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Solution to Exercise Session 3

Note Problems marked with a (⋆) are complimentary exercises and will not be solved in class.

Problem 1 Multiple Choice Questions

A) (⋆) A spacecraft is on a parking orbit at 1000 km above the surface of the Earth. At some point,
the spacecraft is accelerated to a departure velocity of 11 km/s. What will be the speed on the
surface of the sphere of influence and at infinity?

(1) 0.32, 0 km/s

(2) 1.18, 1.12 km/s

(3) 3.72, 3.60 km/s

(4) 6.15, 3.92 km/s

When the spacecraft reaches the surface of the sphere of influence, it is on a hyperbolic trajectory.
Using the conservation of energy, we can write:

v2S
2

− µ⊕
rS

=
v2d
2

− µ⊕
rd

where vd is the departure velocity, rd is the radius of the parking orbit, vS is the speed at
the sphere of influence (SOI) and rS is the radius of the SOI. The radius of the SOI is: rS =

d⊙⊕

(
µ⊕
µ⊙

) 2
5
= 0.924 · 106 km. Solving for vS gives: vS = 3.72 km/s.

The speed at infinity, or departure hyperbolic excess velocity v∞d , is the value of vS such that

v2S
2

− µ⊕
rS

=
v2d
2

− µ⊕
rd

with rS → ∞

We can write lim
rs→+∞

vS = v∞d Thus (v∞d )2 = v2d − v2Erd where vErd =
√

2µ⊕
rd

is the escape velocity

from a distance rd of the centre of the Earth. Thus, v∞
d = 3.60 km/s. This exercise shows that

the sphere of influence is a good approximation of “infinity” for our purpose.

B) The MSL spacecraft, which carried Curiosity to Mars, had a mass of 4050 kg at 200 km altitude
on a LEO parking orbit. Its orbital velocity was 7.78 km/s. To reach Mars, it had to accelerate
to a departure velocity vd of 11.50 km/s with a specific impulse of 320 s at a mass expulsion rate
of 5 kg/s. What was the duration of the burn?

(1) 20 s

(2) 562 s

(3) 1832 s
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(4) 102 s

From Tsiolkovsky rocket equation we have:

∆v = g0Isp ln

(
m

m− ṁt

)
wherem is the mass of the satellite, ṁ is the mass flow and tb the duration of the burn. Therefore:

tb =
m

(
exp

{
∆v
g0Isp

}
− 1

)
ṁ exp

{
∆v
g0Isp

} = 562 s (1)

C) (⋆) A similar spacecraft has ion thrusters of specific impulse 3200 s. We want to perform a
similar increase of velocity. Would the “burn” be shorter or longer?

(1) Longer

(2) Shorter
Why?

(1) The Isp is much higher

(2) The thrust is much lower

(3) The exhaust velocity is much lower

(4) The thrust is much higher

The Ion thrusters have a much lower thrust typically ∼ 10−2 N. If we use newton’s second law,
we have

F = m
∆v

∆t

∆t =
m∆v

F

It means that for the same ∆v as before, the burn time needs to be longer since we have a
lower thrust. Electric propulsion is not used for short powerful burns, but is used for maneuvers
carried out very gradually.

D) (⋆) A rocket is in free space, made of propellant only. Its initial mass is m and its thrust constant
at a value mg0. Its specific impulse is Isp. It burns off completely in a time ∆t. What is the
value of ∆t ?

(1) Its Isp in seconds

(2) 9.81 s

(3) 42 s

(4) Cannot be determined with available data.

The time ∆t to consumes a mass mp of propellant is given by:

∆t =
mp

ṁp

As the mass of the rocket m is equal to the mass of propellant mp, the time ∆t can be derived
from the definition of the specific impulse:

∆t =
m

ṁp
=

mg0
ṁpg0

=
F

ṁpg0
= Isp

And therefore the time needed to burn off completely this rocket full of propellant is its specific
impulse in second.
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E) The Galileo mission which explored the Jovian system used the gravity assist of Venus during its
complicated trip to Jupiter’s neighbourhood. Its v∞av

∞
av
∞
a at the entrance of the sphere of influence of

Venus was perpendicular to the velocity vector of the planet and had an amplitude of 6.2 km/s.
The gravity assist manoeuvre resulted in a deflection of Galileo’s planetocentric velocity vector by
27°. The heliocentric arrival velocity at Venus was Vbefore = 37.4 km/s. Estimate the heliocentric
velocity of the spacecraft at the departure from the sphere of influence of Venus.
Hint. Use the law of the cosine c2 = a2 + b2 − 2ab cos(γ) to compute the heliocentric velocity
after the slingshot.

(1) Cannot be determined with available data.

(2) 33.7 km/s

(3) 35.2 km/s

(4) 40.1 km/s

Figure 1: Trajectory pole view of Venus flyby on February 10, 1990 – Reproduc-
tion of D’Amario (1992) – http://adsabs.harvard.edu/abs/1992SSRv...60...23D.

