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In the preceeding chapters we have learned about a variety of physical mechanisms that take
place in semiconductors: generation, recombination, drift and diffusion. In a semiconductor device
under operation, several of these mechanisms can be in action simultaneously. For example, in the
base of a bipolar transistor, minority carriers that are injected from the emitter diffuse towards
the collector. Some of them may recombine in the base. If there is an electric field, minority
carrier drift can also be significant through the base. A computation of the collector current of
the transistor demands a correct description of all these processes and their interactions.

This chapter starts by formulating the set of equations that describe carrier behavior in semi-
conductors and the various boundary conditions that can be encountered. The governing system
of equations is rather complex and analytical solutions are generally not obtainable. Computer-
aided design (CAD) tools have been developed to solve these equations in semiconductor devices.

For the purpose of understanding device operation and for developing simple models that can
be used in design, it is essential to simplify these equations as much as possible. Fortunately,
this is feasible in many practical situations. We will distinguish three broad classes of situa-
tions: majority-carrier-type, minority-carrier-type and space-charge problems. In the first kind,
majority-carrier drift and diffusion constitute the dominant phenomena. This is what happens,
for example, in the source of a MOSFET. In the second kind, minority carrier behavior is the
bottleneck. This is the situation in the base of a bipolar transistor. These two families of prob-
lems occur in quasi-neutral regions. In space-charge regions, such as in the depletion region of a
p-n junction, the physics of carrier transport is somehow different and deserves special attention.

Minority-carrier-type problems can be mathematically difficult, particularly in dynamic sit-
uations. This is because of the subtle interplay of carrier diffusion and drift, bulk and surface
generation or recombination. In many circumstances, device engineers do not need a complete
solution to the problem. Identifying the limiting phenomena suffices to diagnose the situation
and articulate a course of action. In this chapter, we solve a number of classic problems and
use them to identify the key length scales and time scales for carrier behavior. Learning to do
this correctly is a very valuable skill that is helpful in the design and analysis of microelectronic
devices.

This chapter is, in some ways, about the management of complexity. In front of a given
situation, the entire set of equations that completely describes carrier phenomena is usually a
blunt instrument. It is often far more effective to analyze the physics of the problem, identify
the bottlenecks, extract the essential terms from the equations, and discard all the rest. The
simplified set is more likely to lead to a simple, analytical and physically intuitive solution of
great practical value. The final step in this process is to verify the assumptions that were initially
made to simplify the problem. This approach is fairly common in engineering. It is crucial in
effective microelectronics device engineering. It will be discussed and illustrated in detail in this
chapter in a few important situations.
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AV

Figure 5.1: _Sketch of small semiconductor volume AV with a uniform electron concentration n inside. An
electron flux Fe crosses the surface of AV at a certain point.

5.1 Continuity Equations

In Ch. 3 we learned that in a certain region of a semiconductor, the carrier concentrations outside
thermal equilibrium are determined by the imbalance between the rates of carrier generation and
recombination in that region. Based on this understanding, we derived differential equations
that allowed us to compute the time evolution of carrier concentrations in situations outside
equilibrium (see Eq. 3.61). This picture is actually incomplete. It only applies to situations that
are uniform, i.e., nothing changes in space. In more general situations, in addition to generation
and recombination, there is a need to account for carrier flow in and out of the region of interest.
The continuity equations that we derive in this section mathematically capture this simple fact.

A continuity equation is in essence a "book-keeping relationship” that keeps track of the
number of particles in a region of a semiconductor as a function of time. Consider an elemental
volume of a semiconductor AV, such as sketched in Fig. 5.1. The number of electrons, say, in
this little volume increases with time if there is generation taking place inside it. Analogously,
recombination reduces the electron count. Additionally, if there is a net flow of electrons out of
that volume, whether by drift or diffusion, this also reduces the number of electrons in AV.

We can mathematically capture this by focusing on the rates at which these processes take
place. Specifically, the rate of increase of the number of electrons in AV is equal to the rate of

electron generation in AV, minus the rate of recombination in AV, minus the net flow of electrons
leaving AV per unit time. If AV is small enough, this can be written mathematically as:

A(nAV 28 o
i%?l:GAV—RAV—/ﬂdS (5.1)
where the integral on the right-hand side sums all outgoing flux through the surface of AV.
Dividing all terms by AV and taking the limit for AV very small, we get:

%:G-R—ﬁﬁ (5.2)

This is the continuity equation for electrons. Following similar arguments, an identical equation
is obtained for holes.
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Since there is a direct relationship between carrier flux and current density (Eqs. 4.15 and
4.16), Eq. 5.2 can easily be rewriten as:

M d-m+ 5.0 (5.3)
Jt q
for electrons. For holes, we get:
dp 1= =
i G-R- EV.Jh (5.4)

These are the most fundamental expressions of the continuity equations for electrons and holes.

It is also of interest to focus on continuity of charge. We saw in Ch. 4 that in a semiconductor,
net volume charge density results if there is an imbalance between the total concentrations of pos-
itive species (holes and donors) and negative species (electrons and acceptors) (Eq. 4.51). Since
the impurity concentrations cannot change in time, the rate of change of volume charge density
is given by the difference of the rate of change of hole and electron concentrations multiplied by
the elemental charge:

J d(p —
90 _ 2o —-%)

t ot (5:5)

a )

This observation allows us to derive a continuity equation for charge density. We multiply
Eqs. 5.3 and 5.4 by ¢, we subtract one from the other and we substitute the result into Eq. 5.5
to get:

dp = =
— = -V.J I
% _ 5 (5.6

where J; is the total current (sum of electron and hole current).

This equation states that if the volume charge density is changing with time in a region of a
semiconductor, it is because there is net current flowing in or out of that region. For example, if
the charge density at a certain location is increasing, that means that current is flowing into that
region (negative divergence).

The continuity equation for charge is very useful to analyze a variety of important situations
in semiconductors. A particularly relevant one that merits being discussed here is a fully static
situation (though not necessarily in thermal equilibrium). This situation can result, for example,
if there is net carrier generation in a region of a semiconductor as a result of external illumination
that is steady in time. In a case like this in which nothing changes in time, there are no sinks

or sources of net charge and at any location the divergence of the total current must be zero
everywhere.

The continuity equations derived here are particularly intuitive when written in integral form.
This is shown in Appendix AT5.1.
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5.2 Surface continuity equations

A problem is not completely defined until its boundary conditions are specified. In semiconductor
devices, boundary conditions often play a critical role in device operation. Many times "boundary
condition engineering” is the most effective way to achieve certain device design goals. For the
purpose of understanding carrier flow in semiconductor devices, we need to specify the appropriate
boundary conditions that apply.

In describing a semiconductor device, the condition of all its surfaces must be specified. We
are not equipped at this time to treat semiconductor surfaces rigorously. We will study the
electrostatics of surfaces in detail later on in this book. Chapter 7, for example, deals with
the metal-semiconductor interface and Chapter 8 discusses the insulator-semiconductor interface.
For situations with excess carriers, we can make substantial progress in a number of important
problems if we treat the surfaces in an empirical way. This is the approach followed in this section
in which surface continuity equations are derived.

We discuss here the two simplest kinds of surfaces. First, we study a "free” surface, one
in which the semiconductor is exposed or covered by a non-conductive material. Then we deal
with ”ohmic contacts” in which a metal is deposited on the surface. The fundamental difference
between these two surfaces is that in the case of the free surface, carriers cannot escape from the
semiconductor, while in the case of the ohmic contact, conduction is allowed between the metal
and the semiconductor. The detailed physics of these two types of surfaces is fairly complex and
a detailed analysis is left for later chapters.

5.2.1 Free surface

We denote a free surface as the boundary region of a semiconductor that is not electrically
connected to anything else. As we will study in Ch. 8, at a surface there is an energy barrier
that prevents carriers from ”spilling out” of the semiconductor. A consequence of this is that the
current normal to a free surface must be zero:

Jts:(] (

o
=

This is illustrated in Fig. 5.2.

While the total electrical current is zero at a free surface, the electron and hole currents need
not be zero separately. As discussed in Ch. 4, if the surface is not properly passivated, there
can be significant recombination and generation associated with surface states and traps. We can
characterize this by defining a surface recombination rate Ry and a surface generation rate Gj.

If there is net generation or recombination at a surface, there must be a flow of carriers into or
out of it that come from or go to the rest of the semiconductor. The total current at the surface is
zero but the electron and hole components, separately, are not. Similar to the continuity equations
derived for the bulk of a semiconductor in Section 5.2, we can write a continuity equation for a
surface for each type of carrier. A fundamental difference with the bulk case is that a surface
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Figure 5.2: At a free surface, carriers cannot spill out and the net electrical current must be zero.

Gs-Rs=Fs Gs-Rs=-Fs Gs-Rs=-Fs Gs-Rs=Fs
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Figure 5.3: Depending on the choice of axis with respect with the location of the surface of a semiconductor, the
surface continuity equation takes on different signs.

cannot store carriers since it has no volume. Particle conservation then demands that the rate of
surface generation minus the rate of surface recombination, or net surface generation rate, equals
the carrier flux out of the surface. Mathematically:

|Gs - Rs| = |Fs| (58)
The units of all terms in this equation are em =2 - s~'. The sign of F, is sensitive to the choice
of axis and it applies to both electrons and holes. This is illustrated in Fig. 5.3. The absolute
symbols in this equation are to ensure that it applies regardless of the choice of axis.

We can rewrite Eq. 5.8 in a slightly more useful way. First, we can express the right-hand
side in terms of current density. For this, we use the results obtained in the previous chapter in
Eqs. 4.15-4.16. Second, the left-hand side is equal to the absolute of the net recombination rate
at the surface, U, that was introduced in Ch. 3. With these two changes, Eq. 5.8 becomes:

1 1
|Us| = _|Jesi = _|J!as| (5-9)
q q

Jes and Jp, are the current densities normal to the surface. They are identical in magnitude
because electrons and holes are generated and recombine in pairs. The sign for each current
density in these two equations depends on the choice of axis. To keep the total current zero at
the free surface, their signs must always be the opposite of each other.



