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1.1 INTRODUCTION 

The physics of semiconductor devices is naturally dependent on the physics of semi- 
conductor materials themselves. This chapter presents a summary and review of the 
basic physics and properties of semiconductors. It represents only a small cross 
section of the vast literature on semiconductors; only those subjects pertinent to 
device operations are included here. For detailed consideration of semiconductor 
physics, the reader should consult the standard textbooks or reference works by 
Dunlap,' Madelung,2 Moll,3 Moss,4 Smith.s Boer: Seeger,' and Wang,s to name a 
few. 

To condense a large amount of information into a single chapter, four tables (some 
in appendixes) and over 30 illustrations drawn from experimental data are compiled 
and presented here. This chapter emphasizes the two most-important semiconductors: 
silicon (Si) and gallium arsenide (GaAs). Silicon has been studied extensively and 
widely used in commercial electronics products. Gallium arsenide has been inten- 
sively investigated in recent years. Particular properties studied are its direct bandgap 
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8 CHAPTER 1. PHYSICS AND PROPERTIES OF SEMICONDUCTORS-A REVIEW 

for photonic applications and its intervalley-carrier transport and higher mobility for 
generating microwaves. 

1.2 CRYSTAL STRUCTURE 

1.2.1 Primitive Cell and Crystal Plane 

A crystal is characterized by having a well-structured periodic placement of atoms. 
The smallest assembly of atoms that can be repeated to form the entire crystal is 
called a primitive cell, with a dimension of lattice constant a. Figure 1 shows some 
important primitive cells. 

Many important semiconductors have diamond or zincblende lattice structures 
which belong to the tetrahedral phases; that is, each atom is surrounded by four equi- 
distant nearest neighbors which lie at the corners of a tetrahedron. The bond between 
two nearest neighbors is formed by two electrons with opposite spins. The diamond 
and the zincblende lattices can be considered as two interpenetrating face-centered 
cubic (fcc) lattices. For the diamond lattice, such as silicon (Fig. Id), all the atoms are 
the same; whereas in a zincblende lattice, such as gallium arsenide (Fig. le), one sub- 
lattice is gallium and the other is arsenic. Gallium arsenide is a 111-V compound, since 
it is formed from elements of groups I11 and V of the periodic table. 

Most 111-V compounds crystallize in the zincblende ~tructure;~,~ however, many 
semiconductors (including some 111-V compounds) crystallize in the rock-salt or 
wurtzite structures. Figure If shows the rock-salt lattice, which again can be consid- 
ered as two interpenetrating face-centered cubic lattices. In this rock-salt structure, 
each atom has six nearest neighbors. Figure lg  shows the wurtzite lattice, which can 
be considered as two interpenetrating hexagonal close-packed lattices (e.g., the sub- 
lattices of cadmium and sulfur). In this picture, for each sublattice (Cd or s), the two 
planes of adjacent layers are displaced horizontally such that the distance between 
these two planes are at a minimum (for a fixed distance between centers of two 
atoms), hence the name close-packed. The wurtzite structure has a tetrahedral 
arrangement of four equidistant nearest neighbors, similar to a zincblende structure. 

Appendix F gives a summary of the lattice constants of important semiconduc- 
tors, together with their crystal structures.loJ1 Note that some compounds, such as 
zinc sulfide and cadmium sulfide, can crystallize in either zincblende or wurtzite 
structures. 

Since semiconductor devices are built on or near the semiconductor surface, the 
orientations and properties of the surface crystal planes are important. A convenient 
method of defining the various planes in a crystal is to use Miller indices. These 
indices are determined by first finding the intercepts of the plane with the three basis 
axes in terms of the lattice constants (or primitive cells), and then taking the recipro- 
cals of these numbers and reducing them to the smallest three integers having the 
same ratio. The result is enclosed in parentheses (hkl) called the Miller indices for a 
single plane or a set of parallel planes {hkl } .  Figure 2 shows the Miller indices of 
important planes in a cubic crystal. Some other conventions are given in Table 1. For 



Body-centered cubic Face-centered cubic 
(Na, W, etc.) (A], Au, etc.) 

ib) ic) 

TetrahedrA Diamond 
(Si, Ge, C, etc.) 

id) 

Rock-salt 
(PbS, PbTe, etc.) 

if) 

Tetrahedroh Zincblende 
(GaAs, Gap, etc.) 

ie) 

Wurtzite 
(CdS, ZnS, etc.) 

(9) 

Fig. 1 Some important primitive cells (direct lattices) and their representative elements; a is 
the lattice constant. 
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10 CHAPTER 1. PHYSICS AND PROPERTIES OF SEMICONDUCTORS-A REVIEW 

Fig. 2 Miller indices of some important planes in a cubic crystal. 

silicon, a single-element semiconductor, the easiest breakage or cleavage planes are 
the { 11 1 } planes. In contrast, gallium arsenide, which has a similar lattice structure 
but also has a slight ionic component in the bonds, cleaves on { 1 lo} planes. 

Three primitive basis vectors, a, b, and c of a primitive cell, describe a crystalline 
solid such that the crystal structure remains invariant under translation through any 
vector that is the sum of integral multiples of these basis vectors. In other words, the 
direct lattice sites can be defined by the set12 

R = m a + n b + p c  (1) 
where m, n, andp are integers. 

1.2.2 Reciprocal Lattice 

For a given set of the direct basis vectors, a set of reciprocal lattice basis vectors a*, 
b*, c* can be defined as 

Table 1 Miller Indices and Their Represented Plane or Direction of a Crystal Surface 

Miller 
Indices 

Description of plane or direction 

( h k l )  
( h k l )  
{ hkl} 

[hkl] 
(hkl) 

[hklm] 

For a plane that intercepts llh, llk, 1ll on the x-, y-, and z-axis, respectively. 
For a plane that intercepts the negative x-axis. 
For a full set of planes of equivalent symmetry, such as { 100) for (1 00), (0 lo), 
( O O l ) , ( i O O ) , ( O i O ) ,  and(O0i)incubicsymmetry. 
For a direction of a crystal such as [ 1001 for the x-axis. 
For a full set of equivalent directions. 
For a plane in a hexagonal lattice (such as wurtzite) that intercepts llh, llk, 1/l, 
llm on the q-, a*-, q-, andz-axis, respectively (Fig. lg). 
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such that a * a* = 2 r ,  a - b* = 0, and so on. The denominators are identical due to the 
equality that a - b x c = b - c x a = c * a x b which is the volume enclosed by these 
vectors. The general reciprocal lattice vector is given by 

G = ha* + kb* + Ic* (3) 
where h, k, and I are integers. It follows that one important relationship between the 
direct lattice and the reciprocal lattice is 

G,R = 2 z  x Integer, (4) 
and therefore each vector of the reciprocal lattice is normal to a set of planes in the 
direct lattice. The volume Vz of a primitive cell of the reciprocal lattice is inversely 
proportional to that (V,) of the direct lattice; that is, V: = ( ~ Z ) ~ / V ~ ,  where 
V , = a * b x c .  

The primitive cell of a reciprocal lattice can be represented by a Wigner-Seitz cell. 
The Wigner-Seitz cell is constructed by drawing perpendicular bisector planes in the 
reciprocal lattice from the chosen center to the nearest equivalent reciprocal lattice 
sites. This technique can also be applied to a direct lattice. The Wigner-Seitz cell in 
the reciprocal lattice is called the first Brillouin zone. Figure 3a shows a typical 
example for a body-centered cubic (bcc) reciprocal 1at t i~e. l~ If one first draws lines 
from the center point (r) to the eight comers of the cube, then forms the bisector 

t kz 

(4 

Fig. 3 Brillouin zones for (a) fcc, diamond, and zincblende lattices, (b) bcc lattice, and (c) 
wurtzite lattice. 
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planes, the result is the truncated octahedron within the cube-a Wigner-Seitz cell. It 
can be shown that14 a face-centered cubic (fcc) direct lattice with lattice constant a 
has a bcc reciprocal lattice with spacing 4nla. Thus the Wigner-Seitz cell shown in 
Fig. 3a is the primitive cell of the reciprocal (bcc) lattice for an fcc direct lattice. The 
Wigner-Seitz cells for bcc and hexagonal direct lattices can be similarly constructed 
and shown in Figs. 3b and 3c.15 It will be shown that the reciprocal lattice is useful to 
visualize the E-k relationship when the coordinates of the wave vectors k (lkl = k = 

2 d A )  are mapped into the coordinates of the reciprocal lattice. In particular, the Bril- 
louin zone for the fcc lattice is important because it is relevant to most semiconductor 
materials of interest here. The symbols used in Fig. 3a will be discussed in more 
details. 

1.3 ENERGY BANDS AND ENERGY GAP 

The energy-momentum (E-k) relationship for carriers in a lattice is important, for 
example, in the interactions with photons and phonons where energy and momentum 
have to be conserved, and with each other (electrons and holes) which leads to the 
concept of energy gap. This relationship also characterizes the effective mass and the 
group velocity, as will be discussed later. 

The band structure of a crystalline solid, that is, the energy-momentum (E-k) rela- 
tionship, is usually obtained by solving the Schrodinger equation of an approximate 
one-electron problem. The Bloch theorem, one of the most-important theorems basic 
to band structure, states that if a potential energy V(r) is periodic in the direct lattice 
space, then the solutions for the wavefunction dr,k) of the Schrodinger e q ~ a t i o n ' ~ , ' ~  

- -V2 + V(r)  1 W(r, k) = E(k)W(r, k )  ( 5 )  

are of the form of a Bloch function 

W(r, k) = exp(jk. r)Ub(r, k ) .  (6) 

Here b is the band index, &r,k) and Ub(r,k) are periodic in R of the direct lattice. 
Since 

W(r+ R, k )  = expLjk. ( r +  R)]U,(r + R, k )  

= exp(jk.r)exp(jk.R)Ub(r,  k ) ,  (7) 

and is equal to dr,k), it is necessary that k R is a multiple of 227. It is the property of 
Eq. 4 that the reciprocal lattice can be used when G is replaced with k for visualizing 
the E-k relationship. 

From the Bloch theorem one can also show that the energy E(k) is periodic in the 
reciprocal lattice, that is, E(k) = E(k+G), where G is given by Eq. 3. For a given band 
index, to label the energy uniquely, it is sufficient to use only k's in a primitive cell of 
the reciprocal lattice. The standard convention is to use the Wigner-Seitz cell in the 
reciprocal lattice (Fig. 3). This cell is the Brillouin zone or the first Brillouin 20ne.l~ 
It is thus evident that we can reduce any momentum k in the reciprocal space to a 
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point inside the Brillouin zone, where any energy state can be given a label in the 
reduced zone schemes. 

The Brillouin zone for the diamond and the zincblende lattices is the same as that 
of the fcc and is shown in Fig. 3a. Table 2 summarizes its most-important symmetry 
points and symmetry lines, such as the center of the zone, the zone edges and their 
corresponding k axes. 

The energy bands of solids have been studied theoretically using a variety of 
numerical methods. For semiconductors the three methods most frequently used are 
the orthogonalized plane-wave method,l79l8 the pseudopotential method,19 and the 
k - p  m e t h ~ d . ~  Figure 4 shows results of studies of the energy-band structures of Si 
and GaAs. Notice that for any semiconductor there is a forbidden energy range in 
which allowed states cannot exist. Energy regions or energy bands are permitted 
above and below this energy gap. The upper bands are called the conduction bands; 
the lower bands, the valence bands. The separation between the energy of the lowest 
conduction band and that of the highest valence band is called the bandgap or energy 
gap Eg, which is one of the most-important parameters in semiconductor physics. In 
this figure the bottom of the conduction band is designated E,, and the top of the 
valence band E, Within the bands, the electron energy is conventionally defined to be 
positive when measured upward from E,, and the hole energy is positive when mea- 
sured downward from E,. The bandgaps of some important semiconductors are listed 
in Appendix F. 

The valence band in the zincblende structure, such as that for GaAs in Fig. 4b, 
consists of four subbands when spin is neglected in the Schrodinger equation, and 
each band is doubled when spin is taken into account. Three of the four bands are 
degenerate at k = 0 (r point) and form the upper edge of the band, and the fourth band 
forms the bottom (not shown). Furthermore, the spin-orbit interaction causes a split- 
ting of the band at k = 0. 

