
EPFL – Space Mission Design & Operations
Elisabeth Rachith - Jonathan Magnin Solution to exercise session 1

Solution to Exercise Session 1

Problem 1 Multiple Choice Questions

A) A geostationary satellite is orbiting the Earth at an altitude of 36’000 km. Assuming the satellite
is stopped instantaneously and starts to fall, at what speed will it reach the top of the Earth’s
atmosphere, which is 100 km above the Earth’s surface?

(1) 89.2 km/s

(2) 10.2 km/s

(3) 14.8 km/s

(4) 7.4 km/s

Solution. This result is computed using the conservation of mechanical energy in the Earth-
centered inertial frame. To be remembered that we are expressing the potential energy and the
kinetic energy per unit mass (as shown in the class).

Epot1 + Ekin1 = Epot2 + Ekin2

− µ

R⊕ + h1
+ 0 = − µ

R⊕ + h2
+

1

2
v2

⇒ v =

√
2µ

(
1

R⊕ + h2
− 1

R⊕ + h1

)
= 10.21 km/s

with Earth gravitational parameter µ = G ·M⊕ = 3.986 · 1014 m3s−2, Earth radius R⊕ = 6378
km, h1 = 36′000 km and h2 = 100 km.

B) A spacecraft moves towards the Sun from the Earth along the line joining the two centers. At
which distance from the Earth’s center does the spacecraft feel no net gravitational force?

(1) 2.58 · 105 km

(2) 1.48 · 106 km

(3) 2.59 · 108 km

(4) 1.49 · 108 km

Solution.

FG⊕ = FG⊙ =⇒ mS/C
µ⊙
ℓ2⊙

= mS/C
µ⊕
ℓ2⊕

=⇒︸ ︷︷ ︸
ℓ⊙+ℓ⊕=d⊕⊙

√
µ⊙
µ⊕

ℓ⊕ = d⊕⊙ − ℓ⊕

=⇒ ℓ⊕ =
d⊕⊙

1 +
√

µ⊙
µ⊕

≈ 2.58 · 105 km

where ⊙ is the symbol for the Sun, ⊕ the symbol for the Earth, d⊕⊙ is the distance Sun–Earth
and ℓ the distance to the spacecraft (S/C) from the Sun or the Earth.
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C) (⋆) Estimate the equilibrium temperature of the Earth (considered without atmosphere) by using
the formula of the radiation power from the Sun and that of the self-radiation power from the
Earth into space, and solving for the temperature. Use the black body assumption α/ϵ = 1.

(1) 21◦C

(2) 6◦C

(3) −21◦C

(4) 0◦C

Solution. The power of the Sun absorbed by Earth is given by :

Pa = αSAn

Where An = πR2
⊕ is the cross-section (disc) intercepting the sun’s radiation. Earth emitted

power is approximated using the black-body radiation :

Pe = ϵσT 4Atot

Where Atot is the emitting surface (sphere) : Atot = 4πR2
⊕. At equilibrium, we have Pe = Pa;

therefore we can isolate T :

T =
(α
ϵ

)1/4
×
(

SAn

σAtot

)1/4

T =

(
S

4σ

)1/4

=

(
1.367× 103

4 · 5.67× 10−8

)1/4

= 278.63◦K ≈ 6◦C

Note: If we consider that only the fraction of the solar radiation reaching the Earth contributes
to heating (total solar radiation minus the albedo), then we find T = 251.8◦K = −21◦C.

D) The Cassini-Huygens spacecraft was launched in 1997 to explore Saturn. It was roughly of
cylindrical shape with two straight arms whose purpose was to deploy antennas far from the
main body some time after the launch, at an angle of 90 degrees with the cylindrical axis.

If before antenna deployment the spacecraft was rotating around its main axis at a rate of 1 rpm,
what was the rotation rate after antenna deployment? Consider the antennas to be point masses
and the mass of the deployment arms, negligible.

Data : Mass of Cassini without the antennas: Mc = 5600 kg, height hc = 5 m, diameter
dc = 2 m. Mass of each antenna ma = 50 kg, length of each arm la = 10 m
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(1) 7.61 deg/s

(2) 0.57 deg/s

(3) 1.16 deg /s

(4) 3.84 deg/s

Solution. The angular momentum before the deployment of the arm is equal to the moment to
the angular momentum after the deployment : L1 = L2 where L1 = Ic · ω1 and L2 = Ic+a · ω2.