J. A. del Alamo 229

In some problems, it is useful to introduce an erternal surface generation. This is of course a
rather unphysical occurrence. However, depending on the length scale of the problem, it can be a
handy simplifying approximation for some situations. Very short wavelength light, for example,
is absorbed very effectively in a semiconductor. If all length scales of the problem of interest
are much longer than the absorption length of the light, for all practical purposes the generation
function can be assumed to be confined to a thin sheet at the surface. Including an external
surface generation rate, Eq. 5.9 becomes:

1 1
|Gs(ext) — Us| = E|Jes| = alJns| (5.10)

The units of Gs(ext) are also em ™2 - s7!. Once again, the sign that must be selected for the

current density terms depends on the choice of axis.
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Exercise 5.1: Consider the surface of an n-type Si sample with Np = 10'7 cm=2 at 300K, as
sketched below. This surface is characterized by a surface recombination velocity S = 104 cmfs.
At the surface, there is an excess hole concentration p'(z = 0) = 10 ¢m =3,

Np=1017 cm-3
S=104 cm/s

Sl p'(x=0)=1 pl4 cm-3

A/ '

0 X
Under these conditions, calculate: a) the net recombination rate at the surface, b) the hole flux al
the surface, c) the clectron flur at the surface, d) the hole current density at the surface, e) the
electron current density at the surface, and f) the total current density at the surface.

a) Since the semiconductor at the surface is under low-level injection conditions, the net recombi-
nation rate at the surface can be calculated using Eq. 3.72:

Uy =p'S =10 % 10* = 10" ¢ 2. 571

b) The magnitude of the hole flux at the surface is equal to the net recombination rate. Since the
holes are flowing into the surface to recombine (against the choice of z in the figure above), the
hole flux is negative. Then:

Frlz=0)=-U, =-10¥ em2.57!

¢) The electron flux at the surface is identical to the hole flux (every hole recombines with one
electron):

Fuz=0)=-10"® em=2. 571

It is also negative because the electrons are also flowing into the surface.

d) The hole current density at the surface is simply:
Jux=0)=qFy(x=0)=—-1.6x 107" x 10'®* = —0.16 A/cm?
e/ Similarly, the electron current density at the surface is:
Jo(z=0)= —qFe(z=0) =16 x 107*? x 10" = 0.16 A/em?

f) The total current density at the surface is the sum of the electron and hole current densities:

Ji(z=0) = Jo(z = 0)+ Ju(z = 0) =0

This result makes sense since there cannot be net current into a free surface.

5.2.2 Ohmic contact

Implicit in the derivation of the surface continuity equations above is the constraint that carriers
cannot "fall out” of the surface, nor be added somehow to the surface from the outside. This
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contact area: Ag

\

Figure 5.4: Sketch of ohmic contact between a metal and semiconductor with current flowing through. The area
of the contact between the metal and the semiconductor is A

assumption holds for a free surface. However, in just about all semiconductor devices, there
are some surfaces that are contacted with metal so as to provide an electrical connection to the
semiconductor from the outside world. These are called ohmic contacts.

The physics of the metal-semiconductor junction will be discussed in detail in Ch. 7, so
fundamental aspects of the operation of ohmic contacts have to be left out for later on. At this
time, we will have to accept some of its properties on faith until a proper justification is provided.
Our goal here is to be able to write suitable continuity equations for ohmic contacts.

Consider the sketch of Fig. 5.4. It depicts an n-type semiconductor surface covered by a metal
forming an ohmic contact (we will see in Ch. 7 that not all metal /semiconductor interfaces result
in ohmic contacts). The metal surface is connected to a wire through which a current I flows. On
the semiconductor side, right at the interface between the metal and the semiconductor, there
can in general be an electron current .J,;, and a hole current, .J,s. The ohmic contact has an area

A

Kirchoff’s law applies at an ohmic contact. That is, current continuity demands that the
current through the wire be identical to the sum of the electron and hole currents right at the
surface on the semiconductor side. Mathematically,

“| = Ac|Jes + Ins| = (IAC|1:|ES = Br..9| (5.11)

Fes and Fj, are the carrier fluxes at the semiconductor side of the metal-semiconductor inter-
face. As before, the absolute symbols are required because the current signs on the semiconductor
side depend on the choice of axis on the semiconductor. Note that there is an established sign
convention for the current at a device contact. The current is considered positive if entering into
the device and negative if coming out of the device. This is the convention followed in this book.

In addition to Eq. 5.11, there are a number of statements that can be made about ohmic con-

tacts. The reason for these will be understood when we study the metal-semiconductor Jjunction
in Ch. 7.

e First, in ohmic contacts in the absence of net generation or recombination, the metal only
communicates with the majority carriers in the semiconductor. This means that if there is
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Figure 5.5: In the absence of net generation or recombination at an ohmic contact, terminal current is entirely
supported by the majority carriers in the semiconductor (n-type on left, p-type on right).

current through the wire, this current is supported entirely by majority carrier current in
the semiconductor. This is illustrated in Fig. 5.5. Mathematically:

= Ae|Je.q| == qAr.‘Fes (512)
An equivalent equation applies for p-type material.

If there is net generation or recombination at an ohmic contact (that is, at the metal-
semiconductor interface), this results in a minority carrier current. Additionally, since
electrons and holes are generated and recombine in pairs, this also produces an additional
component to the majority carrier current of equal magnitude and contrary sign. This
current component adds up to the one imposed from the outside, as mentioned above.
Mathematically, for n-type material:

1
Vsl = 2 1hs| (5.13)

An equivalent equation applies for p-type material.

Finally, because of the intimate contact between the metal and the semiconductor, an ohmic
contact produces a surface with infinite surface recombination velocity. As a result, at an
ohmic contact the minority carrier concentration is equal to its equilibrium value. The
detailed reason for this will be better understood in Ch. 7. This is an important boundary
condition that we will frequently encounter in this book. Mathematically,

R == (5.14)

To clarify the implications of these properties of ohmic contacts, we study three representative

cases sketched in Fig. 5.6. In all three, there is current entering into an n-type semiconductor
through the ohmic contact.

The case on the left represents an ohmic contact without any generation or recombination

taking place at the interface. This is rather common in devices. It is for example the case of
the contacts to the source and drain in MOSFETSs, and the contact to the collector of a bipolar
transistor in the forward active regime. In this case, there is no minority carrier current, and all
the wire current is supported by electrons in the semiconductor. Hence:
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.o
ohmic contact without ohmic contact ohmic contact
recombination or with net recombination with net generation
generation

F igure 5.6: Three representative cases of ohmic contacts on n-type semiconductor in which there is current coming
out of the semiconductor through the metal. Depending on whether there is net generation or recombination at
the metal-semiconductor interface, the carrier fluxes have different signs and magnitudes.

Us = 0 (515)
I = qA/|F. (5.16)

The case in the center represents one in which there is an ohmic contact at which net recom-
bination prevails. This happens for example in the contact to the emitter of a BJT in the forward
active regime. For this case, the net recombination rate and Kirchoff’s equation become:

Us = |Fhsl . (5.17)
I = qAc|Fes — Fhs| < qAc|Fesl (5.18)

As the relative size of the arrows in Fig. 5.6 attempt to indicate, this is a case in which the
majority carrier flux into the surface is increased with respect to the case on the left, because a

few majority carriers flow in order to recombine with holes at the surface. The total current is
continuous through the structure.

The case on the right represents a contact with net generation. This happens for example in
the emitter of a BJT in the reverse regime. In this case, the net recombination at the surface is
negative, and the majority carrier flux into the surface into the semiconductor is smaller than in
the case on the left. The proper equations are:

Us = —|Fpl (5.19)
I = QAC|F93 - Fh3| > QACIFE-S| (5.20)

This understanding should allow us to formulate proper boundary conditions for ohmic con-
tacts in all kinds of device settings.
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Exercise 5.2: Consider an ohmic contact to an n-type Si sample with Np = 10'7 em™2 at 300K,
as sketched below. The area of the contact is A, = 1 pum?.

Ac=1 um?2
| ~ Np=1017 cm-3

< Us

| >

0 X
Current, I, can flow through the wire into the semiconductor and there is also the possibility of
net recombination with a rate Uy at the metal/semiconductor interface. Calculate the electron and
hole current densities at the semiconductor surface right below the contact under the following
conditions: a) [ = 0, Ug = 102 em™2 - 571, ) I = 10 pA, U, = 0, and e) I = 10 pA,
U, =102 em—2. 571,

a) I = 0 is a case equivalent to a free surface. We know in this case that the magnitude of the
electron and hole fluxes at the surface are equal fo the net recombination rate. However, since
there is net recombination at the surface, carriers flow towards it, which is against the choice of
axis in the figure. Therefore, both F,. and F), are negative:

Fe=Fp=-U,=-102 em=2.57!
The current densities are, then:

J[‘. = _qu =1.6 kA/CTﬂ.z

Jp=qF), = —1.6 kA/em?

b) Us = 0 implies that there is no minority carrier flux at the surface of the semiconductor. Hence,
the hole current density is: '

Ji=1)

The current coming into the contact from the wire is entirely supported by majority carriers on
the semiconductor side. The electron current density is then:

b i 10 pA

Tl el

This current is positive because it flows along z.
¢) With Uy identical to case a) above, the hole current density is just as above:
Jp=—qUs = —1.6 kA/em?