Near the band edges, i.e., bottom of E, and top of E, the E-k relationship can be 
approximated by a quadratic equation 

where m* is the associated effective mass. But as shown in Fig. 4, along a given direc- 
tion, the two top valence bands can be approximated by two parabolic bands with dif- 
ferent curvatures: the heavy-hole band (the wider band in k-axis with smaller d2Eldk2) 

Table 2 Brillouin Zone of fcc, Diamond, and Zincblende Lattices: Zone Edges and Their 
Corresponding Axes (r is the Center) 

Point Degeneracy Axis 
r, ( 0 ~ 0 )  1 
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Fig. 4 Energy-band structures of (a) Si and (b) GaAs, where Eg is the energy bandgap. Plus 
signs (+) indicate holes in the valence bands and minus signs (-) indicate electrons in the con- 
duction bands. (After Ref. 20.) 

and the light-hole band (the narrower band with larger d2E/ak2). The effective mass in 
general is tensorial with components m i  defined as 

1 - 1 d 2 E ( k )  
m?. h2 dkidkj 

- 
'J 

The effective masses are listed in Appendix F for important semiconductors. 
Carriers in motion are also characterized by a group velocity 

1 dE 
g h d k  

lJ = - -  

(9) 

and with momentum 

p = h k .  (1 1) 
The conduction band consists of a number of subbands (Fig. 4). The bottom of the 

conduction band can appear at the center k = 0 (r) or off center along different k axes. 
Symmetry considerations alone do not determine the location of the bottom of the 
conduction band. Experimental results show, however, that in Si it is off center and 
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along the [ 1001 axis (A), and in GaAs the bottom is at k = 0 (r). Considering that the 
valence-band maximum (E,) occurs at r, the conduction-band minimum can be 
aligned or misaligned in k-space in determining the bandgap. This results in direct 
bandgap for GaAs and indirect bandgap for Si. This bears significant consequences 
when carriers transfer between this minimum gap in that momentum (or k) is con- 
served for direct bandgap but changed for indirect bandgap. 

Figure 5 shows the shapes of the constant-energy surfaces. For Si there are six 
ellipsoids along the (100)-axes, with the centers of the ellipsoids located at about 
three-fourths of the distance from the Brillouin zone center. For GaAs the constant 
energy surface is a sphere at the zone center. By fitting experimental results to para- 
bolic bands, we obtain the electron effective masses; one for GaAs and two for Si, mf 
along the symmetry axes and mf transverse to the symmetry axes. Appendix G also 
includes these values. 

At room temperature and under normal atmospheric pressure, the values of the 
bandgap are 1.12 eV for Si and 1.42 eV for GaAs. These values are for high-purity 
materials. For highly doped materials the bandgaps become smaller. Experimental 
results show that the bandgaps of most semiconductors decrease with increasing tem- 
perature. Figure 6 shows variations of bandgaps as a function of temperature for Si 
and GaAs. The bandgap approaches 1.17 and 1.52 eV respectively for these two 
semiconductors at 0 K. The variation of bandgaps with temperature can be expressed 
approximately by a universal function 

aTZ E,( T )  = E,( 0 )  - - 
T +  P 

where E,(O), a, and P are given in the inset of Fig. 6. The temperature coefficient 
dEJdT is negative for both semiconductors. Some semiconductors have positive 
dE$dT; for example, the bandgap of PbS (Appendix F) increases from 0.286 eV at 
0 K to 0.41 eV at 300 K. Near room temperature, the bandgap of GaAs increases with 
pressure P,24 and dEJdP is about 1 2 . 6 ~ 1 0 - ~  eV-cm2/N, while the Si bandgap 
decreases with pressure, with dE/dP = - 2 . 4 ~  eV-cm2/N. 

Si GaAs 

Fig. 5 Shapes of constant-energy surfaces for electrons in Si and GaAs. For Si there are six 
ellipsoids along the (100)-axes with the centers of the ellipsoids located at about three-fourths 
of the distance from the Brillouin zone center. For GaAs the constant-energy surface is a 
sphere at zone center. (After Ref. 21 .) 
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GaAs 1.519 5 . 4 ~ 1 0 - ~  204 
1.169 4.9~10" 655 

Fig. 6 

T (K) 

Energy bandgaps of Si and GaAs as a function of temperature. (After Refs. 22-23.) 

1.4 CARRIER CONCENTRATION AT THERMAL EQUILIBRIUM 

One of the most-important properties of a semiconductor is that it can be doped with 
different types and concentrations of impurities to vary its resistivity. Also, when 
these impurities are ionized and the carriers are depleted, they leave behind a charge 
density that results in an electric field and sometimes a potential barrier inside the 
semiconductor. Such properties are absent in a metal or an insulator. 

Figure 7 shows three basic bond representations of a semiconductor. Figure 7a 
shows intrinsic silicon, which is very pure and contains a negligibly small amount of 
impurities. Each silicon atom shares its four valence electrons with the four neigh- 

:@:&@: .. .. t. 

.* *. .. 
(a) (b) (c) 

Fig. 7 Three basic bond pictures of a semiconductor. (a) Intrinsic Si with no impurity. (b) 
n-type Si with donor (phosphorus). (c)p-type Si with acceptor (boron). 



1.4 CARRIER CONCENTRATION AT THERMAL EQUILIBRIUM 17 

boring atoms, forming four covalent bonds (also see Fig. 1). Figure 7b shows an 
n-type silicon, where a substitutional phosphorous atom with five valence electrons 
has replaced a silicon atom, and a negative-charged electron is donated to the lattice 
in the conduction band. The phosphorous atom is called a donor. Figure 7c similarly 
shows that when a boron atom with three valence electrons substitutes for a silicon 
atom, a positive-charged hole is created in the valence band, and an additional elec- 
tron will be accepted to form four covalent bonds around the boron. This is p-type, 
and the boron is an acceptor. 

These names of n- andp-type had been coined when it was observed that if a 
metal whisker was pressed against ap-type material, forming a Schottky barrier diode 
(see Chapter 3), a positive bias was required on the semiconductor to produce a 
noticeable ~ u r r e n t . ~ ~ , ~ ~  Also, when exposed to light, a positive potential was gener- 
ated with respect to the metal whisker. Conversely, a negative bias was required on an 
n-type material to produce a large current. 

1.4.1 Carrier Concentration and Fermi Level 

We first consider the intrinsic case without impurities added to the semiconductor. 
The number of electrons (occupied conduction-band levels) is given by the total 
number of states N(E) multiplied by the occupancy F(E), integrated over the conduc- 
tion band, 

m 

y1 = !1, N(E)F(E)dE. (13) 

The density of states N(E) can be approximated by the density near the bottom of the 
conduction band for low-enough carrier densities and  temperature^:^ 

M, is the number of equivalent minima in the conduction band and mde is the density- 
of-state effective mass for electrons:5 

mde = ( m ; m ; ~ n ; ) ” ~  (15) 

where m i ,  m; , m i  are the effective masses along the principal axes of the ellip- 
soidal energy surface. For example, in silicon mde = (mj+mf2)’/3. The occupancy is a 
strong function of temperature and energy, and is represented by the Fermi-Dirac dis- 
tribution function 

1 
1 + exp[(E-E,)/kT] 

F(E)  = 

where EF is the Fermi energy level which can be determined from the charge neu- 
trality condition (see Section 1.4.3). 

The integral of Eq. 13 can be evaluated to be 
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where Nc is the effective density of states in the conduction band and is given by 

The Fermi-Dirac integral, changing variables with 
(EF - Ec)/kT, is given by 

- (E - Ec)/KT and l;lF = 

whose values are plotted in Fig. 8. Note that for l;lF < -1, the integral can be approxi- 
mated by an exponential function. At vF = 0 when the Fermi level coincides with the 
band edge, the integral has a value of = 0.6 such that n = O.7Nc 

Nondegenerate Semiconductors. By definition, in nondegenerate semiconductors, 
the doping concentrations are smaller than Nc and the Fermi levels are more than 
several kT below E, (negative l;lF), the Fermi-Dirac integral approaches 

Fig. 8 Fermi-Dirac integral 
F,,, as a function of Fermi 
energy. (After Ref. 27.) Dashed 
line is approximation of Boltz- 
mann statistics. 
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and Boltzmann statistics apply. Equation 17 becomes 

E C -  EF n = N,exp ( - - kT ) or E,- EF = k T l n ( y ) .  

Similarly, for p-type semiconductors we can obtain the hole density and its Fermi 
level near the top of the valence band; 

which can be simplified to 

( EF kT - Ev ) or E F - E ,  = kTln(?), p = Nvexp - - 

where N, is the effective density of states in the valence band and is given by 

N v = 2 (  2 m  hF k 33'2. 
Here mdh is the density-of-state effective mass of the valence band? 

m d h  = (m;h3I2 + mih3'2)2'3 (25) 

where the subscripts refer to light and heavy hole masses previously referenced in 
Eq. 9. 

Degenerate Semiconductors. As shown in Fig. 8, for degenerate levels where n- or 
p-concentrations are near or beyond the effective density of states (N, or Nv), the 
value of Fermi-Dirac integral has to be used instead of the simplified Boltzmann sta- 
tistics. For vF > -1, the integral has weaker dependence on the carrier concentration. 
Note that also the Fermi levels are outside the energy gap. A useful estimate of the 
Fermi level as a function of carrier concentration is given by, for n-type 
semiconductor2* 

and forp-type 

E,- EF = kT[ l n ( 6 )  + 2-3'2(f-)] 

Intrinsic Concentration. For intrinsic semiconductors at finite temperatures, 
thermal agitation occurs which results in continuous excitation of electrons from the 
valence band to the conduction band, and leaving an equal number of holes in the 
valence band. This process is balanced by recombination of the electrons in the con- 
duction band with holes in the valence band. At steady state, the net result is 
n = p = n ,  where ni is the intrinsic carrier density. 

The Fermi level for an intrinsic semiconductor (which by definition is nondegen- 
erate) is obtained by equating Eqs. 21 and 23: 
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Hence the Fermi level Ei of an intrinsic semiconductor generally lies very close to, 
but not exactly at, the middle of the bandgap. The intrinsic carrier density ni can be 
obtained from Eq. 21 or 23: 

EC-Ei 
ni  = N,exp ( - - kT ) = N,exp(- 'G) = f l e x  " ( -2kT s) 

Figure 9 shows the temperature dependence of ni for Si and GaAs. As expected, the 
larger the bandgap is, the smaller the intrinsic carrier density will be.30 

It also follows that for nondegenerate semiconductors, the product of the majority 
and minority carrier concentrations is fixed to be 

1 -I"" 

11000 500 200 100 27 0 -20 
\ '  i ' i 

0 
1 OOO/T (K-I) 

Fig. 9 Intrinsic carrier concentrations of Si and GaAs as a function of reciprocal temperature. 
(After Refs. 22 and 29.) 
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p n  = N,N,exp - ( 3 
= n' , (29) 

which is known as the mass-action law. But for degenerate semiconductors,pn < n; . 
Also using Eq. 28 and E; as the reference energy, we have the alternate equations for 
n-type materials; 

EF-Ei 
n = niexp( 7) or EF-E; = kTln 

and for p-type materials; 

1.4.2 Donors and Acceptors 

When a semiconductor is doped with donor or acceptor impurities, impurity energy 
levels are introduced that usually lie within the energy gap. A donor impurity has a 
donor level which is defined as being neutral if filled by an electron, and positive if 
empty. Conversely, an acceptor level is neutral if empty and negative if filled by an 
electron. These energy levels are important in calculating the fraction of dopants 
being ionized, or electrically active, as discussed in Section 1.4.3. 

To get a feeling of the magnitude of the impurity ionization energy, we use the 
simplest calculation based on the hydrogen-atom model. The ionization energy for 
the hydrogen atom in vacuum is 

= 13.6 eV m0q4 E, = 
32$&$2h2 

The ionization energy for a donor (E,  - ED) in a lattice can be obtained by replacing 
mo by the conductivity effective mass of electrons5 

and by replacing .q, by the permittivity of the semiconductor .cS in Eq. 3 1 : 

The ionization energy for donors as calculated from Eq. 33 is 0.025 eV for Si and 
0.007 eV for GaAs. The hydrogen-atom calculation for the ionization level for the 
acceptors is similar to that for the donors. The calculated acceptor ionization energy 
(measured from the valence-band edge, E, = (EA - E,) is 0.05 eV for Si and GaAs. 

Although this simple hydrogen-atom model given above certainly cannot account 
for the details of ionization energy, particularly the deep levels in semiconduc- 
t o r ~ , ~ ~ - ~ ~  the calculated values do predict the correct order of magnitude of the true 
ionization energies for shallow impurities. These calculated values are shown to be 
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much smaller than the energy gap, and often are referred to as shallow impurities if 
they are close to the band edges. Also, since these small ionization energies are com- 
parable to the thermal energy kT, ionization is usually complete at room temperature. 
Figure 10 shows the measured ionization energies for various impurities in Si and 
GaAs. Note that it is possible for a single atom to have many levels; for example, gold 
in silicon has both an acceptor level and a donor level in the forbidden energy gap. 

1.4.3 Calculation of Fermi Level 

The Fermi level for the intrinsic semiconductor (Eq. 27) lies very close to the middle 
of the bandgap. Figure 1 la depicts this situation, showing schematically from left to 
right the simplified band diagram, the density of states N(E), the Fermi-Dirac distri- 
bution fimction F(E), and the carrier concentrations. The shaded areas in the conduc- 
tion band and the valence band represent electrons and holes, and their numbers are 
the same; i.e., n = p  = nj for the intrinsic case. 