Ic =
1

2
Mc

(
dc
2

)2

+ 2ma

(
dc
2

)2

Ic+a =
1

2
Mc

(
dc
2

)2

+ 2ma

(
la +

dc
2

)2

⇒ ω2 = ω1
Ic

Ic+a
≈ 1.16 deg /s

E) (⋆) An artificial satellite orbiting the Earth is in an elliptical orbit with a perigee altitude of
hp = 250 km and an apogee altitude of ha = 800 km. What is its orbital period?

(1) 18.0 min

(2) 89.5 min

(3) 95.1 min

(4) 100.9 min

Solution. The orbital period is given by :

T = 2π

√
a3

µ⊕
(1)

where a =
Rp+Ra

2 . R denotes the distance from the Earth center such that :

Rp = hp +R⊕ = 6628 km

Ra = ha +R⊕ = 7178 km

hence a = 6903 km and therefore T = 5708 s = 95.1 min

F) A spacecraft is on a free trajectory in the vicinity of the Earth. From which statement can it be
deduced that this spacecraft has sufficient energy to leave the gravitational well of the Earth (i.e.,
to not be on orbit around the Earth)?

(1) Etot ≥ 0

(2) Etot < 0

(3) Etot → ∞
(4) Etot → −∞

Solution. The total energy at infinity should be zero (or higher). The borderline case of a
closed orbit around the Earth corresponds to a parabolic orbit for which 1

2v
2 = µ

r , ie. v always
equal to the escape velocity at any distance from the Earth’s center. If we have 1

2v
2 ≤ µ

r , or
Etot < 0, then we have a closed orbit around the Earth.
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G) You are currently aboard the ISS (orbiting at an altitude of 400 km) and ground control tells you
that there is another satellite on the same orbital plane but 50 km higher. Assuming you have
just spotted it exactly above you at a certain time (conjunction), how long do you have to wait
until the next conjunction?

(1) 13.2 days

(2) 2.1 hours

(3) 15.2 hours

(4) 5.9 days

Solution. First, we need to compute the period of both the ISS and the satellite. Knowing the
orbit period is:

T = 2π

√
a3

µ⊕

We get TISS = 92.56 [min] = 1.54 [h] and Tsat = 93.58 [min] = 1.56 [h] assuming R⊕ =
6378 [km] and µ⊕ = 3.986 ∗ 1014 [m3s−2]. To find the next conjunction, we need to determine
the synodic period.

1

Tsyn
=

1

TISS
− 1

Tsat
=⇒ Tsyn = 140.70 [h] = 5.9 days

It means we can see the satellite passing by every 5.9 days.

Problem 2 Escape velocity

The Rosetta spacecraft launched by the European Space Agency successfully entered the orbit of the
comet 67P/Churyumov– Gerasimenko in August 2014. On 12 November 2014 the Philae lander was
released and touched down 7 hours later at a speed of 1 m/s.
The harpoon mechanism that was supposed to secure the lander failed and bounced off the comet. As-
suming a purely elastic impact, will the lander leave the comet or return at some point?

Data: Mass of the lander: ml = 100 kg, mass of the comet: Mc = 3.14 · 1012 kg, radius of the comet
(assume a spherical shape): Rc = 2 km.

Solution. Due to the elastic impact and important mass difference between the lander and the comet,
we can assume that the post-impact (f) velocity is the same (in amplitude) as the velocity before (i)
the impact : |v⃗f |=|v⃗i|

The escape velocity is the minimum velocity that an object or spacecraft has to be given to escape a
celestial body forever (reaching infinity at zero velocity).

Conservation of Energy:

− µ

Rc
+

1

2
v2e(r=Rc)︸ ︷︷ ︸

At the surface

= 0 + 0︸ ︷︷ ︸
At infinity

=⇒
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ve(r=Rc)
=

√
2µc

Rc
= 0.458m/s

where Rc is the radius of the comet.

The velocity of the lander after impact is more than twice as high as the escape velocity which shows
that if the impact is perfectly elastic, the lander will escape the comet and never come back.

Problem 3 (⋆) Potential energy close to the surface of the Earth

The general expression for the potential energy of a mass m in Earth’s gravitational field is Epot = −mµ
r ,

r being the distance to the center of the Earth. In the vicinity of the surface of the Earth, the differ-
ence in potential energy for a mass m when the height above the ground is changed by ∆h is equal to
mg∆h, where g is the gravitational acceleration at the surface of the Earth. Derive this approximate
expression from the general expression.