The electron current density must be such that there is current continuity across the metal-
semiconductor interface:

I i
Jo=dp = Jp = T Jp=1+16=26kA/cm*
L )
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Gauss’ law: V-&=L=1(p-n+ Nj-Nj)
Electron current equation: }_’; = —qn@;dﬂf t 4+ ¢D.Vn

Hole current equation: Jp = qpip It — DR Vp

Electron continuity equation: % = Gept — U + éﬁ’ il

or

Hole continuity equation: %’f =Gert — U — %6’ . J_,a;

Charge continuity equation: %@ =-V.J,

Total current equation: ff = J:.; + j,;

Table 5.1: Shockley equations. The continuity equation for charge is redundant with the electron and hole
continuity equations. Only two of these three equations are independent.

5.3 Shockley equations

We now have a complete set of equations to study carrier flow in semiconductors under a great
variety of circumstances. For convenience, Table 5.1 summarizes all these relationships in their
most general form. They are commonly called Shockley equations, in honor of William Shockley,
one of the inventors of the bipolar transistor.

Shockley equations are all very fundamental relations. Gauss’ law states that net electrical
charge of any kind produces an _electric field. Next, the electron dlld hole current _equations state
that carriers in semiconductors can flow by means of drift and diffusion producing a current.
Finally, the electron and hole continuity equatlons are palmcle book-keeping relationships. In
Table 5.1 we have expressed the continuity equations in a slightly different way. The term
G — R in Egs. 5.3 and 5.4 is rewritten in terms of an external generation rate Ge;y and the net
recombination rate U, as discussed in Ch. 3. We have also added to this set the charge continuity
equation, even though it is redundant with the electron and hole continuity equations. Only two
out of these three are independent. The last equation in the table states that the total current

density at any point of a semiconductor is the sum of the electron and hole contributions.

This is a system of non-linear coupled partial differential equations which generally cannot be
solved in a closed form. Commercial computer programs have been developed to solve this set of
equations even in three dimensions. It is of great interest to obtain, wherever possible, analytical
solutions that provide physical insight and that can be used in device design. A few important
cases are amenable to compact solutions. We study them in the following sections.
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5.4 Simplifications of Shockley equations to one-dimensional quasi-
neutral situations

There are a variety of circumstances for which the Shockley equations can be substantially sim-
plified and analytical results can be derived. Some of these situations are very important because
they appear frequently even in fairly dissimilar devices. Recognizing these special cases allows
understanding developed in the context of one device to port over to other devices.

The three special cases that we are going to discuss here are referred to as minority-carrier
situations, majority-carrier situations and space-charge situations. These three different regimes
of carrier transport appear very frequently in the operation of microelectronic devices. Even in a
given device under a specific mode of operation, these three situations can be present simultane-
ously. This is illustrated in Fig. 5.7 which depicts an npn bipolar transistor in the forward-active
regime. If we focus on electron transport across the intrinsic portion of the device, we recognize
a minority-carrier situation, a space-charge region situation, and a majority-carrier situation in
the flow of electrons through the base, the base-collector junction, and the collector, respectively.

This will become clear after studying this chapter and the basic operation of the bipolar transistor
in Ch. 11.

The rest of the chapter is devoted to discussing in some depth these three important situations.
Our goal is to develop an intuitive understanding of carrier behavior in these three cases and to
build a handy tool-set with which we will analyze several microelectronic devices in later chapters.

In order to accomplish this, we will perform a number of simplifications. A judgment of
when a particular simplification is viable can only be acquired with experience. There will be
multiple opportunities in this book to exercise such judgment. A chart summarizing the various
simplifications that we are going to perform and their interrelations is shown in Fig. 5.8. We will
refer to this chart in the sections that follow.

Although microelectronic devices are three-dimensional structures, in many situations we can
simplify the problem to two and even one dimension. This happens because many times the
geometry is very different in the three spatial directions, there are axis or planes of symmetry, or
carrier phenomena are dominated by the behavior along one particular dimension. For example,
in an integrated PN diode, as sketched in Fig. 5.9, the junction is parallel to the wafer surface
and the lateral dimensions are typically much larger than the vertical ones. In this case, for a
reasonably well designed diode under typical operating conditions, the dominant carrier behavior
under the active area takes place along the vertical dimension (z in the diagram) with the physics
not changing very much for the different positions on the plane. In these types of situations, a one-

dimensional treatment of carrier flow can be highly accurate under most common circumstances
1

Making the one-dimensional approzimation drastically simplifies the Shockley equations. All
V operators become simple spatial derivatives along the selected dimension. These equations are

'Even in a geometry like the one sketched in Fig. 5.9, certain phenomena are intrinsically of a two- or three-
dimensional nature. A good example is reverse-bias breakdown that is almost always associated with the corners
of the PN junction, as we will study later on in this book.
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Figure 5.7: Cross section of modern bipolar junction transistor. The inset shows electron transport across the
intrinsic portion of the device in the forward-active regime illustrating the different modes of transport that can

be encountered.
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General drift-diffusion
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Figure 5.8: Chart summarizing the various approximations of the drift-diffusion formulation that are going to
be performed in this Chapter. V' refers to the application of an external voltage to a region in a semiconductor.

listed in Table 5.2. This is the first important simplification to the Shockley equations that we
perform, as shown in Fig. 5.8.

The second simplification addresses Gauss’ law. The Shockley equation set is a difficult one
to solve because of the coupling that Gauss’ law introduces. Fortunately, there are two important
situations for which a simplification of this equation becomes possible, drastically untying the
Shockley equation set. These two are quasi-neutral situations and space-charge situations. They
are both indicated in Fig. 5.8. We discuss quasi-neutral situations in the remainder of this section
and space-charge situations in Sect. 5.9. -

We introduced the concept of quasi-neutrality in Ch. 4 when we discussed non-uniform doping
distributions in thermal equilibrium. At that time, we defined a quasi-neutral situation as one
in which the majority carrier concentration closely tracks the doping level with the consequence
that the net volume charge density is negligible. We can generalize this concept to denote as
quasi-neutral any situation in which at every location the net volume charge density that arises
from a discrepancy of the concentration of positive and negative species is negligible m the scale
of the c}wrge density present. Mathematically, this implies that:
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Figure 5.9: Cross-sectional sketch of a simple integrated p-n junction diode. The p-n junction lies parallel to
the wafer surface. The extent of the device on the wafer is much larger than into the wafer. This justifies making
one-dimensional approximation to study most aspects of device physics.

Gauss’ law:

Electron current equation:

Hole current equation:

Electron continuity equation:

or
Hole continuity equation:

Charge continuity equation:

Total current equation:

9 _ p
€

(p—n+Np—Na)
Jo = —qnvdif{(€) + qD. 3

Jn = qpviy TH(E) — gD 32

% =Gext —~U(n,p) + L%

% = Gewt —Uln,p) - 2152

% —
-4
Ji=Je+Jn

Table 5.2: Shockley equations in one dimension. The continuity equation for charge is redundant with the
electron and hole continuity equations. Only two of these three equations are independent.
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p=~0 (5.21)

The quasi-neutral approximation, a very reasonable one in many circumstances, has its origin
in the fact that electrons and holes are mobile. In response to an electric field, carriers always
move in the direction of trying to erase the field. In consequence, if there are large numbers
of carriers, as is often the case in semiconductors, it is simply difficult to sustain a substantial
volume charge for any appreciable time duration.

The quasi-neutrality assumption drastically simplifies the solution to the Shockley equations
because it breaks the coupling of £ with n and p through Gauss’ law. Looking back to Eq. 4.51,
p can be written as:

p=qp—n+Npj—N;)=qpo — 1o+ Nj —Nz)+q(p —n') (5.22)
where the equilibrium and excess carriers concentrations have been made explicit.
In equilibrium, when p’ = n’ = 0, the quasi-neutrality condition can be expressed as:

po—no+Nf5 - N3

A
+ 1 5.23

which implies that

Po— o= —(Nj —Ny) (5.24)

Since n,p, = n?, this equation yields right away the carrier concentrations in equilibrium. Eq.
5.24 is a more general way of expressing the result obtained in Eq. 4.75 in the previous chapter.
We also studied in Ch. 4 how to assess when this condition applies.

If quasi-neutrality also holds outside equilibrium, we can then write that:

!

p-n, p-n i
= | 7 <1 (5.25)

]

=
which implies that:

! !

oo (5.26)

This equation represents a substantial simplification of non-equilibrium problems since in fact it
all together eliminates one of the carrier concentrations as an unknown. The best way to check
when quasi-neutrality applies outside equilibrium is to perform the approximation (Eq. 5.26),
completely solve the problem, and then come back and check the condition (Eq. 5.25). We will
illustrate this through an example later on in this chapter. From it, we will extract a simple handy
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guideline that states that quasi-neutrality holds when the characteristic length of the carrier flow
problem is much longer than the Debye length.

A direct consequence of the quasi-neutrality approximation comes from its use in Gauss’ law.

This yields:

0E _

gt ., 5.2
oF 0 (5.27)

This result does not mean that the electric field is zero but rather that it cannot change too
abruptly in space. In fact, in general, £ # 0. Actually, Eq. 5.22 in combination with Gauss’ law,
suggests that in general, the electric field can be expressed as:

E=E,5E (5.28)
Here &, is the clectric field in equilibrium which obeys the following equation:

e,

=2 = 4(p, —no + Nj ~ N3) (5.29)

and £’ is the ezcess electric field outside equilibrium which satisfies:

.=%W—ﬁ) (5.30)

In a given problem, &, is obtained as outlined in Ch. 4. In this chapter we will show how to
solve for £ in quasi-neutral situations. Gauss’ law then can be used to verify the validity of the
quasi-neutrality assumption.

Under the quasi-neutrality assumption, if the volume charge density is negligible, its change
in time can also be disregarded. This simplifies the charge continuity equation to:

12
(=]

(5.31)

SIS

This is a simple statement of current continuity. Since the volume charge density cannot
change in time, then the total current must be continuous everywhere. This will be very useful
in device analysis because if we can figure out the total current at one location in the device, we
know it everywhere.