When impurities are introduced to the semiconductor crystals, depending on the 
impurity energy level and the lattice temperature, not all dopants are necessarily ion- 
ized. The ionized concentration for donors is given by36 

where g ,  is the ground-state degeneracy of the donor impurity level and equal to 2 
because a donor level can accept one electron with either spin (or can have no elec- 
tron). When acceptor impurities of concentration NA are added to a semiconductor 
crystal, a similar expression can be written for the ionized acceptors 

where the ground-state degeneracy factor gA is 4 for acceptor levels. The value is 4 
because in most semiconductors each acceptor impurity level can accept one hole of 
either spin and the impurity level is doubly degenerate as a result of the two degen- 
erate valence bands at k = 0. 

When impurity atoms are introduced, the total negative charges (electrons and 
ionized acceptors) must equal the total positive charges (holes and ionized donors), 
represented by the charge neutrality 

n + N j  = p + N A .  (36) 

With impurities added, the mass-action law (pn = n:) in Eq. 29 still applies (until 
degeneracy), and the pn product is always independent of the added impurities. 

Consider the case shown in Fig. 11 b, where donor impurities with the concentra- 
tion No ( ~ m - ~ )  are added to the crystal. The charge neutrality condition becomes 

n = N S + p  
= NL 

With substitution, we obtain 

(37) 
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Fig. 11 Schematic band diagram, density of states, Fermi-Dirac distribution, and carrier con- 
centrations for (a) intrinsic, (b) n-type, and (c) p-type semiconductors at thermal equilibrium. 
Note that pn = n? for all three cases. 

EC-EF - N D  
Ncexp(- 7) - 1 +2exp[(EF-ED)lkT] 

Thus for a set of given N,, ED, N,, and T, the Fermi level EF can be uniquely deter- 
mined implicitly. Knowing Ep the carrier concentrations n can be calculated. 
Equation 38 can also be solved graphically. In Fig. 12, the values of n and NA are 
plotted as a function of Ep Where the two curves meet determines the position of Ep 
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Without solving for Eq. 38, it can be shown that for No >> YiN&xp[-(EcED)lkT] 
>> NA, the electron concentration can be approximated by5 

For compensated n-type material (No > NA) with nonnegligible acceptor concentra- 
tion, when NA >> ?4N&xp[4Ec - EJkT], the approximate expression for the electron 
density is then 

Figure 13 shows a typical example, where n is plotted as a function of the reciprocal 
temperature. At high temperatures we have the intrinsic range since n zp  = ni >>No. 
At medium temperatures, n = N o .  At very low temperatures most impurities are 
frozen out and the slope is given by either Eq. 39 or Eq. 40, depending on the com- 
pensation conditions. The electron density, however, remains essentially constant 
over a wide range of temperatures (-100 to 500 K). 

Figure 14 shows the Fermi level for Si and GaAs as a hnction of temperature and 
impurity concentration, as well as the dependence of the bandgap on temperature (see 
Fig. 6). 

At relatively high temperatures, most donors and acceptors are ionized, so the 
neutrality condition can be approximated by 

n + N A  = p + N D .  (41) 

Equations 29 and 41 can be combined to give the concentrations of electrons and 
holes. In an n-type semiconductor where N D  > NA: 

1 
n,, = - [ (ND-NA)+.J(ND-NA)2+4nf]  2 

The Fermi level can be obtained from 

E C -  EF E F -  Ei 
n,, = ND = N ex ’( - - kT ) = n i e x p ( T )  (44) 

Similarly, the carrier concentrations in a p-type semiconductor (NA > N o )  are 
given by 

= - [ ( N A - N D ) +  1 , / ( N A - N D ) 2 + 4 n f ]  
PPO 2 



Si (300 K) 

n-type with N, = 10l6 
1019 - 

1018 - 

p 1017 - 

.r u 

N C  

I I  
I I  

I EOll I ED2 
I I I I I , ,  I 

0.2 0.4 ,E)20.6 0.8  EL^^^ 1.0 ' E ,  
109 b 

EV E F  (ev) 

Fig. 12 Graphical method to determine the Fermi energy level EF and electron concentration 
n, when ionization is not complete. Examples with two different values of impurity levels ED 
are shown. 

500 T (K) 
10001 300 200 100 75 

1017 

Si E I Intrinsic range A1 - 1A15 ,,. 

CX 1015 

1 

Fig. 13 Electron density as a function of temperature for a Si sample with donor impurity 
concentration of 1015 ~ r n - ~ .  (After Ref. 5 . )  

26 
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Fig. 14 Fermi level for (a) Si and (b) GaAs as a function of temperature and impurity concen- 
tration. The dependence of the bandgap on temperature is also shown. (After Ref. 37.) 

and 

E F - E V  Ei - EF 
ppo = NA = Nvexp - - ( kT = niexp(y) (47) 

In the formulas above, the subscripts n andp refer to the type of semiconductors, 
and the subscript ‘‘0” refers to the thermal equilibrium condition. For n-type semicon- 
ductors the electron is referred to as the majority carrier and the hole as the minority 
carrier, since the electron concentration is the larger of the two. The roles are reversed 
for p-type semiconductors. 
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1.5 CARRIER-TRANSPORT PHENOMENA 

1.5.1 Drift and Mobility 

At low electric fields, the driR velocity vd is proportional to the electric field strength 
g and the proportionality constant is defined as the mobility p in cm2N-s, or 

vd = ,Ldg. (48) 

For nonpolar semiconductors, such as Ge and Si, the presence of acoustic phonons 
(see Section 1.6.1) and ionized impurities results in carrier scattering that signifi- 
cantly affects the mobility. The mobility from interaction with acoustic phonon of the 
lattice, p,, is given by38 

where C, is the average longitudinal elastic constant of the semiconductor, Eds the dis- 
placement of the band edge per unit dilation of the lattice, and m; the conductivity 
effective mass. From Eq. 49 mobility decreases with the temperature and with the 
effective mass. 

The mobility from ionized impurities pi can be described by39 

where NI is the ionized impurity density. The mobility is expected to decrease with 
the effective mass but to increase with the temperature because carriers with higher 
thermal velocity are less deflected by Coulomb scattering. Note the common depen- 
dence of the two scattering events on the effective mass but opposite dependence on 
temperature. The combined mobility, which includes the two mechanisms above, is 
given by the Matthiessen rule 

In addition to the scattering mechanisms discussed above, other mechanisms also 
affect the actual mobility. For example, (1) the intravalley scattering in which an elec- 
tron is scattered within an energy ellipsoid (Fig. 5) and only long-wavelength 
phonons (acoustic phonons) are involved; and (2) the intervalley scattering in which 
an electron is scattered from the vicinity of one minimum to another minimum and an 
energetic phonon (optical phonon) is involved. For polar semiconductors such as 
GaAs, polar-optical-phonon scattering is significant. 

Qualitatively, since mobility is controlled by scattering, it can also be related to 
the mean free time zm or mean free path Am by 

The last term uses the relationship 
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‘ i n  = ‘th‘m 

where uth is the thermal velocity given by 

(53)  

For multiple scattering mechanisms, the effective mean free time is derived from 
the individual mean free times of scattering events by 

1 1 1  

‘m ‘ml  ‘m2 

- = -+-+... ( 5 5 )  

It can be seen that Eqs. 51 and 55 are equivalent. 
Figure 15 shows the measured mobilities of Si and GaAs versus impurity concen- 

trations at room temperature. As the impurity concentration increases (at room tem- 
perature most shallow impurities are ionized) the mobility decreases, as predicted by 
Eq. 50. Also for larger m*, p decreases; thus for a given impurity concentration the 
electron mobilities for these semiconductors are larger than the hole mobilities 
(Appendixes F and G list the effective masses). 

Figure 16 shows the temperature effect on mobility for n-type andp-type silicon 
samples. For lower impurity concentrations the mobility is limited by phonon scat- 
tering and it decreases with temperature as  predicted by Eq. 49. The measured slopes, 
however, are different from -312 because of other scattering mechanisms. For these 

104 
h v) 

I > . 
I v 

103 
.- - g 
I 

102 
1014 1015 1016 1017 1018 1019 

Impurity concentration ( ~ m - ~ )  

102 
1014 1015 10’6 1017 10’8 1019 

Impurity concentration (cm”) 

Fig. 15 Drift mobility of (a) Si (After Ref. 40.) and (b) GaAs at 300 K vs. impurity concen- 
tration (after Ref. 11) .  
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Temperature (K) 

Fig. 16 Mobility of electrons and holes in Si as a function of temperature. (After Ref. 41.) 

pure materials, near room temperature, the mobility vanes as T2.42 and T2.20 for n- 
andp-type Si, respectively; and as and T2.' for n- andp-type GaAs (not shown), 
respectively. 

The mobilities discussed above are the conductivity mobilities, which have been 
shown to be equal to the drift m ~ b i l i t i e s . ~ ~  They are, however, different from but 
related to the Hall mobilities considered in the next section. 

1.5.2 Resistivity and Hall Effect 

For semiconductors with both electrons and holes as carriers, the drift current under 
an applied field is given by 

J = crZ? 

= q(Pnn + P ~ P )  (56)  

(57) 

where c i s  the conductance 

1 

P 
0 = - = q(Pnn+PpP) 

and p is the resistivity. If n >> p, as in n-type semiconductors, 

1 p =  - 
9Pnn 

and 
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The most-common method for measuring resistivity is the four-point probe 
method (insert, Fig. 17),42,43 A small constant current is passed through the outer two 
probes and the voltage is measured between the inner two probes. For a thin wafer 
with thickness Wmuch smaller than either a or d, the sheet resistance R, is given by 

(60) 
V 
I 

where CF is the correction factor shown in Fig. 17. The resistivity is then 

R,  = - . C F  QIo 

p = ROW Q-cm. (61) 

In the limit when d >> S, where S is the probe spacing, the correction factor becomes 
d n  2 (= 4.54). 

Figure 18a shows the measured resistivity (at 300 K) as a function of the impurity 
concentration (n-type phosphorus and p-type boron) for silicon. Resistivity is not a 
linear function of concentration because mobility is not constant and usually 
decreases with increasing concentration. Figure 18b shows the measured resistivities 
for GaAs. We can obtain the impurity concentration of a semiconductor if its resis- 
tivity is known and vice versa. Note that the impurity concentration may be different 
from the carrier concentration because of incomplete ionization. For example, in a 
p-type silicon with 1017 ~ m - ~  gallium acceptor impurities, unionized acceptors at 
room temperature make up about 23% (from Eq. 35, Figs. 10 and 14); in other words, 
the carrier concentration is only 7 . 7 ~ 1 0 ' ~  ~ m - ~ .  

T I  I 

I- a -I 

R,= $ C F  (nlo) 

p=R,W (a-cm) 

Correction factor CF 

Fig. 17 Correction factor for measurement of resistivity using a four-point probe. (After 
Ref. 42.) 
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Fig. 18 Resistivity vs. impurity concentration at 300 K for (a) silicon (after Ref. 40) and (b) 
GaAs (after Ref. 35). 
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Hall Effect. Measurement of the resistivity only gives the product of the mobility 
and carrier concentration. To measure each parameter directly, the most-common 
method uses the Hall effect. The Hall effect is named after the scientist who made the 
discovery in 1 879.44 Even today it remains one of the most fascinating phenomena 
and is both fundamentally interesting and practical. Examples include the recent 
study of the fractional quantum Hall effect and the applications as magnetic-field sen- 
sors. The Hall effect is used in common practice to measure certain properties of 
semiconductors: namely, the carrier concentration (even down to a low level of 
10l2 ~ m - ~ ) ,  the mobility, and the type (n orp). It is an important analytical tool since 
a simple conductance measurement can only give the product of concentration and 
mobility, and the type remains unknown. 

Figure 19 shows the basic setup where an electric field is applied along the x-axis 
and a magnetic field is applied along the z-axis.45 Consider a p-type sample. The 
Lorentz force exerts an average downward force on the holes 

Lorentz force = qv, x Bz, (62) 

and the downward-directed current causes a piling up of holes at the bottom side of 
the sample, which in turn gives rise to an electric field gY Since there is no net current 
along the y-direction in the steady state, the electric field along the y-axis (Hall field) 
balances exactly the Lorentz force such that the carriers travel in a path parallel to the 
applied field gX. (For n-type material, electrons also pile up at the bottom surface, 
setting up a voltage of opposite polarity.) 

The carrier velocity v is related to the current density by 

J, = q v g .  (63) 

Since for each carrier the Lorentz force must be equal to the force exerted by the Hall 
field, 

9 q J  = 9VX%I (64) 

v, 
Fig. 19 Basic setup to measure carrier concentration using the Hall effect. 
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this Hall voltage can be measured externally and is given by 

JXBZW v, = gyw = -. 
4P 

When scattering is taken into account, the Hall voltage becomes 

VH = RHJxB,W (66) 

where RH is the Hall coefficient and is given by 

with a Hall factor 

Thus, the carrier concentration and carrier type (electrons or holes from the polarity 
of the Hall voltage) can be obtained directly from the Hall measurement, provided 
that one type of carrier dominates and rH is known. 