Intuitive solution. The difference in potential energy can be explained as the derivative of general
expression of potential energy with respect to r :

d

dr
Epot =

d

dr

(
−mµ

r

)
=

mµ

r2
= mg(r)

The gravitational acceleration of the Earth is g(r) ≡ µ
r2
. At Earth’s surface, g(R) = 9.81 m/s2. At

the vicinity of the Earth’s surface, when r varies as ∆h (∆h ≪ R), we can approximate the above
derivative:

d

dr
Epot

∣∣∣∣
R

=
mµ

R2
∼ ∆Epot

∆h
=⇒ ∆Epot ∼ mg(R)∆h

■
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Problem 4 Radiation balance

A) Consider two spherical satellites with radii r and 2r, respectively. Determine the radiation
balance of each object if they are exposed to solar radiation only and compare their temperatures.

B) Consider a cylindrical satellite (radius=1 m, height=2 m) that is spin-stabilised, and hence
rotating about its longitudinal axis. Assume that it is on an orbit where eclipses are negligible,
and that its longitudinal axis of rotation remains perpendicular to the sun rays. The external
structure of the satellite is made of steel (AM 350) with a (α/ε) ratio of 1.79. We only consider
the Sun’s radiation on the satellite and neglect the Earth’s albedo and infrarred self-radiation.

During a space shuttle mission, the science instrument of this satellite has to be replaced, and a space-
walk of two crew-members is planned. Will it be safe for the astronauts performing this task to touch
the surface of the satellite with their gloves if the “touch – no touch” limit is at 80 °C?

Solution. The satellite’s temperature can be determined with the radiation balance and is given by
the following formula

T =
(α
ε

)1/4
(

SAn

σAtot

)1/4

A) As for a spherical satellite An = πr2 and Atot = 4πr2, this corresponds to

T =
(α
ε

)1/4
(

Sπr2

σ4πr2

)1/4

=
(α
ε

)1/4
(

S

4σ

)1/4

The temperature of a spherical satellite is therefore not influenced by its radius.

B) As the Sun rays remain perpendicular to the rotational axis of the satellite, the surface perpen-
dicular to Sun’s direction given by

An = 2rh

where r is the radius of the cylinder and h its height.

The satellite emits over the whole surface of the cylinder, the total surface is therefore

Atot = 2πrh+ 2πr2

Hence the temperature of the satellite is given by :

T =
(α
ε

)1/4
(

SAn

σAtot

)1/4

=
(α
ε

)1/4
(

S · 2rh
σ · 2πr(h+ r)

)1/4

=
(α
ε

)1/4
(

S · h
σ · π(h+ r)

)1/4

This yields a temperature of the surface of

T = (1.79)1/4
(

1.4 · 103 · 2
5.67 · 10−8 · π(2 + 1)

)1/4

= 311.2 K

The surface temperature of the satellite is 311.2 K or 38 °C and it is below the critical limit of
“touch” – “no touch” and the astronauts can touch its surface without any risk.
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Mars Deimos

Mass M ,[kg] 0.64 · 1024 1.48 · 1015
Mean radius R,[km] 3397 6.2

Mean distance Mars center – Deimos d,[km] 23’460

Problem 5 (⋆) Mars and Deimos gravitational wells

Determine the gravitational accelerations on the surface of Mars and one of its two satellites, Deimos,
and make a scale drawing of the gravitational wells of both of them, normalized on the Earth’s gravi-
tational acceleration.

Solution. The depth of the gravitational well of Mars normalized on the Earth’s gravitational accel-
eration can be retrieved from:

W� = R�g� = R�g�
g0
g0

=
R�g�
g0

g0

where the term R�g�
g0

is the normalized gravitational well.

Determined val-
ues

Mars Deimos

µ[m3s−2] µ� = GM� = 4.27 · 1013[m3s−2] µDeimos = GMDeimos = 9.9 · 104[m3s−2]
g[ms−2] g� = µ�/R

2
�
= 3.7[ms−2] gDeimos = µDeimos/R

2
Deimos = 2.5 · 10−3[ms−2]

Depth of the
grav. wells
(normalized
to g0), [km]

R
�,norm. = 1281 [km] RDeimos,norm. = 1.6 · 10−3 [km]
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