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Solution to Exercise Session 2

Note Problems marked with a (⋆) are complimentary exercises and will not be solved in class.

Problem 1 Multiple Choice Questions

A) We perform a rendezvous with the ISS, which orbits the Earth in a circular LEO at an altitude
of 400 km. During the approach, the chaser (Space Shuttle) is in an elliptical orbit in the same
plane as the ISS with an apogee at 400 km and a perigee at 370 km, behind the ISS. On each
successive apogee crossing, will the Shuttle get closer to the ISS or further away? By how many
kilometers? (Give your answer as measured with respect to the orbit of the ISS).

(1) Closer

(2) Further away

(1) -282 km

(2) 282 km

(3) 7.7 km

(4) -4.3 km

(5) 141 km

(6) -152 km

Catch-up rate (per orbit) for the chaser in an elliptical orbit of semi-major axis a and the TGT
in a circular orbit of radius r: ∆x = 3π(r − a).

Figure 1: Relative trajectory of the chaser

Thus r - a =15 km, and ∆x = 3π15 km = 141 km

The chaser (Shuttle) will get closer to the TGT (ISS) on each apogee crossing.
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B) To reach the ISS, the Space Shuttle will have to execute different maneuvers. During rendezvous,
a maneuver is performed at apogee, which raises the perigee by 10 km. What is the ∆v needed
for this maneuver?

(1) 0.22 m/s

(2) 1.43 m/s

(3) 2.86 m/s

(4) 0.32 km/s

(5) 7.11 km/s

We use the LEO approximation ∆r ≃ 3.5∆v with ∆r = 10 km for the perigee altitude change:

∆v ≃ ∆r

3.5
=

10

3.5
= 2.86 m/s.

C) (⋆) CHEOPS was launched in 2019. This exoplanet observation satellite, partly designed at
EPFL, is in a Sun-synchronous orbit with an inclination of 98.6° to avoid long eclipses, which
allows to reduce battery load. To achieve this strategy of minimising eclipses, what are the local
mean solar times when the satellite crosses the Equator?

(1) Noon/midnight

(2) 3 pm/9 pm

(3) 6 am/6 pm (sunrise/sunset)

(4) 10 am/4 pm

(5) It does not matter.

A satellite on a Sun-synchronous orbit crosses the Equator always at around the same mean
solar time. To minimise eclipses, the orbit of CHEOPS is close to the terminator, the day/night
boundary on the surface of the Earth, so that the satellite is nearly always illuminated by the
Sun. This results in equatorial crossing at about 6 am/6 pm mean solar time (sunrise/sunset).

D) We want to inject a GPS satellite from a circular parking orbit at 230 km altitude to a final
circular orbit at 20’000 km altitude, using a Hohmann transfer without orbital plane change.
What are the amounts of the two maneuvers ∆v1 and ∆v2 ?

(1) 2.1, 3.7 km/s

(2) 1.4, 1.1 km/s

(3) 1.4, 2.1 km/s

(4) 2.1, 1.4 km/s

(5) 4.7, 4.4 km/s

The circular orbital velocities are given by v =
√

µ⊕
R⊕+h . Therefore :

vLEO =

√
µ⊕

R⊕ + 230 km
= 7.76 km/s

vGPS =

√
µ⊕

R⊕ + 20 000 km
= 3.89 km/s
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Figure 2: Hohmann Transfer

Using Fig. 2, one can compute the ∆v required:

∆v1 = 2.05 km/s

∆v2 = 1.43 km/s

∆vtot = ∆v1 +∆v2 = 3.48 km/s

Problem 2 Hohmann transfer and plane change

A satellite launched from Cape Canaveral (inclination 28.5°) is in a circular low Earth orbit (LEO)
at an altitude of 450 km. We want to use the Hohmann transfer technique to raise the altitude to a
circular geosynchronous orbit.

A) What are the values of the two ∆vs required for this manoeuvre ? What are the orbital velocities
for the initial parking orbit in LEO and for the final geosynchronous orbit ?

B) If we want to change to a geostationary orbit, what will be the additional ∆v or ∆vs ? What is
the best strategy for the execution this ∆v or ∆vs and when ?

C) Using the results of the previous questions, what are the values of the ∆vs involved ?

Solution.