Equation 67a or b also assumes conduction by a single type of carrier. A more- 
general solution is described by5 

It can be seen in Eq. 69 that the sign of R, and thus V, reveals the majority type of 
the semiconductor sample. 

The Hall mobility p, is defined as the product of the Hall coefficient and conduc- 
tivity: 

pH = lRHl o. (70) 

The Hall mobility should be distinguished from the drift mobility p,, (or pp) as given 
in Eq. 59 which does not contain the Hall factor rW Their relationship is given by 

pH = rHP. (71) 

The parameter z, for the Hall factor is the mean free time between carrier colli- 
sions, which depends on the carrier energy. For example, for semiconductors with 
spherical constant-energy surfaces, z, cc E-lt2 for phonon scattering and z, cc E3I2 for 
ionized impurity scattering. In general, 

z, = C,E-”, (72) 

where C, and s are constants. From Boltzmann distribution for nondegenerate semi- 
conductors, the average value of the nth power of z, is 
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00 

(z;) = [ GE3I2exp(- ;)dE/ j"E3I2exp(- g )dE,  
J O  

(GI> = j- GE3I2exp(- kT L)dE/rE3f2exp(-  kT L)dE, (73) 
0 0 

so that using the general form of z,, we obtain 

and 

(73) 

(75) 
C , ( k T ) - T ( ;  - 8 )  

(r,> = 
U$) 

where r(n) is the gamma function defined as 

r(n)= xn-le-xdx. (76) I 
[ r( 1/2) = & .] From the expression above we obtain rH = 3 d8 = 1.18 for phonon 
scattering and rH = 3 15d5 12 = 1.93 for ionized-impurity scattering. In general rH lies 
in the range of 1-2. At very high magnetic fields, it approaches a value slightly below 
unity. 

In the preceding discussion the applied magnetic field is assumed to be small 
enough that there is no change in the resistivity of the sample. However, under strong 
magnetic fields, a significant increase in the resistivity is observed, the so-called mag- 
netoresistance effect, resulting from carriers travelling in a path that deviates from the 
applied electric field. For spherical-energy surfaces the ratio of the incremental resis- 
tivity to the bulk resistivity at zero magnetic field is given by5 

9: 

. (77) 

The ratio is proportional to the square of the magnetic field component perpendicular 
to the direction of the current flow. For n >>p,  (ApIpo) K p;BA,2 . A similar result can 
be obtained for the casep >> n. 

1.5.3 High-Field Properties 

In the preceding sections we considered the effect of low electric field on the trans- 
port of carriers in semiconductors. In this section we briefly consider some special 
effects and properties of semiconductors when the electric field is increased to mod- 
erate and high levels. 

As discussed in Section 1.5.1, at low electric fields the drift velocity in a semicon- 
ductor is proportional to the field and the proportionality constant is the mobility that 
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is independent of the electric field. When the fields are sufficiently large, however, 
nonlinearities in mobility and, in some cases, saturation of drift velocity are observed. 
At still larger fields, impact ionization occurs. First, we consider the nonlinear 
mobility. 

At thermal equilibrium the carriers both emit and absorb phonons and the net rate 
of exchange of energy is zero. The energy distribution at thermal equilibrium is Max- 
wellian. In the presence of an electric field the carriers acquire energy from the field 
and lose it to phonons by emitting more phonons than are absorbed. At moderately 
high fields, the most frequent scattering events involve in the emission of acoustic 
phonons. Thus, the carriers on average acquire more energy than they have at thermal 
equilibrium. As the field increases, the average energy of the carriers also increases 
and they acquire an effective temperature T, that is higher than the lattice 
temperature T. Balancing the rate at which energy is transferred from the field to the 
carriers by an equal rate of energy loss to the lattice, we obtain from the rate equation, 
for Ge and Si (semiconductors without transferred-electron e f f e~ t ) :~  

and 

where ,L+, is the low-field mobility, and cs the velocity of sound. For moderate field 
strength when p&5 is comparable to c,, the carrier velocity vd  starts to deviate from 
being linearly dependent on the applied field, by a factor of me. Finally at suffi- 
ciently high fields, carriers start to interact with optical phonons and Eq. 78 is no 
longer accurate. The drift velocities for Ge and Si become less and less dependent on 
the applied field and approach a saturation velocity 

where Ep is the optical-phonon energy (listed in Appendix G). 
To eliminate the discontinuity between the regimes covered by Eqs. 78-80, a 

single empirical formula is often used to describe the whole range, from low-field 
drift velocity to velocity ~a tura t ion :~~ 

(81) 
PO 8 

vd = c l l C 2 '  
[1 + (Pog/vs) 'I 

The constant C, has a value near two for electrons and one for holes, and it is a func- 
tion of temperature. 

The velocity-field relationship is more complicated for GaAs, and we must con- 
sider its band structure (Fig. 4). A high-mobility valley (p = 4,000 to 8,000 cm2N-s) 
is located at the Brillouin zone center, and a low-mobility satellite valley (p  = 
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100 cm2/V-s) along the (1 1 l ) -axe~,4~ about 0.3 eV higher in energy. The difference in 
mobility is due to the different electron effective masses (Eq. 52): 0.063mo in the 
lower valley and about 0.55m0 in the upper valley. As the field increases, the electrons 
in the lower valley can be excited to the normally unoccupied upper valley, resulting 
in a differential negative resistance in GaAs. The intervalley transfer mechanism, 
called transferred-electron effect, and the velocity-field relationship are considered in 
more detail in Chapter 10. 

Figure 20a shows the measured room-temperature drift velocities versus electric 
field for high-purity (low impurity concentration) Si and GaAs. For high-level impu- 
rity dopings, the drift velocity or mobility at low fields is decreased due to impurity 
scattering. However, the velocity at high fields is essentially independent of impurity 
dopings, and it approaches a saturation value.52 For Si the saturation velocities v, for 
electrons and holes are about 1 x lo7 c d s .  For GaAs a wide range of negative differ- 
ential mobility exists for fields above 3x lo3 V/cm, and the high-field saturation 
velocity approaches 6x lo6 cm/s. Figure 20b shows the temperature dependence of 
electron saturation velocity. As the temperature increases, the saturation velocities for 
both Si and GaAs decrease. 

Up to now, the drift velocities discussed are for steady-state condition where car- 
riers go through enough scattering events to get to their equilibrium values. In modem 
devices, the critical dimension where carriers transit across becomes smaller and 
smaller. When this dimension becomes comparable to or shorter than the mean free 
path, ballistic transport is said to occur before carriers start to be scattered. Figure 2 1 
shows the drift velocity as a function of distance. Without scattering, the velocity 
increases with time (and distance) according to FZ qgt/m*. At high fields, drift velocity 
can attain a higher value momentarily than that at steady state, within a short space 
(of the order of mean free path) and time (of the order of mean free time). This phe- 
nomenon is called velocity overshoot. (In literature, confusion might arise when the 
peak velocity of GaAs shown in Fig. 20a-the transferred-electron effect, is also 
called velocity overshoot.) At low fields, the acceleration of velocity is lower and 
when scattering starts to occur, the attained velocity is not that high and so velocity 
overshoot does not occur. Note that this shape of velocity overshoot is similar to that 
in the transferred-electron effect but the abscissa here is distance (or time) while that 
in the latter is electric field. 

We next consider impact ionization. When the electric field in a semiconductor is 
increased above a certain value, the carriers gain enough energy to excite electron- 
hole pairs by a process called impact ionization. The threshold energy obviously has 
to be larger than the bandgap. This multiplication process is characterized by an ion- 
ization rate a defined as the number of electron-hole pairs generated by a carrier per 
unit distance traveled (Fig. 22). So for a primary carrier of electron traveling with a 
velocity v,, 

1 dn - 1 dn 
nd(tv,) nu, dt  ’ a n  = -- - -- 
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Considering both electrons and holes, the generation rate at any fixed location is 
given by 

@ = + = annu, + appvp 
dt dt 

4 4 
(83) 
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Fig. 21 Velocity overshoot in ultra- 
short distance. Similar behavior can 
be observed when the abscissa of dis- 
tance is replaced with time. Example 
is for silicon. (After Ref. 53.) 

Conversely, at any given time, the carrier density or current varies with distance and 
can be shown to be: 

( 8 4 4  
dJ -" = a,,J,, + apJ,, 
dx 

dJ 
9 = -a,,J,-a,J,. 
dx 

The total current (J,, + J,) remains constant over distance and dJ,,l& = - dJ&. 

physical expression for the ionization rate is given by54 
The ionization rates a,, and a, are strongly dependent on the electric field. A 

Fig. 22 Multiplication of electrons and holes from 
impact ionization, due to electrons (a,) in this 
example ( ap = 0). 
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where EI is the high-field effective ionization threshold energy, and g p  gP, and g1 are 
threshold fields for carriers to overcome the decelerating effects of thermal, optical- 
phonon, and ionization scattering, respectively. For Si, the value of EI is found to be 
3.6 eV for electrons and 5.0 eV for holes. Over a limited field range, Equation 85 can 
be reduced to 

or 

Figure 23a shows the experimental results of the ionization rates for Ge, Si, Sic, 
and GaN. Figure 23b shows the measured ionization rates of GaAs and a few other 
binary and ternary compounds. These results are obtained by using photomultiplica- 
tion measurements on p-n junctions. Note that for certain semiconductors, such as 
GaAs, the ionization rate is a hnction of crystal orientation. There is also a general 
trend that the ionization rate decreases with increasing bandgap. It is for this reason 
that materials of higher bandgaps generally yield higher breakdown voltage. Note 
that Eq. 86 is applicable to most semiconductors shown in Fig. 23, except GaAs and 
Gap, for which Eq. 87 is applicable. 

At a given electric field, the ionization rate decreases with increasing temperature. 
Figure 24 shows the theoretical predicted electron ionization rates in silicon as an 
example, together with the experimental results at three different temperatures. 

1.5.4 Recombination, Generation, and Carrier Lifetimes 

Whenever the thermal-equilibrium condition of a semiconductor system is disturbed 
(i.e., pn f n’ ), processes exist to restore the system to equilibrium (i.e., pn = n’ ). 
These processes are recombination when pn > n’ and thermal generation when 
pn < n’ . Figure 25a illustrates the band-to-band electron-hole recombination. The 
energy of an electron in transition from the conduction band to the valence band is 
conserved by emission of a photon (radiative process) or by transfer of the energy to 
another free electron or hole (Auger process). The former process is the inverse of 
direct optical absorption, and the latter is the inverse of impact ionization. 

Band-to-band transitions are more probable for direct-bandgap semiconductors 
which are more common among 111-V compounds. For this type of transition, the 
recombination rate is proportional to the product of electron and hole concentrations, 
given by 

Re = R , g n .  (88) 

The term Re,, called the recombination coeficient, is related to the thermal generation 
rate G, by 
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Fig. 23 Ionization ratesaf300 K versus reciprocal electric field for Si, GaAs, and some IV-IV 
and 111-V compound semiconductors. (After Refs. 55-65.) 
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Fig. 24 Electron ionization rate versus reciprocal electric field in Si for four temperatures. 
(After Ref. 66.) 
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Fig. 25 Recombination processes (the reverse are generation processes). (a) Band-to-band 
recombination. Energy is exchanged to a radiative or Auger process. (b) Recombination 
through single-level traps (nonradiative). 

Gth 

n: 
Re, = -. (89) 

Re, is a function of temperature and is also dependent on the band structure of the 
semiconductor. A direct-bandgap semiconductor, being more efficient in band-to- 
band transitions, has a much larger R, (= 1O-Io cm3/s) than an indirect-bandgap semi- 
conductor (= l W 5  cm3/s). In thermal equilibrium, sincepn = n;, Re = Gth and the net 
transition rate U (= Re - Gth) equals zero. Under low-level injection, defined as the 
case where the excess carriers Ap = An are fewer than the majority carriers, for an 
n-type materialp, =pno + Ap and n, = ND, the net transition rate is given by 

u = Re - G,h = R&n - n?> 

(90) 
= RecApND = & 

zP 

where the carrier lifetime for holes 

1 z = -  
P 

and in p-type material, 

1 z, = -. 

However, in indirect-bandgap semiconductors such as Si and Ge, the dominant 
transitions are indirect recombinationlgeneration via bulk traps, of density Nt and 
energy E, present within the bandgap (Fig. 25b). The single-level recombination can 
be described by two processes-electron capture and hole capture. The net transition 
rate can be described by the Shockley-Read-Hall statistics6749 as 
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where on and op are the electron and hole capture cross sections, respectively. 
Without deriving this equation, some qualitative observations can be made on the 
final form. First, the net transition rate is proportional to pn - n?, similar to Eq. 90, 
and the sign determines whether there is net recombination or generation. Second, U 
is maximized when El = Ei, indicating for an energy spectrum of bulk traps, only 
those near the mid-gap are effective recombinatiodgeneration centers. Considering 
only these traps, Eq. 92 is reduced to 

a,a,v,,Nl(pn - n:) 
an(n + ni) + opO, + ni) 

U =  (93) 

Again for low-level injection in n-type semiconductors, the net recombination rate 
becomes 

onapvthNt[(Pno + Ap>n - U =  
an' 

where 

(95a) 
1 r =-. 

apvthNi 
P 

Similarly for ap-type semiconductor, the electron lifetime is given by 

As expected, the lifetime arising from indirect transitions is inversely proportional to 
the trap density N,, while in the previous case, the lifetime from direct transitions is 
inversely proportional to the doping concentration (Eqs. 91a and 91b). 