With these changes, the quasi-neutral approximation simplifies the one-dimensional Shockley
equations to the set of Table 5.3. To clean up the notation, it has further been assumed that all
dopants are ionized.

We now split the discussion into two broad ways in which a semiconductor region can be
brought out of equilibrium. These are both indicated in Fig. 5.8. One way is the application
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p—n+Np—-—N4y=0
Je = —qmgﬂﬁ + qDeg)_a:

I = qpof™t — gDy 22

) 18J. ) o
O_?ZGext‘._U—anx or G_'It):GE:ci‘._U_%F;‘
[N/

dx =0
Jt:Je+Jh_

Table 5.3: Equation set for one-dimensional quasi-neutral situations.

of a voltage from the outside. The second one is the injection or generation of excess carriers.
As we will see below, the relative role played by the majority and minority carriers in these
situations is very different. Because of this, we refer to the first kind, application of voltage, as
W and to the second, introduction of excess carriers, as "minority-
carrier situations.” We study them separately. These are, of course, extreme cases of a rich
“continuum. In real devices, mixed situations often occur. However, to deal with them effectively,
good understanding of the simple cases discussed here is essential.

5.5 Majority-carrier situations

This class of problems describes situations faced very frequently in microelectronic devices in
which a voltage is applied to.a semiconductor region from the outside without _upsetting the

carrier concentrations from their equilibrium values.

Before attacking a description of these problems, it is useful here to briefly remember what a
battery does. If one connects a resistor across the two terminals of a battery, current flows. The
standard notation is such that current flows out of the "long” terminal of the battery, through the
resistor, into the "short” terminal of the battery, as sketched in Fig. 5.10. Current in metals and
conventional resistors consists of electron flow. Since electrons are negatively charged, electrons
actually flow in the contrary sense to the current, as also sketched in Fig. 5.10.

What drives the electrons to flow that way? The energy view of the situation, also sketched
in Fig. 5.10, helps to understand this. The battery grabs electrons from its positive terminal
and raises their energy as they cross through it. Electrons in the negative terminal have a higher
enelgy than those in the positive terminal. If provided with a path, they will flow in an effort
to lower their potential energy. The resistor is one such path (the battery itself is not, it blocks
the "backward” flow of electrons). How much energy does the battery provide to the electrons?

If the battery is rated with a voltage V, the energy of the negative terminal with respect to the
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Figure 5.10: Left: simple circuit with resistor and battery. Right: energy view of circuit. The negative terminal
of the battery raises the electron energy by ¢V with respect to the positive terminal. In consequence, electrons
flow across the resistor from right to left.

positive terminal is ¢gV/. If there are no ohmic losses in the wires and the contacts, the entire
voltage of the battery shows up across the resistor creating an electric field and tilting the energy
band structure, as shown. This presents electrons in the resistor with empty states to their left
and they preferentially flow from right to left. This is what is required by the sign of the battery.

Let us now discuss majority-carrier situations in which a voltage is applied to a semiconductor
region. If the electric field that is introduced in the semiconductor is not too high, there is no
reason for the dynamic balance that existed in thermal equilibrium between generation and
recombination to be upset. This means that the carrier concentrations are not disturbed from
their equilibrium values.? Under these circumstances, Shockley’s equations simplify drastically.
First of all, since the carrier concentrations are not upset from equilibrium, their time derivatives
are zero. With Gy — U = 0, this impliés__tﬂ:'i_‘%_:_% = 0. -

We can also simplify the current equations in the following way. For electrons, for example,
after substituting n =~ n, in the equation listed in Table 5.3, we get:

dn,
dx

Jo = —qnovlrI(E) + qD,

[

(5.32)

where we have made explicit the electric field dependence of the electron drift velocity.

In thermal equilibrium, that is, when £ = &,, the electron current has to be zero. Eq. 5.32
becomes: —

dng,
dr

—qnov i (E,) + gD —2 = 0 (5.33)

2If the electric field gets very high, carrier generation arising from impact ionization might invalidate this
assumption. This is dealt with in Section 5.10.
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n-type p-type
n~n, >~ Np P=p, =~ Ny

Jo = ~qolulit(€) — ofIE)] | T = apoluiT(E) — i (E)

de o0 o v G~
& = 0, dr — 0, dr — 0
Jf_ 2 Jg | JI o Jh_

Table 5.4: Equation set for 1D majority-carrier type situations.

We can solve in this equation for the second term and insert it into Eq. 5.32 to get:

Jo = —qno[vdrift(&) — virif(£,)] (5.34)

A similar equation can be similarly derived for holes.

The low-field limit of this equation is of particular interest. For small fields, the drift velocity
is directly proportional to the electric field. Using Eq. 5.28, we can easily rewrite Eq. 5.34 as:

{ Je — qno.u.egl' (5-35)

This equation clearly shows that outside equilibrium the electron current is driven by the
excess field created by the application of a voltage on the sample. That is also the case for large
fields. However, the non-linear velocity-field characteristics of carriers in semiconductors does not
allow Eq. 5.34 to be written explicitly in terms of £’.

An additional simplification that can readily be made is that, for reasonably extrinsic material,
one of the carrier concentrations dominates over the other. Since, as Eq. 5.34 shows, the carrier
currents are directly proportional to the carrier concentrations, in a typical majority carrier
situation we can then confidently neglect the current contribution arising from the minority
carriers.

This simplifies Shockley’s equations to the set of Table 5.4. This equation set does not have
time derivatives any more. Effectively, we are dealing with quasa -static g}tuatl_c_)ns in which the
time evolution of the semiconductor is completely determined by the time dependence of the
driving term (typically the applied voltage). The dynamics of majority carrier situations are
discussed in more detail in Sec. 5.7.

5.5.1 Integrated resistor

The formulation that we have developed to describe majority-carrier situations is particularly
useful in the analysis of the integrated resistor, a real device in its own right and an interesting
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Figure 5.11: Sketch of integrated resistor.

case study for several important issues. A sketch of an integrated resistor is shown in Fig. 5.11.
This device consists of an n-type region created inside a p-type wafer. The n-region is accessed
from the outside world through two n™ regions that are provided with ohmic contacts. Upon the
application of a voltage across the contacts, current flows through the n-type region. As we will
see in Ch. 6, the PN region that is formed between the n-type region and the substrate confines
the current flow to the n-type region.

Let us consider a uniformly doped n-type semiconductor. In this case, & = 0 and the current
equation simplifies to:
Jy = —gNpvrift(g) (5.36)

If the voltage applied is not too high, the electron drift velocity is proportional to the electric
field and:

Ji ~ qNpu.E (5.37)

Solving for £ and integrating, allows us to obtain the current-voltage relationship for this
region:

N
P &*ELBV (5.38)

where L is the length of the sample and A is its cross-sectional area. This equation shows a simple
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Figure 5.12: Sketch of non-linear I-V characteristics of semiconductor resistor.

linear dependence between voltage and current. The proportionality constant is the resistance of
the sample:

e (5.39)
qApeNp .
If the field is high enough, the linear relationship between electron velocity and electric field
does not hold. Rather, a more complex relationship such as the one shown in Ch. 4 applies.
Using Eq. 4.13 for the v — & relationship, solving for £ and proceeding as above yields:

AN
e (5.40)
L+ Bk
For low V this equation converges to Eq. 5.38 above. For moderate V., however, as V increases
in Eq. 5.40, the current grows sublinearly with the voltage, or in other words, the resistance of

the region increases. In fact, for high enough voltages, the electrons attain saturation velocity
and [ saturates to:

Lot = qAJIVD'”saf (‘541}

and the resistance increases without bounds. The I-V characteristics captured in Eq. 5.40 are
sketched in Fig. 5.12. Similar results apply for p-type regions.

In IC’s, it is common to fabricate integrated resistors in which the doping level is not uniform
in space but rather has a peak close to the surface and decreases in depth, as sketched in Fig.
5.13. In this case, we can easily compute the resistance by viewing this resistor as the parallel of
many differential resistors. The resistance is then (for small voltages):

L

R= ; -
aW [o 1eNp(y)dy

(5.42)
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Figure 5.13: Typical doping profile of semiconductor resistor. The p-type background produces a p-n junction at
the bottom of the resistor that effectively confines current flow to the n-type region.

This equation yields the result of Eq. 5.38 above if Np is uniform in space. In general, if the
doping level changes with position, the mobility will change too. That is why it has to remain
inside the integral in Eq. 5.42.

When designing integrated resistors, device and circuit engineers utilize standard doped layers
that are already available in the fabrication process, such as the n™ or p* source implants in a
CMOS process, or the n*-emitter or p-base in an npn bipolar process. For the purpose of designing
lateral resistors, the complexity of the doping distribution in depth can be hidden under a single
parameter that is called the sheet resistance, defined as:

1
e o (5.43)
' ‘?fé #eND(y)dy
With this definition, the lateral resistance becomes
L
= R.p— 5.44
R = R (5.44)

This is a useful equation that provides simple design rules for integrated resistors. The
resistance of a planar resistor is obtained by multiplying the sheet resistance by the ratio of the
length over the width of the resistor. In other words, the resistance depends only on the "number
of squares” that the integrated resistor has in the direction of the current flow. This is illustrated
in Fig. 5.14 where we show two resistors fabricated in the same process with identical resistance
since both are made of five squares. Because of this interesting property, the units of the R, are
frequently given in "ohms per square,” written as /0.

For uniform doping distribution, the sheet resistance follows an expression:

1

Bip = e
o queNpt

(5.45)

The sheet resistance decreases as the doping level of the layer or its thickness increases.
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Figure 5.14: Two integrated resistors fabricated on the same process. The geometry is different but the resistance
is the same (assuming that the parasitic resistance associated with the contacts is negligible). Coordinate z is in
the direction of current flow. Coordinate y is into the semiconductor.