The important point to realise here is that the arrival and the departure velocities in the reference
frame of the planet have the same amplitude of v∞d = v∞a = 6.2 km/s. The flyby will only change
the direction of the velocity vector of the space probe (v∞dv

∞
dv
∞
d ̸= v∞av

∞
av
∞
a ). Hence, the speed gained in

the reference frame of the Sun is gained by a different additions of Venus velocity vector Vv and
v∞. Using the cosine law with γ = 90◦ + 27◦, a = Vv, b = v∞d = v∞a , c = Vafter we get:

V 2
after = V 2

v + (v∞a )2 − 2Vvv
∞
a cos γ

The angle between v∞av
∞
av
∞
a (v∞,inv∞,inv∞,in in the figure) and the velocity vector of Venus is 90°. We can thus

make the following substitution : V 2
v = V 2

before − (v∞a )2 :

V 2
after = V 2

before − 2 ·
√

V 2
before − (v∞a )2 · v∞a cos γ =⇒ Vafter = 40.1 km/s
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Actually, the angle between the arrival infinity velocity and the velocity vector of Venus was not
exactly 90◦, hence the extra 400 m/s with respect to the speed indicated in figure 1.

Problem 2 Interplanetary Transfer

We plan the interplanetary transfer of a spacecraft from the Earth to Jupiter. We assume that both
orbits are circular and coplanar for simplicity.

A) Assume that the spacecraft follows a Hohmann transfer trajectory. Determine the departure
hyperbolic excess velocity v∞d needed to leave the influence of the Earth on our way to Jupiter
and the arrival hyperbolic excess velocity v∞a .

B) What is the departure velocity vd to achieve this mission from a circular parking orbit around
the Earth at 200 km altitude?

C) Find the spacecraft’s energy (per unit mass) on the hyperbolic Earth escape trajectory.

D) What is the time needed for the trip from Earth to Jupiter, on an Hohmann transfer trajectory?

E) Upon arrival in the sphere of influence of Jupiter, the impact parameter is chosen so as to
achieve, in the hyperbolic trajectory inside the Jupiter sphere of influence, a closest distance to
the center of Jupiter equal to 100,000 km. What is the value of the braking impulse ∆vi so as
to inject the spacecraft on a circular orbit around Jupiter at that altitude?

F) What is the phase angle between the Earth and Jupiter at Earth’s departure?

G) How often does this launch windows occur?

Numerical values:
Radius of Jupiter’s orbit RJupiter = 5.204 AU.
Mass of Jupiter mJupiter = 1.8989 · 1027 kg, mean radius rJ = 69, 911 km.
Solution.

A) Outside the sphere of influence of the Earth and of Jupiter, the trajectory is a simple Hohmann
transfer with the Sun at one focus of the elliptical transfer orbit, Earth at the perigee and Jupiter
at the apogee. The heliocentric velocity of the spacecraft at the departure is: (Remember capital
V means with respect to the Sun!)

Vd,S/C =

√
2µ⊙
R⊕

− µ⊙
a

where a = (R⊕+RJupiter)/2. Therefore, the departure hyperbolic excess velocity needed to leave
the sphere of influence of our planet is:

v∞d = Vd,S/C − V⊕ =

√
2µ⊙
R⊕

− µ⊙
a

−
√

µ⊙
R⊕

= 8.8 km/s

Upon arrival, the heliocentric velocity is described by:

Va,S/C =

√
2µ⊙

RJupiter
− µ⊙

a
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Thus, the arrival hyperbolic excess velocity at the sphere of influence of Jupiter is:

v∞a = Va,S/C − VJupiter =

√
2µ⊙

RJupiter
− µ⊙

a
−
√

µ⊙
RJupiter

= −5.6 km/s

The negative sign indicates that we arrive at Jupiter with a smaller heliocentric velocity than
Jupiter itself.

B) The departure velocity to achieve this mission is given by:

v2d = (v∞d )2 + v2Erd

where vErd is the escape velocity at the distance rd from the Earth’s center:

vErd =

√
2µ⊕
rd

= 11.0 km/s

hence yielding vd = 14.1 km/s.

C) The orbital energy in a hyperbolic orbit is ε = v2

2 − µ
r . This energy in a hyperbolic geocentric

escape trajectory where r → ∞ would be ε =
(v∞d )2

2 = 38.6 km2/s2 (= MJ/kg). The trajectory
has an energy > 0 and therefore the spacecraft is not bound to the Earth.

D) The travel time is half the period which is given by:

ttr = T/2 = π

√
a3

µ⊙
= 2.73 yr = 998 days

E) The arrival velocity at the periapsis of the hyperbolic orbit inside Jupiter’s sphere of influence
can be derived from

v2p = v2Esc + (v∞a )2
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Where, vEsc is the escape velocity from Jupiter at 100,000 km from the center of the planet:

vEsc =

√
2µJ

rclosest
= 50.3 km/s

hence vp = 50.6 km/s. The orbital velocity in a circular orbit of radius rclosest is

v◦,rclosest =

√
µJ

rclosest
= 35.6 km/s

Hence the value of the braking impulse must be

∆vinsertion = v◦,rclosest − vp = −15 km/s

F) As we assume that the planetary motions are circular (see Fig. 2), we have

ϕ0 = π − nJupiter · ttr = 97.16◦

where the mean motion is given by nJupiter =
√

µ⊙
a3Jupiter

.

Figure 2: Ideal phase alignment for an interplanetary transfer

G) This specific configuration happens at given intervals which are given by the synodic period :

Tsyn =
T⊕ · TJupiter

|T⊕ − TJupiter|
= 1.09 yr
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