A) The altitude of the geosynchronous orbit rGEO is given by T = 2π
√

r3GEO
µ⊕

where T is the duration

of the sidereal day (23h 56min 4.09s) which gives an altitude of hGEO = 35′785 km. The circular

orbital velocities are given by v =
√

µ⊕
R⊕+h . Therefore :

vLEO =

√
µ⊕

R⊕ + 450 km
= 7.64 km/s

vGEO =

√
µ⊕

R⊕ + 35′785 km
= 3.07 km/s

Using Fig. 2, one can compute the ∆v required:

∆v1 = 2.38 km/s

∆v2 = 1.45 km/s

∆vtot = ∆v1 +∆v2 = 3.83 km/s
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B) The additional ∆v is due to the plane change. The difference between the two orbits, geosynchronous
and geostationary, is that the latter is on the equatorial plane (i = 0°). It would be performed
at the apogee of the Hohmann transfer (when the second burn occurs). There are two options :

(1) We can perform the plane change first and then circularize the orbit to a geostationary
status or

(2) We can combine the burns for the circularization of the orbit and the plane change to take
advantage of their composition law (law of cosines, see next point).

As we want to achieve an orbit with a 0° inclination, the circularization ∆v) has to be performed
over the equator. Therefore the line of node of the transfer orbit has to be in the equatorial
plane. This implies to perform the first boost (∆v1) over the equator as well.

C) The velocity of the satellite at the apogee of the Hohmann transfer is

va =

√
µ⊕

(
2

r2
− 1

a

)
=

√
2µ⊕

(
1

r2
− 1

r1 + r2

)
= 1.62 km/s

The plane change alone requires a change of velocity of :

∆v∆i = 2vr2 sin(∆i/2) ≈ 800 m/s

If we were to do a combined manoeuvre, we have to use the law of cosine. The law of cosines
relates the lengths of the sides of a plane triangle to the cosine of one of its angles. The required
∆v can be calculated from (∆i = 28.5°):

∆v2combined = v2a + v2GEO − 2vavGEO cos(∆i) =⇒ ∆vcombined = 1.82 km/s

The value of the total ∆v carried out if two burns are done is 2.25 km/s where as the if we
combine the two this drops to only 1.82 km/s – which represents a reduction of 25% ! See Fig. 3.

Figure 3: ∆v for a Hohmann transfer and plane change
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Problem 3 (⋆) Geostationary orbit

A satellite is launched to a circular geostationary orbit, in the Earth equatorial plane. After receiving
the latest position information, the operator realizes that the satellite is orbiting on a circular orbit at
an altitude 2km below the target GEO orbit altitude.

A) Compute the drift in longitude, in °/day, due to the lower altitude.

B) What strategy could the operator use to put the satellite back on the correct GEO orbit?

C) Given the chosen strategy, compute the total ∆V necessary to reach the target orbit.

Solution.

We have rGEO = 42164.2 km, TGEO = 86164 s and rsat = 42162.2 km.

A) As rsat < rGEO, the satellite will cover slightly more than an orbit in one sidereal day and thus
drift towards the East.

As ∆r = rGEO−rsat is small, the drift to the East per orbit, versus an object on the GEO orbit,
can be approximated by

∆x ≈ 3π∆r (1)

Thus the drift in longitude per orbit will be given by

∆long/orbit =
3π∆r

rsat
= 0.000447 rad/day = 0.0256 °/day (2)

B) As the difference in radius of the two orbits is small compared to the radii themselves, we can
use a simplified Hohmann transfer to bring the satellite to the desired GEO orbit.

C) The simplified Hohmann transfer (small ∆V , small ∆r) states that

∆r

r
≈ 4

∆V

V
(3)
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with ∆r = 2 km, Vsat, the speed on the initial orbit, can be computed as follows

Vsat =

√
µ⊕
rsat

= 3074.7 m/s (4)

We obtain for the 1st burn

∆V =
1

4

∆r

r
V = 0.0364 m/s (5)

The simplified Hohmann transfer states that the total ∆V , including the 1st and 2nd burns, can
be approximated by ∆Vtotal = 2∆V .

We then have
∆Vtotal = 0.0728 m/s (6)

Problem 4 Chaser and Target

For each of the configurations and initial conditions (i) listed below, draw the trajectory of the chaser
(thick line orbit) vs. target (thin line orbit). In all cases the direction of motion is counter clockwise,
for both the chaser and the target.
Solution.
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