Exercise 5.3: Consider an integrated resistor, such as the one shown in Fig. 5.11, composed of
an n-type Si layer fabricated on a p-type substrate. The doping level of the body of the resistor
is Np = 10" em™3. The dimensions of its active region are L = 5 pm, W = 2 um, and
t = 0.1 pm. At room temperature, estimate the sheet resistance of the n-type semiconductor layer
and the resistance of this resistor.

For this doping level, the electron mobility is about p, =~ 110 em?/V.s. The sheet resistance is
then:
1 1

R — =
kT queNpt  1.6x10-19 C x 110 em? Vs x 1019 em=3 x 0.1 x 10~4 em

~ 570 /0

The resistance of the resistor is then obtained from:

L 5 pm
R= Ry =570 Q/0 x
2 pm

W ~ 1.5 kQ2

Note how in this last expression, there is no need to convert the units of L and W to em since
they cancel out.

5.6 Minority-carrier situations

We will now deal with a completely different class of problems that also frequently appear in mi-
croelectronic devices: minority-carrier situations. These are characterized by: i) quasi-neutrality,
11) the presence of excess carriers as a result of external generation or injection from an adjacent
region, and i) the absence of a significant external electric field. In our chart depicting the
successive approximations to the Schockley equations (Fig. 5.8), these situations are shown in
the box at the bottom center. Situations of this kind arise, for example, in the base of a bipolar
transistor under regular bias conditions. In general, a description of these situations requires the
complete set of equations of Table 5.3. Fortunately, two important approximations hold under a
wide range of circumstances.

The first approximation accounts for the fact that in the absence of external electric fields,
the internal electric field that might be present in equilibrium is rarely so high that velocity
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saturation is an issue. This allows us to assume that the drift velocity is linearly proportional to
the electric field.

The second approximation is low-level injection. This was already discussed in Ch. 3 in
the context of generation and recombination. As a reminder, low-level injection refers to a
situation in which the excess carrier concentration is much higher than the equilibrium minority
carrier concentration but much smaller than the equilibrium ma jority carrier concentration. This
situation is fairly common because minority-carrier devices exhibit degraded performance if the
carrier concentrations reach high-injection levels. In many devices, typical operating conditions
avoid high-level injection.

The restriction to low injection levels results in several simplifications:

o First, the majority carrier concentrations out of equilibrium are basically unchanged from
their equilibrium values. Thus, for n-type material, n =~ Ng.

¢ Second, the minority carrier concentrations are overwhelmed. In an n-type semiconductor,
this means p ~ p'.

e Third, the recombination rate is proportional to the excess carrier concentration over the
carrier lifetime (see Ch. 3). For n-type, we can write U ~ P/

e Even though no external fields are applied, internal fields can be generated as a result
of carrier injection. However, and this is our fourth simplification, internally generated
electric fields are small enough so that minority carrier drift currents produced by them are
insignificant (we will later prove this point in one of the examples). The only fields that
might significantly act on the minority carriers are those that are present internally under
equilibrium conditions as a result of doping gradients. We cannot extend this approximation
to the majority carriers because, having so many of them around, small changes in the
electric field can produce substantial changes in the current.

These simplifications allow us to rewrite the carrier current equations and the continuity
equations in the following manner. For n-type material, for example, the majority carrier current
can be written in the following way:

on,  On/ >
Jo = g(no + n')pe(Eo + £') + gD (=2 + =) (5.46)

dx dx
where we have made explicit the excess electron concentration and the excess electric field pro-
duced outside equilibrium.

In equilibrium, that is, with n’ = 0 and £ = 0, the electron current has to be zero. This
allows us to simplify Eq. 5.46 to:

an’
Je 2= qnopteE’ + qn’ 1.y + qDe% (5.47)
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n-type p-type

Po—Mo+Np—Nsg=~0
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Jo = qropteE’ + qn'pe€o + qDe L= Je = an'pe€o + De g
Jh = qp'un€o — ¢Dn % Jn = qpoptnE’ + qp' ph€o — aDR L

!

a2 ap' i an' 2.1 1 ' i
DG — inEoR — &+ Geat = B | DG + 1o — % + Gent = %
a_JL ~
g 0

Ji=Jde+ Iy

Table 5.5: Equation set for one-dimensional minority-carrier situations.

There are two drift terms involving electrons (as majority carriers) out of equilibrium. One
is due to the excess electric field acting on the equilibrium electron concentration. The second
one is the equilibrium electric field acting on the excess electron concentration. Both terms can
be important. There is also one diffusion term that accounts for diffusion of excess electrons.

The expression of the minority carrier current can also be substantially simplified:

dpo | I &
Jn = q(po +P!)#h.(go 4 gr) - QDh(“gf + g) (5.48)
Once again, we can simplify this expression by noting that in equilibrium Ji = 0. Eq. 5.48
becomes:

) /" g Oy op’ -
In = qp' th€o + qp'1n€" — qDn—o— ~ qp' pin€o — qDn—o— (5.49)
ox dx
The term on gp’upE’ has been neglected as discussed above. This expression of the minority
carrier current now depends exclusively on the excess minority carrier concentration.

The minority carrier continuity equation is also modified to:

ap' o 19.J, &
B Geat — o EE (5.50)
We can further transform this equation into a particularly useful form by substituting Eq.
5.49 into Eq. 5.50. Rearranging terms, we easily get:
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% o' P op
Dhgs—u e et — &, .
e #héo oz 1 Geat ot (5:51)

where we have used the fact that 9€,/0z ~ 0 in a quasi-neutral region (see Section 4.5.3).

Eq. 5.51 is now a differential equation with a single unknown, the excess minority carrier
concentration. Once the generation function Gy and the boundary conditions are specified, this
equation can (in principle) be solved and p’ can be obtained throughout the region of interest.
From here, the complete solution quickly emerges, as we will see below.

It is interesting to see that if we follow a similar procedure with the majority carriers, that
is, we introduce the majority carrier current Eq. 5.47 into its continuity equation, an equation
solely on the majority carrier concentration similar to 5.51 does not emerge. There is a term on &’
that prevents this equation from being solved all by itself. Eq. 5.51 then shows that in minority-
carrier situations, the dynamics of the minority carriers dominate the solution and everything
else revolves around this.

To summarize, under the assumptions of low-level injection and no external field applied, the
Shockley equations simplify as listed in Table 5.5. The best way to understand the nature of the
approximations made in this section is to study some specific examples. We will consider two of
them in some detail. Both are static. We will examine a dynamic case later on in Section 5.8.

5.6.1 Example 1: Diffusion and bulk recombination in a ”long” bar

Let us consider the situation sketched in Fig. 5.15. We have a very long uniformly-doped n-type
semiconductor bar that is illuminated over a very narrow region with deep penetrating radiation.
At this cross section, g; electron-hole pairs per second per unit area are generated. We wish
to compute the electron and hole concentrations and the respective currents throughout under
static conditions. Since the doping level is uniform, the electric field inside this sample in thermal
equilibrium is zero, that is, £, = 0.

Before attempting a complete mathematical solution to the problem, it is valuable to discuss
qualitatively what is going on. Let us place the origin of the axis at the point of generation.
Electron-hole pair generation at x = 0 causes a build up of carrier concentration above the
equilibrium background. In consequence, a gradient in the carrier concentration develops which
results in carrier diffusion away from the generation point. As excess carriers spill into the
neighboring regions of the semiconductor the recombination rate increases above the thermal
equilibrium rate. Eventually, a steady state situation is attained in which the total generation
rate matches the total recombination rate. The same principle that we have encountered a number
of times before is at play here. When thermal equilibrium is perturbed, the semiconductor reacts
trying to reestablish it. In this case, as the carrier concentration builds up, the recombination
rate increases in an effort to wipe out the excess carriers.

A photogenerated hole has a lifetime that is set by the material, as we discussed in Ch. 3.
This means that it will only have a chance to diffuse a certain distance before it recombines. This
makes us expect a steady-state carrier profile with a shape as sketched in Fig. 5.15 in which
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Figure 5.15: Top: an infinitely long bar illuminated at 2 = 0 by a sheet of light; middle: excess electron and
hole concentrations; bottom: electron and hole current components.
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the carrier concentration peaks at the generation point and decays to the equilibrium value at a
certain distance. Far enough away from the point of generation, the semiconductor will not be
aware that the region around x = 0 is being perturbed from equilibrium.

It is interesting to think about what happens to the photogenerated electrons. Tt is tempting
to say that the photogenerated electrons diffuse away from the generation point, just as the
photogenerated holes do. This is, however, not correct. The moment an electron is generated, it
cannot be distinguished from any other one of the many majority electrons that were in the bar
to begin with. The best way to think about what happens to the electrons is to realize that, by
itself, the hole buildup close to the generation point would drive the bar outside charge neutrality.
The electric field that would result would get the electrons moving immediately in the direction of
attempting to erase the drift field. This can be accomplished if the excess electron concentration
precisely matches the hole electron concentration at every point. As we see next, however, this
is not a sustainable situation.

If the semiconductor bar is reasonably extrinsic, we know that quasi-neutrality has to prevail.
We concluded earlier in this chapter that this makes the total current constant at any cross section
in the structure. Since far enough away from the generation point the semiconductor is not upset
from equilibrium, the total current there is precisely zero. Hence .J; = 0 everywhere. Closer to
z = 0, in the region invaded by excess carriers, the sum of the electron and hole currents has to
cancel out. Summing Eqs. 5.47 and 5.49 and noting that £, = 0, we have:

d
0=J; ~ qnope€E’ +q(D, — Dh}ﬁ (5.52)

This equation suggests that if D, = Dj, precisely, the electric field is exactly zero and there is
no drift current of any kind. But, since in most semiconductors D, # Dj,, the diffusion currents
do not cancel out. Hence .J; cannot vanish. We therefore need a drift current to cancel the
imbalance of the diffusion currents and provide J; = 0 everywhere.