For multiple-level traps, the recombination processes have gross qualitative fea- 
tures that are similar to those of the single-level case. However, the behavioral details 
are different, particularly in the high-level injection condition (i.e., where An = Ap 
approaches the majority-carrier concentration), where the asymptotic lifetime is an 
average of the lifetimes associated with all the positively charged, negatively 
charged, and neutral trapping levels. 

For high-level injection (An = Ap > n andp), the carrier lifetime for band-to-band 
recombination becomes 

1 
r r l = r = -  R,,An 

The lifetime resulting from traps can be derived from Eq. 93 to be 



44 CHAPTER 1. PHYSICS AND PROPERTIES OF SEMICONDUCTORS--A REVIEW 

Comparing Eq. 97 to Eqs. 95a and 95b, the lifetime is actually higher with high-level 
injection. It is interesting to note that the lifetime due to band-to-band recombination 
decreases with injection level, while that due to trap recombination increases with 
injection level. 

Equations 95a and 95b have been verified experimentally by using solid-state dif- 
fusion and high-energy radiation. Many impurities have energy levels close to the 
middle of the bandgap (Fig. 10). These impurities are efficient recombination centers. 
A typical example is gold in silicon;70 the minority-carrier lifetime decreases linearly 
with the gold concentration over the range of 1014 to 1017 ~ m - ~ ,  where zdecreases 
from about 2 ~ 1 0 ~  s to 2 ~ 1 O - ~  s. This effect is sometimes advantageous, as in some 
high-speed applications when a short lifetime to reduce the charge storage time is a 
desirable feature. Another method of shortening the minority-carrier lifetime is high- 
energy-particle irradiation, which causes displacement of host atoms and damage to 
the lattice. These, in turn, introduce energy levels in the bandgap. For example, elec- 
tron irradiation in Si gives rise to an acceptor level at 0.4 eV above the valence band 
and a donor level at 0.36 eV below the conduction band. Also neutron irradiation 
creates an acceptor level at 0.56 eV; and deuteron irradiation gives rise to an intersti- 
tial state with an energy level 0.25 eV above the valence band. Similar results are 
obtained for Ge, GaAs, and other semiconductors. Unlike the solid-state diffusion, 
the radiation-induced trapping centers may be annealed out at relatively low temper- 
atures. 

When carriers are below their thermal-equilibrium values, i.e., pn < n? , genera- 
tion of carriers rather than recombination of excess carriers will occur. The generation 
rate can be found by starting with Eq. 93, 

where the generation carrier lifetime zg is equal to 

Depending on the electron and hole concentrations, the generation lifetime can be 
much longer than the recombination lifetime and has a minimum value of roughly 
twice that of the recombination lifetime, when both n andp are much smaller than ni. 

The minority-carrier lifetime z has generally been measured using the photocon- 
ductive (PC) effect71 or the photoelectromagnetic (PEM) effect7*. The basic equation 
for the PC effect is given by 
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where Jpc is the incremental current density as a result of illumination with genera- 
tion rate G,, and 25’ is the applied electric field along the sample. The quantity An is 
the incremental carrier density or the number of electron-hole pairs per volume 
created by the illumination, which equals the product of the generation rate Ge and the 
lifetime z, or An = zGe. For the PEM effect we measure the short-circuit current, 
which appears when a constant magnetic field gZ is applied perpendicular to the 
direction of incoming radiation. The current density is given by 

where D and Ld [= (Dz)”~]  are the diffusion coefficient and the diffusion length, to be 
discussed in the next section. Another approach to measure the carrier lifetime will be 
discussed in Section 1.8.2. 

1.5.5 Diffusion 

In the preceding section the excess carriers are uniform in space. In this section, we 
discuss the situations where excess carriers are introduced locally, causing a condi- 
tion of nonuniform carriers. Examples are local injection of carriers from a junction, 
and nonuniform illumination. Whenever there exists a gradient of carrier concentra- 
tion, a process of diffusion occurs by which the carriers migrate from the region of 
high concentration toward the region of low concentration, to drive the system toward 
a state of uniformity. This flow or flux of carriers, taking electrons as an example, is 
governed by the Fick’s law, 

d A n  ?Ix = - D,-, dx 

and is proportional to the concentration gradient. The proportionality constant is 
called the diffusion coefficient or diffusivity D,. This flux of carriers constitutes a dif- 
fusion current, given by 

d A n  
dx J ,  = qDn-, 

and 

J = - q D  d A  
P P dx 

(1 03a) 

(103b) 

Physically, diffusion is due to random thermal motion of carriers as well as scat- 
tering. Because of this, we have 

D = v ~ ~ z , .  ( 1 04) 
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One also expects certain relationship between the diffusion coefficient and mobility. 
To derive such a relationship, we consider an n-type semiconductor with nonuniform 
doping concentration but without an external applied field. The zero net current 
necessitates that the drift current exactly balances the diffusion current, 

qn,un8 = - qDn--. dn (105) & 

In this case, the electric field is created by the nonuniform doping (Z? = dE,/q&, and 
EF is constant for equilibrium). Using Eq. 21 for n, we obtain 

- - -3En 
kT ' 

Substituting this into Eq. 105 will give the relationship 

Similarly for p-type semiconductor, one can derive 

(107a) 

(107b) 

These are known as the Einstein relation (valid for nondegenerate semiconductors). 
At 300 K, kTlq = 0.0259 V, and values of D are readily obtainable from the mobility 
results shown in Fig. 15. 

Another parameter closely related to diffusion is the diffusion length, 

L,= JIG. (108) 

In common diffusion problems arising from some fixed injection source as a 
boundary condition, the resultant concentration profile is exponential in nature with 
distance, with a characteristic length of L,. This difhsion length can also be viewed 
as the distance carriers can diffuse in a carrier lifetime before they are annihilated. 

1.5.6 Thermionic Emission 

Another current conduction mechanism is thermionic emission. It is a majority- 
carrier current and is always associated with a potential barrier. Note that the critical 
parameter is the barrier height, not the shape of the barrier. The most-common device 
is the Schottky-barrier diode or metal-semiconductor junction (see Chapter 3). Refer- 
ring to Fig. 26, for the thermionic emission to be the controlling mechanism, the cri- 
terion is that collision or the drift-diffusion process within the barrier layer to be 
negligible. Equivalently, the barrier width has to be narrower than the mean free path, 
or in the case of a triangular barrier, the slope of the barrier be reasonably steep such 
that a drop in kT in energy is within the mean free path. In addition, after the carriers 
are injected over the barrier, the diffusion current in that region must not be the lim- 
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Fig. 26 Energy-band diagram 
Ec showing thermionic emission of 

electrons over the barrier. Note that EF 
Barrier Metal or the shape of the barrier (shown as 

n-Semiconductor rectangular) does not matter. 
n-Semiconductor 

iting factor. Therefore, the region behind the barrier must be another n-type semicon- 
ductor or a metal layer. 

Due to Fermi-Dirac statistics, the density of electrons (for n-type substrate) 
decreases exponentially as a function of their energy above the conduction band edge. 
At any finite (nonzero) temperature, the carrier density at any finite energy is not 
zero. Of special interest here is the integrated number of carriers above the barrier 
height. This portion of the thermally generated carriers are no longer confined by the 
barrier so they contribute to the thermionic-emission current. The total electron 
current over the barrier is given by (see Chapter 3) 

where q& is the barrier height, and 

~ 4xqm*k2 
h3 

A =  

is called the effective Richardson constant and is a function of the effective mass. The 
A* can be further modified by quantum-mechanical tunneling and reflection. 

1.5.7 Tunneling 

Tunneling is a quantum-mechanical phenomenon. In classical mechanics, carriers are 
completely confined by the potential walls. Only those carriers with excess energy 
higher than the barriers can escape, as in the case of thermionic emission discussed 
above. In quantum mechanics, an electron can be represented by its wavefunction. 
The wavefunction does not terminate abruptly on a wall of finite potential height and 
it can penetrate into and through the barrier (Fig. 27). The probability of electron tun- 
neling through a barrier of finite height and width is thus not zero. 

To calculate the tunneling probability, the wavefunction ry has to be determined 
from the Schrodinger equation 

9, X [ E -  U(x)] ry = 0 
dx2 h2 
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Fig. 27 V. -vefunctions showing electron 
x1 x2 tunneling through a rectangular barrier. 

In the case of a simple rectangular barrier of height Uo and width W, ry has a general 
form of exp(*ikx) where k = , , / q ) / h .  Note that for tunneling, the energy 
E is below the barrier U, so that the term within the square root is negative and k is 
imaginary. The solution of the wavefunctions and the tunneling probability are calcu- 
lated to be 

For more complicated barrier shapes, simplification of the Schrodinger equation is 
made by the WKB (Wentzel-Kramers-Brillouin) approximation if the potential U(x) 
does not vary rapidly. The wavefunction now has a general form of expjik(x)dx. The 
tunneling probability can be calculated by 

Together with known tunneling probability, the tunneling current J, can be calcu- 
lated from the product of the number of available carriers in the originating Region-A 
(Fig. 27), and the number of empty states in the destination Region-B, 

where FA, FB, NA, and NB represent the Fermi-Dirac distributions and densities of 
states in the corresponding regions. 
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1.5.8 Space-Charge Effect 

The space charge in a semiconductor is determined by both the doping concentrations 
and the free-carrier concentrations, 

p = (P-n+ND-NA)q . (115) 

In the neutral region of a semiconductor, n =No andp = NA, so that the space-charge 
density is zero. In the vicinity of a junction formed by different materials, dopant 
types, or doping concentrations, n and p could be smaller or larger than No and NA, 
respectively. In the depletion approximation, n and p are assumed zero so that the 
space charge is equal to the majority-carrier doping level. Under bias, the carrier con- 
centrations n and p can be increased beyond their values in equilibrium. When the 
injected n orp  is larger than its equilibrium value as well as the doping concentration, 
the space-charge effect is said to occur. The injected carriers thus control the space 
charge and the electric-field profile. This results in a feedback mechanism where the 
field drives the current, which in turn sets up the field. The space-charge effect is 
more common in lightly doped materials, and it can occur outside the depletion 
region. 

In the presence of a space-charge effect, if the current is dominated by the drift 
component of the injected carriers, it is called the space-charge-limited current. Since 
it is a drift current, it is given by, in the case of electron injection, 

J = gnu.  (1 16) 
The space charge again is determined by the injected carriers giving rise to the 
Poisson equation of the form 

The carrier velocity u is related to the electric field by different functions, depending 
on the field strength. In the low-field mobility regime, 

u = p z .  (118) 
In the velocity-saturation regime, velocity us is independent of the field. In the limit 
of ultra-short sample or time scale, we have the ballistic regime where there is no 
scattering, and 

u =  

From Eqs. 1 16-1 19, the space-charge-limited current in the mobility regime (the 
Mott-Gurney law) can be solved to be (see Vol. 4 of Ref. 4) 

in the velocity-saturation regime 

2&,U, v 
L2 ’ 

J =  - 
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and in the ballistic regime (the Child-Langmuir law) 

Here L is the length of the sample in the direction of the current flow. Note that the 
voltage dependence is different in these regimes. 

1.6 PHONON, OPTICAL, AND THERMAL PROPERTIES 

In the preceding section we considered different carrier transport mechanisms in 
semiconductors. In this section we briefly consider other effects and properties of 
semiconductors that are important to the operation of semiconductor devices. 

1.6.1 Phonon Spectra 

Phonons are quanta of lattice vibrations, mainly resulting from the lattice thermal 
energy. Similar to photons and electrons, they have characteristic frequencies (or 
energy) and wave numbers (momentum or wavelengths). It is known that, as a dem- 
onstration in a one-dimensional lattice, with only nearest-neighbor coupling and two 
different masses ml and m2 placed alternately, the frequencies of oscillation are given 
by3 

where afis the force constant of the Hooke's law, kph the phonon wave number, and 
a the lattice spacing. The frequency v- is proportional to k near kph = 0. This branch 
is the acoustic branch, because it is the long-wavelength vibration of the lattice and 
the velocity wlk is near that of sound in such a medium. The frequency v+ tends to be 
a constant = [2abl/m1 + l/m2)]112 as kph approaches zero. This branch, separated con- 
siderably from the acoustic mode, is the optical branch, because the frequency v+ is 
generally in the optical range. For the acoustic mode the two sublattices of the atoms 
with different masses move in the same direction, whereas for the optical mode they 
move in opposite directions. 

