincreases	0 🗸
D v is independant of the altitude	0 X
E v decreases	0 🗸
F v increases	0 ×

How are the burns in a Hohman transfer?

A the 1st prograde, the 2nd retrograde	0 ×
B both in the same direction	0 🗸
C both always prograde	0 ×
D both radial	0 ×

If I conduct a small dv = 0.1 m/s (retrograde), how will be my final orbit?

What is the correct equation of a plane change manoeuvre?

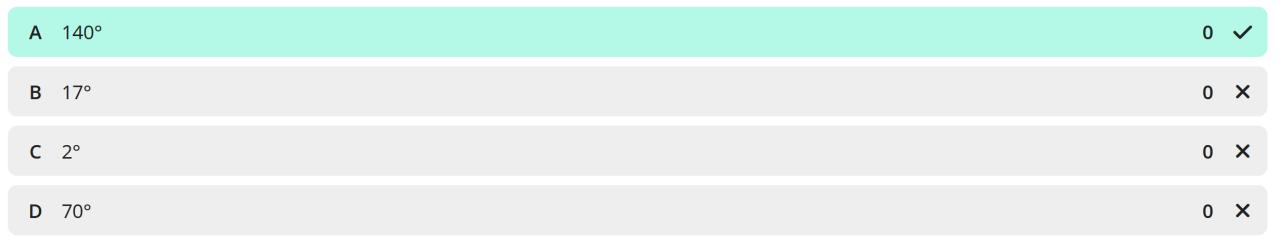
$$\Delta v = 2v \sin\left(\frac{\alpha}{2}\right) . 0$$

B
$$\Delta r \approx 3.5 \Delta v$$

C
$$\Delta v_1 = \sqrt{\frac{2\mu r_2}{r_1(r_1 + r_2)}} - \sqrt{\frac{\mu}{r_1}}$$
 .

When should a plane change manoeuvre be done to minimise effects on other parameters and use as little dv as possible?

A At perigee, when the change in kinetic energy is the greatest	0 ×
B At apogee, when the velocity is smallest	0 🗸
C At the nodal crossing	0 🗸
D At the highest angle from the equator possible	0 ×


A posigrade burn ...

A decreases altitude 180° from the burn point	0 X
B shifts the semi-major axis by 180°	0 X
C increases altitude 180° from the burn point	0 🗸
D changes the inclination of the orbit	0 X

I want to change the semi-major axis of the orbit, the RAAN and the inclination. What should I solve?

A A Hohmann tranfert	0 X
B A plane change manoeuvre	0 ×
C A one-tangent burn manoeuvre	0 X
D Lambert's problem	0 🗸

At 400 km altitude, what is the size of the Earth out of the ISS' window (i.e. the cupola)?

What does orbit determination (OD) mean?

A Finding a description of the orbit	0 🗸
B Solving for dv	0 X
C Designing the orbit pre-flight	0 X
D The process of converting a TLE to a state vector	0 🗙