A null total current everywhere demands that p’ be close but not exactly equal to n’. A small
deviation from perfect charge neutrality is all that is needed to provide the necessary electric field
that produces the required drift current. For z > 0, since D, > Dj, and %l;i < 0, the diffusion
term in Eq. 5.52 is negative. Hence, the drift term must be positive, which demands a positive
electric field. This is established by having n’ < p’ in the vicinity of z = 0, and n’ > p far away
from z = 0, as sketched in Fig. 5.15.

We can also conclude from this qualitative analysis that both £ as well as |n/ — p/|, must be
proportional to D, — Dj,. This is because it is the difference between D, and Dy that drives the
need for an electric field.

Having discussed the physics of this example in an intuitive way, let us now solve it completely.
The symmetry of the situation simplifies our study to z > 0. The place to start is the minority
carrier continuity equation of Table 5.5. In this uniformly doped bar, the initial electric field is
zero and there is no applied field from the outside. As already argued above, the field term in the
minority carrier continuity equation is negligible. Also in steady state, we can neglect the time
derivative. Furthermore, with the exception of = 0 (which we will treat below as a boundary
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condition), the bar is in the dark. The minority carrier continuity equation everywhere but at
the origin becomes:

d2p1 _p!

where we have defined Ly as:

Ly = \/Dar (5.54)

Ly, is called the hole diffusion length. Its significance will become clear very soon.

The solution of the differential equation 5.53 can take several mathematical forms. A suitable
one in this example is the following:

% —z .
7 + BexpL—h (5.55)

p = Aexp

This solution consists of a rising exponential and a decaying exponential in z. Since we know

that eventually far away from the generation point the excess hole concentration disappears, A
must be equal to zero.

We get B from considering the boundary condition at x = 0. A particularly easy way to think
about it is to exploit the symmetry of the problem. At = 0 there is a sheet of generation of
holes at a rate g;. Half of the generated holes diffuse to the right, and the other half diffuse to
the left. Hence, at @ = 07T,

a1 1 4 dpjI ..

= = = N0 )y =—=Di -l g+ !

By q h ) h dr |.1:—D (‘3 56)
Combining this equation with Eq. 5.55 (with A = 0), we easily get B = gLy /(2Dy) (this

expression of B has units of cm™3).

The excess hole concentration is then:

I GiLn —T

p = 5D, exp—g (5.57)

This has the shape that was qualitatively predicted above. Eq. 5.57 applies everywhere to the
right of z = 0 and it also applies to = 0 because p’ cannot be discontinuous.

The hole current everywhere can now be easily calculated:

dp)  qg —
¥i= gD S 9N o —F 5
h gl g R (5.58)
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where we have assumed that Jp(drift) < Jy(diff).

The electron current can be found by first thinking of the total current J;. As argued above,
Ji = 0 everywhere. This means that the electron current is:

qqi - -
Jo=—J) = —==exp— 5.59

In the electron current, we must consider both the drift and the diffusion components. The
diffusion component is easy to obtain since the quasi-neutrality requirement implies that:

n~p = mexp T (5.60)
and
_ dn’ qq D, —x
== —_—= —_ 5.61
Je(dif f) = qD, T 2 D exp T (5.61)

The drift component is simply the balance of the electron current minus the diffusion compo-
nent:

D.—-D -~
To(drift) =% — Tdif P =3 e —2h 0y =2 (5.62)
2 Dy, L
This is the result that was expected, that is, an electron drift current flows to the extent that 12,
is different from Dy,.

At this point, we have obtained expressions for the carrier and current distributions everywhere
and the problem is completely solved. Still, we need to discuss the accuracy of the assumptions
that were made and understand the constraints under which they work.

Let us first check the quasi-neutrality assumption. This requires obtaining the electric field
distribution. From the electron drift current expression, we can easily get:

& — Je(drift) . kT_g;,_De — Dy, -

— —————exXp — 5.63
GleTly q 2n, DDy S Ly ( )

Using this expression of the electric field in Gauss’ law, we can obtain the difference between
! !
n' and p”:

' n.r__fk'T g1 De_Dhex —Z
3 B q*ny 2Ly, D.Dy, P Ly

which together with Eq. 5.60 can now be used to verify the quasi-neutrality condition:
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Pl’_'“'F Lp QDe_Dh R

% | = (L_h 7De (5.65)
where Lp is the extrinsic Debye length defined in Ch. 4. Let us look at the order of magnitude of
the various terms in this equation. The term involving the diffusion coefficients is slightly smaller
than unity. The term involving the two length scales is many times smaller than one. For example,
in Si with Np = 10'® em™3 at room temperature the hole diffusion length is 400 wm, while Lp is
about 0.04 gum. Clearly, the difference between n’ and p’ is about 8 orders of magnitude smaller
than the sum of their values! The quasi-neutrality assumption is indeed extremely good.

We can now check our assumption of neglecting the drift contribution to the minority carrier
current. Let’s compute the relative magnitude of the hole drift current to the hole diffusion
current:

Jh(d?"iff-)| = qunp'€’ | = 1p' Do~ Dy

Gn@irh) = e = 2n, D,

(5.66)

This equation says that this approximation is as good as the low-level injection condition. If the
low-level injection condition is satisfied with a margin of ten (p’ ~ 0.1n,), then the assumption
that the drift contribution to the minority carrier current can be neglected is good to about one
part in ten.

It is easy to see why these two conditions come hand in hand. As already argued, an electric
field is required to the extent that D, is different from Dp. In consequence, the resulting majority
carrier drift current has an order of magnitude similar to the minority carrier diffusion current.
All together, this implies that the relative magnitude of the minority carrier drift current with
respect to the minority carrier diffusion current is about the same as the relative magnitude of p’
with respect to n,.

It is easy to calculate the maximum generation rate that satisfies the low-level injection
condition. The worst location in the semiconductor is x = 0. For low-level injection to apply
there, we need to demand that p’(0) < n,. This implies that

2Dyn,
Lh.

g << (5.67)
A margin of safety of 10 in this inequality gives an error of about 10% in the computation of the
current. This is sufficient for many applications.

We must also check the assumption that the drift field that is set is not so large that we
need to be concerned with velocity saturation effects in the computation of the majority carrier
current. The worst point is = 0 where £ in Eq. 5.63 is maximum. At this point, using Eq.
5.63:

I _ g == X > 3 E
J1eE = 5ma Dy < 7 (5.68)
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where we have used the low-level injection condition Eq. 5.67. Typical values for the right hand
side of Eq. 5.68 are of the order of 500 ¢m/s, much smaller than the electron saturation velocity
of 1 x 107 em/s.

Two further comments before closing this example. First, a word about the physical meaning
of the minority carrier diffusion length. The diffusion length is the average distance that a carrier
travels by diffusion before recombining. In three diffusion lengths, for example, 95% of the excess
carriers have recombined. The diffusion length is a very important length scale in problems in
which minority carrier behavior plays a key role. More about this in Section 5.6.3.

Second is a simple calculation of the average velocity at which holes diffuse in the semicon-
ductor bar. This is easy to obtain. From Eqs. 5.57 and 5.58, we have for z > 0:

airr _ In (@) wo ). Dy (5.69)
f gp(z) — qp'(z) Ly

which is independent of position. This is an important result. We will use it in the computation
of the forward bias current in a pn diode.

5.6.2 Example 2: Diffusion and surface recombination in a ”short” bar

Let us now consider another uniformly-doped n-type bar illuminated by deep penetrating radia-
tion over a narrow region at its center so that g1 electron-hole pairs are produced per unit second
per unit area. In this case, the bar is of finite length L and it has end surfaces with infinite
surface recombination velocity (Fig. 5.16). The length of the bar is much shorter than the dif-
fusion length so that bulk recombination is very small. This situations is oftentimes referred to
as "transparent.” As in the above example, we seek to solve for the carrier concentrations and
current densities everywhere in steady state.

Qualitatively we can see that this problem is similar to the previous one. The photogenerated
holes diffuse away from the generation point at « = 0, half to each side. The important difference
with the previous case is that before the holes have a chance to recombine with any electrons
in the body of the bar, they reach the surfaces at = = +L/2. Since the surfaces display an
infinite surface recombination velocity, all holes recombine there. In consequence, the excess hole
concentration goes to zero at the surface. In other words, the surface is maintained in thermal
equilibrium. The shape of the carrier concentration in this example falls again from a maximum
at x = 0 to 0 at * = +L/2. Since there is no recombination in the bulk of the bar, the hole
current is constant. This calls for a constant slope in the excess carrier concentration or a linear
profile, as sketched in Fig. 5.16.

Let us now solve the problem quantitatively. The differential equation that governs hole flow

in this case is simply:

d*p’ s
i 0 (5.70)
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Figure 5.16: Top: a short bar illuminated in the middle by a sheet of generation; middle: excess hole concentra-
tion; bottom: electron and hole currents.
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A general solution to this equation has the form:

p=Az+ B (5.71)

This problem has two boundary conditions. At # = 0 the boundary condition is identical to
the previous case, Eq. 5.56. At the surfaces, the boundary condition is simply:

p’(ig) =0 (5.72)

For o = 0, the solution of the differential equation 5.70 is:

/ 41 L
- _ i h.73
P ==y Dh(’b 5) (5.73)
the result that we expected.
The hole current density is:
Jh = q% (5.74)

This is a result that we could have written from the very beginning. If there is no recombination
in the body of the bar, half of the generated carriers flow towards one ohmic contact and half
flow to the other. The flow rate is then g;/2 and the current density is qg;/2.

uasi—neutrality demands that 'H,; = ", from which we can get the electron diffusion enrrent
p :
to be:

D. g .
J(dif f) = —qﬁ;—% (5.75)

In this example, the total current is also zero since the bar is not connected to anything. From
this condition, we can get the electron drift current to be:

@De“Dh

Je(drift) = % o

(5.76)

All signs in Eqs. 5.74-5.76 are reversed for = < 0.