The total number of acoustic modes is equal to the dimension times the number of 
atoms per cell. For a realistic three-dimensional lattice with one atom per primitive 
cell, such as a simple cubic, body-centered, or face-centered cubic lattice, only three 
acoustic modes exist. For a three-dimensional lattice with two atoms per primitive 
cell, such as Si and GaAs, three acoustic modes and three optical modes exist. Longi- 
tudinally polarized modes are modes with the displacement vectors of each atom 
along the direction of the wave vector; thus we have one longitudinal acoustic mode 
(LA) and one longitudinal optical mode (LO). Modes with atoms moving in the 
planes normal to the wave vector are called transversely polarized modes. We have 
two transverse acoustic modes (TA) and two transverse optical modes (TO). 

ph. 
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Figure 28 shows the measured results for Si and GaAs in one of the crystal direc- 
tions. The range ofk,, = f d ~  defines the Brillouin zone outside which the frequency- 
kph relationship repeats itself. Note that at small values of kph, for both LA and TA 
modes, the energies (or frequencies) are proportional to kph. The longitudinal optical 
phonon energy at kph = 0 is the first-order Raman scattering energy. Their values are 
0.063 eV for Si and 0.035 eV for GaAs. Appendix G lists these results, together with 
other important properties. 

1.6.2 Optical Properties 

Optical measurement constitutes the most-important means of determining the band 
structures of semiconductors. Photon-induced electronic transitions can occur 
between different bands, which lead to the determination of the energy bandgap, or 
within a single band such as the free-carrier absorption. Optical measurements can 
also be used to study lattice vibrations (phonons). The optical properties of semicon- 
ductor are characterized by the complex refractive index, 

f i  = n,- ik, .  (124) 

The real part of the refractive index n, determines the propagation velocity (v and 
wavelength A) in the medium (assuming ambient is a vacuum having wavelength A,,) 

The imaginary part k,, called the extinction coefficient, determines the absorption 
coefficient 

16 I I 

14 GaAs 

0.04 

0.03 
$ 

0.02 L5  U 
2 
b 4  

2 0.01 

X 
kph 

r 

(4 (b) 

Fig. 28 Measured phonon spectra in (a) Si (After Ref. 73.) and (b) GaAs (After Ref. 74.). TO 
and LO stand for transverse and longitudinal optical modes, and TA and LA for transverse and 
longitudinal acoustic modes. 
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In semiconductors, the absorption coefficient is a strong function of the wave- 
length or photon energy. Near the absorption edge, the absorption coefficient can be 
expressed as5 

a K (hv  - E,)’ (127) 

where h v is the photon energy and y is a constant. There exist two types of band-to- 
band transitions: allowed and forbidden. (Forbidden transitions take into account the 
small but finite momentum of photons and are much less probable.) For direct- 
bandgap materials, transitions mostly occur between two bands of the same k value, 
as transitions (a) and (b) in Fig. 29. While allowed direct transitions can occur in all 
k values, forbidden direct transitions can only occur at k # 0. In the one-electron 
approximation, y equals 1/2 and 3/2 for allowed and forbidden direct transitions, 
respectively. Note that for k = 0 at which the bandgap is defined, only allowed transi- 
tion (y= 1/2) occurs and thus it is used in determining the bandgap experimentally. 
For indirect transitions [transition (c) in Fig. 291, phonons are involved in order to 
conserve momentum. In these transitions, phonons (with energy Ep)  are either 
absorbed or emitted, and the absorption coefficient is modified to 

a K (hv  - EgkEP)’ . (128) 

Here the constant yequals 2 and 3 for allowed and forbidden indirect transitions, 
respectively. 

In addition, increased absorption peaks and steps can be due to formation of exci- 
tons, which are bound electron-hole pairs with energy levels within the bands that 
move through the crystal lattice as a unit. Near the absorption edge, where the values 
of (Eg - h v) become comparable with the binding energy of an exciton, the Coulomb 
interaction between the free electron and hole must be taken into account. The photon 
energy required for absorption is lowered by this binding energy. For h v 7 Eg the 

Fig. 29 Optical transitions: (a) allowed 
and (b) forbidden direct transitions; (c) 
indirect transition involving phonon emis- 
sion (upper arrow) and phonon absorption 
(lower arrow). 
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absorption merges continuously into the fundamental absorption. When h v >> Eg, 
higher energy bands participate in the transition processes, and complicated band 
structures are reflected in the absorption coefficient. 

Figure 30 plots the experimental absorption coefficients anear and above the fun- 
damental absorption edge (band-to-band transition) for Si and GaAs. The shift of the 
curves toward higher photon energies at lower temperature is associated with the tem- 
perature dependence of the bandgap (Fig. 6). An a of lo4 cm-' means that 63% of 
light will be absorbed in one micron of semiconductor. 

When light passes through a semiconductor, absorption of light and generation of 
electron-hole pairs (G,) occur, and the light intensity Pop diminishes with distance 
according to 

dPOP(X) = - aPop(x) = G,hv. 
dx 

Solution of the above gives an exponential decay of intensity 

Pop(x) = P,(1 -R)exp(- ax) (130) 

where Po is the external incident light intensity and R is the reflection of the ambient- 
semiconductor interface at normal incidence, 

( 1 - nr)2 + k2 

(1 + n r ) 2 + k , 2 '  
R =  

107 

106 

10' 

1 

h v (eV) 

Fig. 30 Measured absorption coefficients near and above the fundamental absorption edge for 
Si and GaAs. (After Refs. 75-78.) 
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In a semiconductor sample of thickness W where the product aW is not large, mul- 
tiple reflections will occur between the two interfaces. Summing up all the light com- 
ponents in the backward direction, the total reflection coefficient is calculated to be 

R, = R[1+( 1 - R)*exp(- 2 a q  
1 - R2exp(- 2 a W )  

and the total transmission coefficient is given by 

1 -R)2exp(- aw) 
1 - R2exp(- 2 a W )  

T, = ( (133) 

The transmission coefficient T, and the reflection coefficient R, are two important 
quantities generally measured. By analyzing the Tz-A or R,-A data at normal inci- 
dence, or by making observations on R, or T, for different angles of  incidence, both 
n, and k, can be obtained and related to the transition energy between bands. 

1.6.3 Thermal Properties 

When a temperature gradient exists in a semiconductor in addition to an applied elec- 
tric field, the total current density (in one dimension) is5 

(134) 

where9 is the thermoelectric power, so named to indicate that for an open-circuit 
condition the net current is zero and an electric field is generated by the temperature 
gradient. For a nondegenerate semiconductor with a mean free time between colli- 
sions zm cc E-s as discussed previously, the thermoelectric power is given by 

5 } (135) 
k [i-S+ l n ( ~ ~ / n ) I n P n - [ ~ - S - l n ( ~ ~ / P ) I p P p  { nPn + PPp 

9 = - -  
4 

(k  is Boltzmann constant). This equation indicates that the thermoelectric power is 
negative for n-type semiconductors and positive for p-type semiconductors, a fact 
often used to determine the conduction type of a semiconductor. The thermoelectric 
power can also be used to determine the resistivity and the position of the Fermi level 
relative to the band edges. At room temperature the thermoelectric power9 ofp-type 
silicon increases with resistivity: 1 mV/K for a 0.1 a-cm sample and 1.7 mV/K for a 
100 Q-cm sample. Similar results (except a change of the sign for9)  can be obtained 
for n-type silicon samples. 

Another important thermal effect is thermal conduction. It is a diffusion type of 
process where the heat flow Q is driven by the temperature gradient 

The thermal conductivity K has the major components of phonon (lattice) conduction 
K~ and mixed free-carrier conduction K M o f  electrons and holes, 

K = KL + K M .  (137) 
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The lattice contribution is carried out by diffusion and scattering of phonons. These 
scattering events include many types, such as phonon-to-phonon, phonon-to-defects, 
phonon-to-carriers, boundaries and surfaces, and so on. The overall effect can be 
interpreted as 

where C,, is the specific heat, uph the phonon velocity, and 'zph the phonon mean free 
path. The contribution due to mixed carriers, if zm cc E-" holds for both electron and 
hole scattering, is given by 

Figure 3 1 shows the measured thermal conductivity as a function of lattice tem- 
perature for Si and GaAs. Appendix G lists the room-temperature values. The contri- 

1 quite small, 

D 

Fig. 31 Measured thermal conductivity versus temperature for pure Si, GaAs, Sic, GaN, Cu, 
and diamond (Type 11). (After Refs. 79-83.) 
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so the general temperature dependence follows that of K~ and has a inverted V-shape. 
At low temperatures, the specific heat has a T 3  dependence and Kgoes up sharply. At 
high temperatures, phonon-phonon scattering dominates and /Iph (and K ~ )  drops 
according to 1/T. Figure 3 1 also shows the thermal conductivities for Cu, diamond, 
Sic, and GaN. Copper is the most commonly used metal for thermal conduction in 
p-n junction devices; diamond has the highest room-temperature thermal conduc- 
tivity known to date and is useful as the thermal sink for semiconductor lasers and 
IMPATT oscillators. S ic  and GaN are important semiconductors for power devices. 

1.7 HETEROJUNCTIONS AND NANOSTRUCTURES 

A heterojunction is a junction formed between two dissimilar semiconductors. For 
semiconductor-device applications, the difference in energy gap provides another 
degree of freedom that produces many interesting phenomena. The successful appli- 
cations of heterojunctions in various devices is due to the capability of epitaxy tech- 
nology to grow lattice-matched semiconductor materials on top of one another with 
virtually no interface traps. Heterojunctions have been widely used in various device 
applications. The underlying physics of epitaxial heterojunction is matching of the 
lattice constants. This is a physical requirement in atom placement. Severe lattice 
mismatch will cause dislocations at the interface and results in electrical defects such 
as interface traps. The lattice constants of some common semiconductors are shown 
in Fig. 32, together with their energy gaps. A good combination for heterojunction 
devices is two materials of similar lattice constants but different Eg. As can be seen, 
GaAdAlGaAs (or /AlAs) is a good example. 

It turns out that if the lattice constants are not severely mismatched, good-quality 
heteroepitaxy can still be grown, provided that the epitaxial-layer thickness is small 
enough. The amount of lattice mismatch and the maximum allowed epitaxial layer 
are directly related. This can be explained with the help of Fig. 33. For a relaxed, 
thick heteroepitaxial layer, dislocations at the interface are inevitable due to the phys- 

+ Strain c 

Fig. 33 Two materials with slightly mismatched lattice constants a, and a,. (a) In isolation. 
(b) Heteroepitaxy with thick, relaxed epitaxial layer having dislocations at the interface. (c) 
With thin, strained epitaxial layer without dislocations. Epitaxial lattice constant a, is strained 
to follow that of the substrate a,. 
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ical mismatch of terminating bonds at the interface. However, if the heteroepitaxial 
layer is thin enough, the layer can be physically strained to the degree that its lattice 
constant becomes the same as the substrate (Fig. 33c). When that happens, disloca- 
tions can be eliminated. 

To estimate the critical thickness of this strained layer, we visualize the heteroepi- 
taxial process from the beginning. At the start, the epitaxial layer follows the lattice 
of the substrate, but the strain energy builds up as the film becomes thicker. Eventu- 
ally the film has built up too much strain to sustain and it transforms to a relaxed state, 
i.e. going from Figs. 33c to 33b. The lattice mismatch is defined as 

where a, and a, are the lattice constants of the epitaxial layer and substrate respec- 
tively. The critical thickness has been found to follow an empirical formula given by 

A typical number for the critical thickness, from a mismatch of 2% and an a, of 5 A, 
is about 10 nm. This technique of growing strained heteroepitaxy has bough an extra 
degree of freedom and permits the use of a wider range of materials. It has had great 
impacts on expanding the applications of heterostructures, for making novel devices 
as well as improving their performances. 

Fig. 32 Energy gap vs. lattice constant for some common elementary and binary semiconduc- 
tors. 
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In addition to having different energy gaps, the electron affinities of these semi- 
conductors are also different and need to be considered in device applications. This 
leads to different combinations of E ,  and E ,  alignment at the interface. According to 
their band alignment, heterojunctions can be classified into three groups as shown in 
Fig. 34: (1) Type4 or straddling heterojunction, (2) Type-I1 or staggered heterojunc- 
tion, and (3) Type-I11 or broken-gap heterojunction. In a Type-I (straddling) hetero- 
junction, one material has both lower E ,  and higher E ,  and naturally it must have a 
smaller energy gap. In a Type-I1 (staggered) heterojunction, the locations of lower E ,  
and higher E ,  are displaced, so electrons being collected at lower E ,  and holes being 
collected at higher E ,  are confined in different spaces. A Type-111 (broken-gap) het- 
erojunction is a special case of Type-11, but the E ,  of one side is lower than the E ,  of 
the other. The conduction band thus overlaps the valence band at the interface, hence 
the name broken gap. 