Following a similar procedure to the previous example, the various assumptions can be verified
and the maximum value of g; allowed to maintain low-level injection conditions can be obtained.

Before closing, it is also of interest to compute the velocity at which holes diffuse through the
bar. Using Eqgs. 5.73 and 5.74, we get for z > 0:
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di Jh(;{l) Dh
), J"'f(a:) = o~

(5.77)

When comparing this result with that obtained for the long bar in Eq. 5.69, we find that in the
short bar, the hole diffusion velocity increases as the carriers approach the contact. This makes
sense since the carrier concentration decreases but its slope is constant. A second interesting
point is that the hole diffusion velocity diverges at the surface of the semiconductor. This is an
artifact of our assumption that p(z) >~ p/(x). A finite velocity is obtained if we carry out a more
careful analysis. In many situations, this is actually not needed and the result of Eq. 5.77 is quite
adequate.

5.6.3 Length scales of minority-carrier situations

The previous examples have revealed the existence of two characteristic lengths in minority
carrier-type problems: the diffusion length Lg;sy and the sample length L.

Lygify is the average length that a carrier diffuses in a bulk semiconductor before it recombines.
It was mathematically defined for holes in Eq. 5.54. A similar equation applies to electrons. Lg; I
makes a statement about the balance between diffusion and recombination. The more effective
bulk recombination is (by having 7 smaller), the shorter L £r becomes.

Since both D and 7 depend on doping, the diffusion length is a strong function of doping
level. This is shown for Si at room temperature in Fig. 5.17. The lines in this figure come from
combining the carrier lifetime data in Fig. 3.17, the mobility data in Fig. 4.3 and from using
the Einstein relation to obtain the diffusion coefficient from the mobility. We know that at low
and moderate doping levels, the carrier lifetime is not a very tight function of doping level. In
consequence, one should expect a wide range of possible values for the diffusion length in this
same doping regime. The lines of Fig. 5.17 represent guidelines to reasonable values.

In a given situation, the smallest one of the two characteristic lengths, the sample length or
the diffusion length, dominates. Section 5.6.1 showed an example in which the sample length is
much larger than the diffusion length. The carrier profiles and the electrostatics of the problem
were entirely dominated by the diffusion length. In a situation like this, the semiconductor is said
to be long or opaque from the minority carrier point of view. Section 5.6.2, on the other hand,
presented an example in which the diffusion length was much longer than the sample length.
In that case, the solution of the problem was entirely dominated by the sample size and bulk
recombination was irrelevant. From the minority carrier point of view, the semiconductor in a
situation like this is often referred to as short or transparent.

5.7 Dynamics of majority carrier situations

Time-dependent situations are particularly important in device operation. There are many cases
in which we are interested in the dynamic response of a device to a time changing stimulus.
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Figure 5.17: Minority carrier diffusion length in Si at room temperature. The lines represent typical values
corresponding to the carrier lifetimes given by the lines of Fig. 3.17.

Time-dependent problems are mathematically quite difficult. Few of them result in simple
analytical solutions. The goal of this section and the next is to learn to recognize in a given
situation the various physical processes at play, to identify the relevant time constants, and to be
able to compute order of magnitude values for these time constants.

The equation set that we derived to describe majority carrier situations in Table 5.4 does
not contain any time dependent terms. This would suggest that majority carrier situations are
quasi-static, meaning that they respond instantaneously to outside stimuli without any mem-
ory of its previous state. This is a reasonable approximation in many practical situations. In
an ideal integrated resistor such as the one described in Section 5.5.1, if we can disregard its

parasitic capacitance, it is usually a fairly good assumption that the current follows the voltage
instantaneously.

It is useful to understand where this important result derives from and what are its limits.
If we look back at the simplified Shockley equations under quasi-neutrality (Table 5.3) and we
assume, as we did in the simplifications leading to Table 5.4, that the carrier concentrations do
not change in time, then there are no dynamics left in the description of the situation. The issue
is then the quasi-neutrality approximation itself. It is in making this assumption that the time
derivative of the volume charge density was dropped. The rational was that if the volume charge
density is negligible, then its change in time is also negligible. But how good is this assumption?

In majority carrier situations, there are always small discrepancies to perfect charge neutrality.
Net charge appears at contacts (we will study this in Ch. 7), and in the presence of dopant
gradients. The quasi-neutrality assumption allows us to neglect this net charge because it is
relatively small and /or it is confined to small regions in the scale of the sample size. In a dynamic
situation, such as when a voltage step is applied to an integrated resistor, the net charge needs to
change to satisfy the changing electrostatics. To accomplish this, some amount of charge needs
to be delivered to the appropriate locations in the device. That takes a short but finite time. A
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Figure 5.18: Dielectric relaxation time for n- and p-type Si at room temperature.

derivation of the appropriate time for typical situations is performed in Advanced Topic AT5.2.
There we find that the time constant for volume charge to relax is called the dielectric relazation
time and it is given by:

Q| m

Td (5.78)

where ¢ is the conductivity of the semiconductor region in question. The dependencies of this

simple equation make sense when we realize that it is the electric field that makes charge move
through the drift process.

Fig. 5.18 graphs 74 for n- and p-type Si at room temperature. As the doping level increases,
o increases and 74 decreases as a result. 74 is indeed rather small for medium and highly-doped
regions. For example, for Si with a doping level of order 10'® em™2, 7, is about 1 ps. In
microelectronic devices, the doping levels are typically higher and they operate in time scales
usually longer than this. We can then conclude that the charge redistribution that takes place
in response to outside stimuli in a majority carrier situation occurs on a time scale that is much
shorter than our time scale of interest. In this time scale, we can assume that majority carrier
situations are indeed quasi-static.
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Exercise 5.4: Up to what frequency can a 1 Q- em n-type Si substrate be considered quasi-static
to the application of electric fields?

The dielectric relaxation time for this substrate is:
€ v
Ta=—=€e=11.Tx885x107 ¥ x1=10x10"25=1ps
a
The inverse of the dielectric relaxation time divided by 27 is a reasonable estimate of the maximum
frequency at which this substrate can be considered quasi-static:

1

~ 150 GH =z
zﬂ‘Td

frfz

This is a frequency substantially beyond most applications of Si today (but perhaps not in the
future). Hence, this substrate will respond in a perfectly quasi-static way to the application of
electric fields.

Had we worked with a 100 2 - em substrate, the frequency in question would have been 1.5 GH 2.
This is in the range of many applications today. The response of such a substrate to electric fields
will be far from quasi-static and would have to be taken into account in equivalent circuit models
of devices.

5.8 Dynamics of minority carrier situations

In" minority carrier situations, there are excess carriers which can exhibit substantial memory
effects. These typically dominate the dynamics of minority carrier devices. To first order, this
can be understood from the fact that carrier lifetimes are long, in the ns to us range. This
argument is misleading, however, since often, the dynamics of minority carriers are not controlled
by the recombination process but by their transport through a certain region. In this case, the

proper time constant is not the lifetime but the transit time. Understanding this is the central
goal of this section.

5.8.1 Example 3: Transient in a bar with S = oo

Consider a uniformly doped n-type semiconductor bar of length L as in F ig. 5.19. The two
surfaces of the bar are characterized by an infinite surface recombination velocity. For t < 0, the
bar is illuminated with radiation that generates carriers uniformly everywhere at a rate g;. At
t = 0, the radiation is switched off. We are interested in the time evolution of the excess carrier
profile everywhere in the bar. In particular, we want to identify the dominant time constant of
the decay of excess carriers.

We studied time transients in Ch. 3. The types of problems that we dealt with at that time
were uniform, that is, nothing changed in space. Their characteristic time constant was the carrier
lifetime 7. The present problem might appear similar at first sight. After all, the radiation is of
uniform intensity in space and bulk recombination takes place everywhere in the bar. However,
the presence of the surfaces with S = oo changes the situation. Excess carriers in the vicinity
of these surfaces can recombine faster than in the bulk if it takes them a shorter time to diffuse
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Figure 5.19: Sketch of time decay of excess carrier concentration in a semiconductor bar after a uniform generation
function has been turned off. The surfaces are characterized by S = cc.

to the surface. The recognition of this simple fact immediately allows us to conclude that: 1)
the characteristic time constant of the decay of the excess carrier concentration is shorter than
7, and 2) the time constant associated with surface recombination is directly proportional to the
length of the sample and inversely proportional to the diffusion coefficient (the longer the sample
and the smaller the diffusion coefficient, the less effective surface recombination is relative to bulk
recombination).

The mathematical solution of this problem is interesting. The procedure to follow is general
and widely used for different kinds of transient problems. The first step is to compute the steady
state excess carrier profile that exists before the pulse is turned off. Only then, the decay of
carrier concentration can be studied. The problem has symmetry around = = 0, so only for z > 0
a solution is needed.