Quantum Well and Superlattice. One important application of heterojunction is to 
use AE, and AE, to form barriers for carriers. A quantum well is formed by two het- 
erojunctions or three layers of materials such that the middle layer has the lowest E, 
for an electron well or the highest E ,  for a hole well. A quantum well thus confines 
electrons or holes in a two-dimensional (2-D) system. When electrons are free to 
move in a bulk semiconductor in all directions (3-D), their energy above the conduc- 
tion-band edge is continuous, given by the relationship to their momentum (Eq. 8): 

In a quantum well, carriers are confined in one direction, say in the x-coordinate such 
that k, = 0. It will be shown that the energy within this well is no longer continuous 
with respect to the x-direction, but becomes quantized in subbands. 

The most-important parameters for a quantum well are the well width L, and well 
height 4b. The energy-band diagram in Fig. 35a shows that the potential barrier is 
obtained from the conduction-band and valence-band offsets (AE,  and AE,). The 
solution for the wavefunction of the Schrodinger equation inside the well is 

I Ec Ec 

Ev I ' Ev 

EV 

(a) (b) (c) 

Fig. 34 Classification of heterojunctions. (a) Type-I or straddling heterojunction. (b) Type41 
or staggered heterojunction. (c) Type-111 or broken-gap heterojunction. 
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Fig. 35 Energy-band diagrams for (a) heterostructure (composition) multiple quantum wells 
and (b) heterostructure superlattice. 

~ ( x )  = sin(?) (143) 

where i is an integer. It should be noted that at the well boundaries, t,u is truly zero 
only when (bb is infinite. With finite @b, carriers can “leak” out (by tunneling) of the 
well with finite probability. This is important for the formation of a superlattice, dis- 
cussed later. The pinning of nodes at the well boundaries leads to the quantization of 
subbands, each has a bottom energy of (with respect to the band edges) 

These solutions do not take into account a finite barrier height. With L, as a variable, 
a quantum well can only be loosely defined. The minimum requirements should be 
that the quantized energy h2x22/2m*L,2 is much larger than kT, and L, is smaller than 
the mean free path and the de Broglie wavelength. (Notice that the de Broglie wave- 
length A =  hl(2m*E)”* has a form similar to L, of Eq. 144.) Also, it is interesting to 
note that since the continuous conduction band is now divided into subbands, carriers 
no longer reside on the band edges E, or E,  but on these subbands only. In effect, the 
effective energy gap for interband transitions inside the quantum well becomes larger 
than the bulk Eg. 

When quantum wells are separated from one another by thick barrier layers, there 
is no communication between them and this system can only be described as multiple 
quantum wells. However, when the barrier layers between them become thinner, to 
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the extent that wavefunctions start to overlap, a heterostructure (composition) super- 
lattice is formed. The superlattice has two major differences from a multiple- 
quantum-well system: (1) the energy levels are continuous in space across the barrier, 
and (2) the discrete bands widen into minibands (Fig. 35b). The transition from mul- 
tiple quantum wells into a superlattice is analogous to the formation of a regular 
lattice by pulling atoms together. The isolated atoms have discrete levels, whereas a 
lattice transforms these discrete levels into the continuous conduction band and 
valance band. 

Another approach to form quantum wells and superlattices is by spatial variation 
in doping,84 where the potential barriers are formed by space-charge fields (Fig. 36a). 
The barrier shape in this case is parabolic rather than rectangular. There are two inter- 
esting features in this doping (or n-i-pi) multiple-quantum-well structure. First, the 
conduction-band minimum and the valence-band maximum are displaced from each 
other, meaning that electrons and holes accumulate at different locations. This leads 
to minimal electron-hole recombination and very long carrier lifetime, many orders 
of magnitude higher than that of the regular material. This is similar to a Type-I1 het- 
erojunction. Second, the effective energy gap, which is now between the first quan- 
tized levels for the electrons and holes, is reduced from the fundamental material. 
This tunable effective energy gap enables light emission and absorption of longer 
wavelengths. This structure is unique in that it has an indirect energy gap in “real 
space”, as opposed to k-space. When the doping quantum wells are close together, a 
doping (n-i-pi) superlattice is again formed (Fig. 36b). 

Quantum Wire and Quantum Dot. The physical dimensions of a semiconductor 
have significant implications on the electronic properties, as these dimensions are 

Miniband; (b) 

Fig. 36 Energy-band diagrams for (a) doping (n-i-p-i) multiple quantum wells, and (b) doping 
superlattice. 



1.7 HETEROJUNCTIONS AND NANOSTRUCTURES 61 

reduced to the order of the de Broglie wavelength. The confinement of carriers can be 
further extended to one- and zero-dimension, resulting in what are known as quantum 
wire and quantum dot. One of the major effects is on the density of states N(E).  
Depending on the degree of confinement, N(E) has very different shapes as a function 
of energy. The qualitative shapes of N(E) for bulk semiconductor, quantum well, 
quantum wire, and quantum dot are shown in Fig. 37. For a 3-D system, the density 
of states has been given earlier (Eq. 14) and is repeated here 

m* J2m*E 
s 2 A 3  

N ( E )  = 

The density of states in a 2-D system (quantum well) has a step function of 

m*i N ( E )  = - 
mVL,. 

(145) 

The density of states in a 1-D system (quantum wire) has an inverse energy relation- 
ship of 

C ( E  - Ei,,)-112, J2m* N ( E )  = - 
n--%L, i,j 

where 

The density of states in a 0-D system (quantum dot) is continuous and independent of 
energy, 

1 -D 
4 

. . 
Fig. 37 Density of states N(E) for (a) bulk semiconductor (3-D), (b) quantum well (2-D), (c) 
quantum wire (1-D), and (d) quantum dot (0-D). 
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where 

Since the carrier concentration and its distribution in energy is given by the density of 
states multiplied by the Fermi-Dirac distribution, these density-of-state functions are 
important for the device operation as their physical dimensions are scaled to near the 
de Broglie wavelength (= 20 nm). 

1.8 BASIC EQUATIONS AND EXAMPLES 

1.8.1 Basic Equations 

The basic equations for semiconductor-device operation describe the static and 
dynamic behavior of carriers in semiconductors under external influences, such as 
applied field or optical excitation, that cause deviation from the thermal-equilibrium 
 condition^.^^ The basic equations can be classified in three groups; electrostatic equa- 
tions, current-density equations, and continuity equations. 

Electrostatic Equations. There are two important equations relating charge to elec- 
tric field (= 9/ss where 9 is electric displacement). The first is from one of Maxwell 
equations, 

v . 9  = P(X,Y,Z), (151) 
also known as Gauss' law or Poisson equation. For a one-dimensional problem, this 
reduces to a more useful form of 

( V/I = 4 1 4 ) .  This is commonly used, for example, to determine the potential and field 
distribution caused by a charge density pwithin the depletion layer. The second equa- 
tion deals with charge density along an interface, instead of bulk charge. The 
boundary conditions across an interface of charge sheet Q is given by 

81(O-)s, = 8 2 ( 0 + ) ~ 2  - Q .  (153) 

Current-Density Equations. The most-common current conduction consists of the 
drift component, caused by the electric field, and the diffusion component, caused by 
the carrier-concentration gradient. The current-density equations are: 

J,, = qp,n8+ qD,,Vn, (1 54a) 

Jp = 4PpP8-4DpVP, (1 54b) 

Jcond = J~ + J p ~  (155) 
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where J, and Jp are the electron and hole current densities, respectively. The values 
of the electron and hole mobilities (pn and pp)  have been given in Section 1.5.1. For 
nondegenerate semiconductors the carrier diffusion constants (D, and Dp) and the 
mobilities are given by the Einstein relation [D, = (kT/q)p,, etc.]. 

For a one-dimensional case, Eqs. 154a and 154b reduce to 

kTdp - d& 
q d j  - 'PP dx 

Jp = qpppg-qD dm = qpp p g - -  
P dx (156b) 

where EFn and EFp are quasi Fermi levels for electrons and holes, respectively. These 
equations are valid for low electric fields. At sufficiently high fields the term p,g or 
ppg should be replaced by the saturation velocity v, (and the last equalities about EFn 
and EFp do not hold any more). These equations do not include the effect from an 
externally applied magnetic field where the magneto-resistive effect reduces the cur- 
rent. 

Continuity Equations. While the above current-density equations are for steady- 
state conditions, the continuity equations deal with time-dependent phenomena such 
as low-level injection, generation and recombination. Qualitatively, the net change of 
carrier concentration is the difference between generation and recombination, plus 
the net current flowing in and out of the region of interest. The continuity equations 
are: 

1 an - -  - G,-U,,+-V.J, ,  
at 9 

(1 57a) 

(157b) 

where G, and Gp are the electron and hole generation rate (~m-~-s-'),  respectively, 
caused by external influences such as the optical excitation with photons or impact 
ionization under large electric fields. The recombination rates, U,, = An/', and 
Up = Ap/zp, have been discussed in Section 1.5.4. 

For the one-dimensional case under a low-injection condition, Eqs. 157a and 
157b reduce to 

(1 58a) 

(158b) 

1.8.2 Examples 

In this section, we demonstrate the use of the continuity equations for studying the 
time dependence and space dependence of excess carriers. Excess carriers can be 
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created by optical excitation or injection from a nearby junction. In these examples 
we use optical excitation for simplicity. 

Decay of Excess Carriers with Time. Consider an n-type sample, as shown in 
Fig. 38a, that is illuminated with light in which the electron-hole pairs are generated 
uniformly throughout the sample with a uniform generation rate Gp. In this example 
the sample thickness is much smaller than l/a, and the space dependence is absent 
here. The boundary conditions are 8 = d8/dx = 0 and apn/dx = 0. We have from 
Eq. 158b: 

dPn - = G p - - .  Pn -Pno 
dt 5 

At steady state, dp,ldt = 0 and 

pn-pno = zpGp = constant. 

(159) 

If at an arbitrary time, say t = 0, the light is suddenly turned off, the differential equa- 
tion is now 

h v  

I I c 
t 0 5 

Light pulse 
I I I I , I I 

i" 
Fig. 38 Decay of photo-excited carriers. (a) n-type sample under constant illumination. (b) 
Decay of minority carriers (holes) with time. (c) Schematic experimental setup to measure 
minority carrier lifetime. (After Ref. 71.) 
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hV-':::::.: ~ 

------+ 

With the boundary conditions p,(t  = 0) = pno + rpGp, as given in Eq. 160, and 
p,(oo) =pno, the solution is 

0 . .  ------+::***. ' All excess :::.. . . . hv-.-,--+::::*. .. ./carriers ::.. ... ---J---:.... .......... 0 .  . ...... extracted ....... ...... 

Figure 38b shows the variation ofp, with time. 
The example above presents the main idea of the Stevenson-Keyes method for 

measuring minority-carrier lifetime.'l Figure 38c shows a schematic setup. The 
excess carriers generated uniformly throughout the sample by the light pulses cause a 
momentary increase in the conductivity and current. During the periods when the 
light pulses are off, the decay of this photoconductivity can be observed on an oscil- 
loscope which monitors the voltage drop across a resistor load R,, and is a measure of 
the lifetime. 

Decay of Excess Carriers with Distance. Figure 39a shows another simple example 
where excess carriers are injected from one side (e.g., by high-energy photons that 
create electron-hole pairs at the surface only). Referring to Fig. 30, note that for 
h v =  3.5 eV, the absorption coefficient is about lo6 cm-', in other words, the light 
intensity decreases by a factor of e in a distance of 10 nm. 

At steady state there is a concentration gradient near the surface. The differential 
equation for an n-type sample without bias is, from Eq. 158b, 

:h . ::::;k 
Pno - - - - _ _ - _ _  Pno ~ ~ ~ 

0 Lp= J.a;- X 0 W X 

(4 (b) 

Fig. 39 Steady-state carrier injection from one side. (a) Semiinfinite sample. (b) Sample with 
length K 
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The boundary conditions are p,(x = 0) = constant, depending on the injection level, 
andp,(co) =pno.  The solution ofp,(x) is 

where the diffusion length is L, = (D,Z,)~/~ (Fig. 39a). The maximum values of L, and 
L, are of the order of 1 cm in silicon, but only of the order of 1 0-2 cm in gallium ars- 
enide. 

Of special interest is the case where the second boundary condition is changed so 
that all excess carriers at the back surface (x = W) are extracted or p,( W) = pno, then 
we obtain from Eq. 163 a new solution, 

This result is shown in Fig. 39b. The current density at x = W is given by Eq. 156b: 

It will be shown later that Eq. 166 is related to the current gain in bipolar transistors 
(Chapter 5). 

Decay of Excess Carriers with Time and Distance. When localized light pulses 
generate excess carriers in a semiconductor (Fig. 40a), the transport equation after the 
pulse without bias is given by Eq. 158b by setting G, = g = dW:/dx = 0: 

The solution is given by 

where N' is the number of electrons or holes generated initially per unit area. 
Figure 40b shows this solution as the carriers difhse away fiom the point of injection, 
and they also recombine (area under curve is decreased). 

If an electric field is applied along the sample, the solution is in the same form but 
with x replaced by (x - p,gt) (Fig. 40c); thus the whole package of excess carrier 
moves toward the negative end of the sample with a drift velocity ,u,Z'. At the same 
time, the carriers diffuse outward and recombine as in the field-free case. 

The example above is similar to the celebrated Haynes-Shockley experiment for 
the measurement of carrier drift mobility in semicond~ctors.~~ With known sample 
length, applied field, and the time delay between the applied signals (bias on and light 
on) and the detected signal at the sample end (both displayed on the oscilloscope), the 
drift mobility p = xlgt can be calculated. 
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Fig. 40 Transient and steady-state carrier diffusion after a localized light pulse, (a) Experi- 
mental setup. (b) Without applied field. (c) With applied field. 

Surface Recombination. When surface recombination is introduced at one end of a 
semiconductor sample (Fig. 41), the boundary condition at x = 0 is governed by 

which states that the minority carriers that reach the surface recombine there. The 
constant Sp with units crnls is defined as the surface recombination velocity for holes. 
The boundary condition at x = co is given by Eq. 160. The differential equation, 
without bias and at steady state, is 

The solution of the equation subject to the boundary conditions above is 
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hv 
Surface 
recombination 

Fig. 41 Surface recombination at x = 0. The minority-carrier distribution near the surface is 
affected by the surface recombination velocity. 

which is plotted in Fig. 41 for a finite Sp. When Sp + 0, then p,(x) -+ pno + zpGp, 
which was obtained previously (Eq. 160). When Sp + 00, then p , (x )  + pno  + 
zpGp[ 1 - exp(- x/Lp)], and the minority carrier density at the surface approaches its 
thermal equilibrium value pno. Analogous to the low-injection bulk-recombination 
process, in which the reciprocal of the minority-carrier lifetime (1/z) is equal to 
oput,jVt (Eq. 95a), the surface recombination velocity is given by 

s p  = oputhN;* (172) 

where Nit is the number of surface trapping centers per unit area at the boundary 
region. 
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PROBLEMS 

1. (a) Find the maximum fraction of a conventional unit-cell volume which can be filled by 

(b) Find the number of atoms per square centimeter in silicon in (1 11) plane at 300 K. 

2. Calculate the tetrahedral bond angle, i.e., the angle between any pair of the four bonds. 
(Hint: Represent the 4 bonds as vectors of equal lengths. What must be the sum of the 4 
vectors equal? Take components of this vector equation along the direction of one of these 
vectors.) 

3. For a face centered cubic, the volume of a conventional unit cell is a3. Find the volume of 
a fcc primitive unit cell with three basis vectors: (0,0,0+a/2,0,a/2), (O,O,O+a/2,a/2,0), and 
(0,0,0-+0,a/2,a/2). 

4. (a) Derive an expression for the bond length d i n  the diamond lattice in terms of the lattice 

(b) In a silicon crystal, if a plane has intercepts at 10.86 A, 16.29 A, and 21.72 8, along the 

5. Show (a) that each vector of the reciprocal lattice is normal to a set of planes in the direct 
lattice, and (b) the volume of a unit cell of the reciprocal lattice is inversely proportional to 
the volume of a unit cell of the direct lattice. 

6. Show that the reciprocal lattice of a body-centered cubic (bcc) lattice with a lattice con- 
stant a is a face-centered cubic (fcc) lattice with the side of the cubic cell to be 4 d a .  
[Hint: Use a symmetric set of vectors for bcc: 

identical hard spheres in a diamond lattice. 

constant a. 

three Cartesian coordinates, find the Miller indices of the plane. 

a a U 
a = -(y+z-x), b = - ( z + x - y ) ,  c = - ( x + y - 2 )  

2 2 2 
where a is the lattice constant of a conventional primitive cell, andx, y, z are unity vectors 
of a Cartesian coordinate. For fcc; 



7. 

8. 

9. 

10. 

11. 
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a a a 
a = 2 -b+z), b = - ( z + x ) ,  2 c = - ( x + Y ) . ]  2 

Near the conduction band minima the energy can be expressed as 

In Si there are six cigar-shaped minima along [ 1001. If the ratio of the axes of constant 
energy ellipsoid is 5:1, find the ratio of longitudinal effective mass m; to the transverse 
effective mass mf . 
In the conduction band of a semiconductor, it has a lower valley at the center of the Bril- 
louin zone, and six upper valleys at the zone boundary along [loo]. If the effective mass 
for the lower valley is O.lmo and that for the upper valleys is l.Orno, find the ratio of the 
effective density of states in the upper valleys to that in the lower valley. 

Derive the density of states in the conduction band as given by Eq. 14. 
(Hint: The wavelength il of a standing wave is related to the length of the semiconductorL 
by L/il = n, where n, is an integer. The wavelength can be expressed by de Broglie hypoth- 
esis il = h/p,. Consider a three-dimensional cube of side L.) 
Calculate the average kinetic energy of electrons in the conduction band of an n-type non- 
degenerate semiconductor. The density of states is given by Eq. 14. 

Show that 

[Hint: The probability of occupancy is 

F ( E )  = [ 1 +-exp : (“31’ - 

where h is the number of electrons that can physically occupy the level E, and g is the 
number of electrons that can be accepted by the level, also called the ground-state degen- 
eracy of the donor impurity level (g = 2).] 

12. If a silicon sample is doped with lo i6  phosphorous impurities/cm3, find the ionized donor 
density at 77 K. Assume that the ionization energy for phosphorous donor impurities and 
the electron effective mass are independent of temperature. (Hint: First select a Nh value 
to calculate the Fermi level, then find the corresponding N; . If they don’t agree, select 
another NL value and repeat the process until a consistent Nh is obtained.) 

13. Using graphic method to determine the Fermi level for a boron-doped silicon sample with 
an impurity concentration of 1015 cm-) at 300 K (note ni = 9 . 6 5 ~ 1 0 ~  ~ r n - ~ ) .  

. The 

differentiation of F(E) with respect to energy is F’(E). Find the width of F’(E), i.e., 

1 
1 + exp[(E-E,)/kT] 

14. The Fermi-Dirac distribution function is given by F ( E )  = 

E( at FAax) - E(at IFh,,,)] where lF,f,,axl is the maximum value of F‘(E). 
2 

15. Find the position of the Fermi level with respect to the bottom of the conduction band 
(Ec - E,) for a silicon sample at 300 K, which is doped with 2 x  1O1O ~ m - ~  fully ionized 
donors. 
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16. Gold in Si has two energy levels in the bandgap: E, - EA = 0.54 eV, ED - E ,  = 0.29 eV. 
Assume the third level ED - E ,  = 0.35 eV is inactive. (a) What will be the state of charge 
of the gold levels in Si doped with high concentration of boron atoms? Why? (b) What is 
the effect of gold on electron and hole concentrations? 

17. From Fig. 13, evaluate and determine what kind of impurity atoms is used to dope the Si 
sample? 

18. For an n-type silicon sample doped with 2.86x 10l6 ~ m - ~  phosphorous atoms, find the ratio 
of the neutral to ionized donors at 300 K. (E, - ED) = 0.045 eV. 

19. (a) Assume the mobility ratio ,u,/,up = b in Si is a constant independent of impurity concen- 
tration. Find the maximum resistivity p, in terms of the intrinsic resistivity pi at 300 K. 
If b = 3 and the hole mobility of intrinsic Si is 450 cm2/V-s, calculate p, and p,. 

(b) Find the electron and hole concentration, mobility, and resistivity of a GaAs sample at 
300 K with 5 ~ 1 0 ' ~  zinc atoms/cm3, lo1' sulfur atoms/cm3, and lo1' carbon atoms/cm3. 

20. The Gamma Function is defined as T(n) = xn - exp (-x)dx . 1 
(a) Find r( 1/2), and (b) show that r ( n )  = (n - I)r(n - I). 

21. Consider a compensated n-type silicon at T =  300 K, with a conductivity of a= 16 S/cm 
and an acceptor doping concentration of 1 O I 7  ~ m - ~ .  Determine the donor concentration and 
the electron mobility. (A compensated semiconductor is one that contains both donor and 
acceptor impurity atoms in the same region.) 

22. Find the resistivity at 300 K for a silicon sample doped with 1 .Ox lOI4 ~ m - ~  of phosphorous 
atoms, 8 . 5 ~ 1 0 ' ~  ~ m - ~  of arsenic atoms, and 1 . 2 ~ 1 0 ~ ~  ~ m - ~  of boron atoms. Assume that 
the impurities are completely ionized and the mobilities are p,  = 1500 cm2/V-s, ,up = 

500 cm2N-s, independent of impurity concentrations. 

23. A semiconductor has a resistivity of 1.0 a-cm, and a Hall coefficient of -1250 cm2/Coul. 
Calculate the carrier density and mobility, assuming that only one type of carrier is present 
and the mean free time is proportional to the carrier energy, i.e., r a E. 

24. Derive the recombination rate for indirect recombination as given by Eq. 92. 
(Hint: Refer to Fig. 25b, the capture rate of an electron by a recombination center is pro- 
portional to R, = nN,( 1 - F) where n is the density of electrons in the conduction band, N, 
is the density of recombination centers, F is the Fermi distribution, and N,( 1 - F) is the 
density of unoccupied recombination centers available for electron capture.) 

25. The recombination rate is given by Eq. 92. Under low injection condition, U can be 
expressed as (p, -pno)/ro where r, is the recombination lifetime. If a, = ap = a, , nno = 

1015 ~ r n - ~ ,  and r, = (u,~oJV,)-I, find the values of (E, - E,) at which the recombination life- 
time rr becomes 2 rro. 

26. For single-level recombination with identical electron and hole capture cross sections, find 
the number of trap centers per unit volume per generation rate under the condition of com- 
plete depletion of carriers. Assume that the trap centers are located at mid bandgap, 
o= 2x10-"3 cm2, and u,h = 107 c d s .  

27. In a region of semiconductor which is completely depleted of carriers (i.e., n << n, ,p  << n,), 
electron-hole pairs are generated by alternate emission of electrons and of holes by the 
centers. Derive the average time that takes place between such emission process (assume 
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om = op = n); also find the average time for n= 2x 1 0-l6 cm2, ulh = lo7 c d s ,  and El = Ei. 
( T =  300 K). 

28. For a single-level recombination process, find the average time that takes place between 
each recombination process in a region of a silicon sample where n = p  = 1013 ~ m - ~ ,  on = 

op = 2 ~ 1 0 - l ~  cm2, uth = lo7 c d s ,  N1 = 10I6 ~ m - ~ ,  and (E,-E,) = 5kT 

(Hint: Assume a linear chain of atoms and the atoms interact only with nearest neighbors. 
The even-numbered atoms have mass m, and the odd-numbered atoms have mass m,.) 
(b) For a silicon crystal with m l  = m, and = 7 . 6 3 ~  10l2 Hz, find the optical phonon 
energy at the boundary of the Brillouin zone. The force constant is a? 

30. Assume G%,,In,,,As is lattice matched with InP substrate at 500°C. When the sample is 
cooled to 27"C, find the lattice mismatch between the layers. 

3 1. Find the ratio of the conduction-band discontinuity of the heterojunction 
A1,,,Gao,6As/GaAs to the A10,4Ga,,6As bandgap. 

32. In a Haynes-Shockley experiment, the maximum amplitudes of the minority carriers at 
tl = 25 ps and t ,  = 100 ps differ by a factor of 10. Find the minority carrier lifetime. 

33. From the expression which describes the drift and diffusion of carriers in the Haynes- 
Shockley experiment, find the half-width of the pulse of carriers at t = 1 s. Assume the dif- 
fusion coefficient is 10 cm2/s. 

34. Excess carriers are injected on one surface (x = 0) of a thin slide of n-type ( 3 ~ 1 0 ' ~  ~ m - ~ )  
silicon with length W =  0.05 mm and extracted at the opposite surface wherep,(W) =pno. 
If the carrier lifetime is 50 ps, find the portion of injected current which reaches the oppo- 
site surface by diffusion. 

35. A GaAs n-type sample with No = 5 ~ 1 0 ~ ~  ~ m - ~  is illuminated. The uniformly absorbed 
light creates lOI7 electron-hole pairs/cm3-s. The lifetime 5 is s, Lp = 1 . 9 3 ~ 1 0 - ~  cm, 
the surface recombination velocity Sp is lo5 cm/s. Find the number of holes recombining 
at the surface per unit surface area in unit time. 

36. An n-type semiconductor has excess carrier holes lOI4 ~ m - ~ ,  a minority carrier lifetime 
s in the bulk material, and a minority carrier lifetime lIY7 s at the surface. Assume 

zero applied electric field and let Dp = 10 cm2/s. Determine the steady-state excess carrier 
concentration as a function of distance from the surface (x = 0) of the semiconductor. 

29. (a). Derive Eq. 123. 