For ¢ <0, the differential equation that governs this problem is:

d2pf p.f

Substituting Gy = g, and dividing all terms by Dy, we get:

ey Y a
d_xE_EJr“DI:O (5.80)

A solution to this differential equation is 3:

?A solution of the form p’ = Aexp ﬁ + Bexp ¢~ + C is also valid but results in more complex algebra.
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B = Acosh — —i-j[?sinhi +C (5.81)
Ly Lp

Substitution of this expression into the differential equation 5.80, immediately gives C = g;7.
Symmetry around z = 0 imposes the boundary condition dp’/dz|,—o = 0. Applying to Eq. 5.81
results in B = 0. The infinitely recombining surface at z = L/2 demands that p’(L/2) = 0. This
implies that A = —g;7/ coshﬁ. All together, the steady-state solution at t = 0 is:

, cosh 7~
p(z,0)=gir(l - —— (5.82)
cosh 57~
h
For t = 0, the governing differential equation is:
aQPI pr ap.r
il RS o 5.83
"oz T 1 ot G
In a standard manipulation, we first performn a change of variables. If we define:
J t
p = Pexp(--) (5.84)
T
The differential equation that P satisfies becomes:
P @P "
Dh—-ﬁxz =57 (5.85)

This equation can be attacked by the method of separation of variables. Let us postulate that
the solution to 5.85 is of the form:

P(z,t) = X (z)T(t) (5.86)

where X only depends on z, and T only depends on t. Substitution of Eq. 5.86 in 5.85 leads to
two separate differential equations:

1 d2 1 1dT 1
X = —-— (5.87)

XdzZ " DT dt N
The first differential equation is only in terms of the independent variable x. The second one
depends only on ¢. The only way for them to equal each other is if they are also equal to a
constant. As we will see in a moment, this separation constant must be negative. To force that,
we denote it as —1/A\%. We now proceed to look at these two equations separately.

The time-dependent equation has a solution:
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D
T exp(——}‘-g-”t) (5.88)

which is a decaying exponential. If the separation constant in Eq. 5.87 was positive, the solution
5.88 would be increasing with time, which is unphysical. Similarly, a separation constant of zero
would imply that the only time transient is the one identified in Eq. 5.84, which we have already
argued is insufficient.

The differential equation in z in 5.87 has a solution:

X = Ky cos§ + Kysin S (5.89)

The boundary conditions that it must satisfy are the same as for t < 0. dX/dz|,—0 = 0
implies that K3 = 0. X(L/2) = 0 can only be satisfied if cos(L/2)) = 0, which in turn, imposes
a restriction on the values that A can take:

L
¢ e for n = 128 s .
A PP or n 3 (5.90)

We actually find that there are multiple solutions to this problem, each one characterized by
a different separation constant given in Eq. 5.90. Assembling Eqs. 5.84, 5.86, 5.89, 5.88, and
5.90 the expression of one of these solutions is:

Dy, T
—A—%t)co.s— (5.91)

t
! 1 3 — —
Pa(a,t) = Ko exp(——) exp =

where we have absorbed all proportionality constants into one. A sketch of the first three modes
is shown in Fig. 5.20.

The most general solution of this problem is then constructed by the superposition of all these
solutions:
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t D :
Pz, 1) =exp—— ZKn e}ncp[—)\—2}”‘t)c0:-3)\i forn=1.23, .. (5.92)

The weight given to each of these components is such that at ¢ = 0, p'(z,0) given in 5.92
equals the solution derived above in 5.82. From Fourier analysis, it is straightforward to derive
expressions for K,:

1 L2, (2n —1)7 dqiT Smh%
Kn=1 f_mp (2,0) cosl =] do = o e (5.93)

it

Several observations can be made about the solution given in Eq. 5.92. Unlike the case of pure
bulk recombination, the complete solution does not exhibit a simple exponential decay. Rather,
the complete solution is the sum of many independent exponentially decaying functions, each
characterized by a different characteristic time. The nth component exhibits a time constant:

1 1 2n — 1)
e +Dh[(—)_]2
T T L

forn=1,2,3,... (5.94)

All of these time constants are smaller than the carrier lifetime. The higher the order of
the component, the shorter the characteristic time constant. In consequence, after the light is
switched off, there is a fast decay of the carrier profile that is dominated by the higher order
modes. After a short time, the higher order terms become very small and the decay of the carrier
profile is dominated by the behavior of the first-order component. This is illustrated at the center
of the bar in Fig. 5.21. This interesting time evolution is actually what is obtained in practice,
as you can see in the experimental data of Fig. 3.22.

The time constant of the first-order mode is:

1 1 T
= = _‘I"Dh.(_

T T

% (5.95)

=4

Since this is the longest one, this is the dominant time constant of this problem. This time
constant has all the features that we expected. It consists of two terms, indicating that there are
two recombination processes taking place in parallel. One of the processes is bulk recombination
characterized by a time constant 7, the carrier lifetime. The other process is surface recombination
characterized by a time constant L?/72Dj,. The dependences of this surface time constant are
exactly what we expected. It is directly proportional to the length of the sample and inversely
proportional to the diffusion coefficient. In fact, if you work it out (see Prob. 5.28), you will see
that L2 /72Dy, is the transit time of holes through the sample to its surface. That is, the average
time it takes for a photogenerated hole to diffuse from the point of generation to the sample
surface where it recombines. In a more general way, we could then write:

i

T

+

2

1

(5.96)

S =
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Figure 5.21: Sketch of time decay of excess carrier concentration at the center of a semiconductor bar after a
uniform generation function has been turned off. After a fast initial decay, the dominant first mode emerges and
controls the rest of the time evolution. The experimental data graphed in Fig. 3.22 shows this behavior.

where 7; is the transit time. 7 is given by:

LZ
Tt = ﬂ'z—D;: (5.97)
The concept of transit time, was already presented in Sec. 4.4. The numerical factor in the
expression of the transit time (72 in this case) depends on the details of the excess carrier profile
(cos(mx/L) for this example; the linear profile discussed in Sec. 4.4 resulted in a numerical factor
of 2). The key dependencies, however, are the same. The transit time is always proportional
to the square of the sample length and inversely proportional to the diffusion coefficient. As a
reminder, the L2 dependence arises from: i) the distance that carriers must diffuse is on the order

of L, and 4i) the concentration gradient that drives carrier diffusion is sharper the shorter L is.

Coming back to Eq. 5.95, the time constant of the first-order mode is given by the inverse of
the sum of the inverse of the bulk lifetime and the transit time. This suggests that the smallest of
these two characteristic time constants dominates the decay of the excess carrier concentration in
this bar. This is understandable. In this problem there are two recombination processes operating
in parallel: bulk recombination and surface recombination. Whichever one is most effective (i.e.
is characterized by the smallest time constant), dominates the overall decay. This implies, then,
that in general 7y < 7. In the limit of slow bulk recombination, 7, ~ 7, i.e., the decay of the
excess minority carrier concentration is dominated by their transit to the surface.

The key results of this section apply to other situations with identical boundary conditions.
In essence, what we have done here is to examine the time decay of the Fourier components of the
minority carrier profile at ¢ = 0. In a situation characterized by a different spatial distribution
of the generation function but identical minority carrier boundary conditions to those studied in
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this section, the carrier profile at + = 0 can be decomposed in a sum that is composed of the
same Fourier terms as Eq. 5.92. The coefficients associated with each time constant are likely to
be different to those derived in this section, but the time constant of each of the Fourier terms is
identical. In particular, the expression of the time constant of the dominant mode should follow
Eq. 5.95.

Exercise 5.5: Consider a situation like the one depicted in F. ig. 5.19. This is an ideal 1D situation
involving an n-type Si bar of length L = 100 um with a doping level Np = 1017 em™3 at room
temperature. The surfaces located at —L/2 and L/2 are characterized by S = oo. Estimate the|
value of the dominant time constant for the decay of excess minority carrier concentration after
the light illumination is turned off. Assume low-level injection conditions.

Using the fit in Fig. 3.17 for the carrier lifetime in n-type Si, for this doping level, we estimate a
carrier lifetime of 7 ~ 13 us. Using the fit to the hole mobility given in Appendix E, we estimate
a hole mobility in this bar of g, =~ 455 cm?/V.s. This implies a hole diffusion coefficient of
Dy, ~ 12 em? /s. The time constant associated with the transit of holes to the surfaces where they
recombine is then:

L2 (0.01 em)?

m2Dy w2 x 12 em?/s

0.85 ps

The dominant time constant of the excess hole decay is given by:

1 1
I =5 =3 — = 0.8 pus

T+t 13ps+u.85,us

In this situation, the fastest process is hole transit to the surfaces where they recombine. Therefore,
the hole transit time nearly completely sets the value of the dominant time constant.

9.9 Transport in space-charge and high-resistivity regions

If we examine a semiconductor device from a space charge point of view, we will notice that there
are regions with a very small volume charge, called quasi-neutral regions (QNR), and other regions
where there is substantial spatial charge called ”space-charge regions” (SCR). For example, in a
p-n junction, two quasi-neutral p and n regions are separated by a high resistivity SCR located
around the "metallurgical” interface where the doping level changes from pton. In a MOSFET,
a SCR also exists underneath the inversion layer.

As we have extensively discussed, QNRs are characterized by a high carrier concentration and
low resistivity. SCRs, on the other hand, exhibit very low carrier concentrations and therefore
have a high resistivity. Carrier transport through SCRs is of a markedly different nature than
through QNRs. The dielectric relaxation time in a high-resistivity region can be very long. For
example, 10 Q - cm Si has a dielectric relaxation time of about 4 ns. This means that majority
carriers can take a very long time, relative to other relevant time constants, to screen out a charge
perturbation. Similarly, the Debye length can be very long in an SCR. For a carrier concentration
of 10'? em™3, the Debye length is about 4 yum. This implies that SCRs can sustain net charge
over substantial dimensions.

SCRs belong to a general class of high-resistivity regions with very low carrier concentrations.
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Table 5.6: Equation set for space-charge and high-resistivity regions. In the entry that corresponds to Gauss’
law (top line), the equation on the left applies to space-charge regions. The equation on the right applies to
high-resistivity regions.

In these, transport is of a rather different nature than in QNR’s. Additionally, and largely due

to the low carrier concentrations, large electric fields are often present (that is the case of SCRs,
in fact) or are applied from the outside.

A treatment of transport in high-resistivity regions has to be based on the Shockley equations
before the quasi-neutral approximation was made (see Fig. 5.8). That is, we start with the
equation set of Table 5.2. This brings us back to a system of equations that is highly coupled.
Our strategy for uncoupling these equations again is to look at simplifying Gauss’ law, although
in a different way than in the QNR case. The one key feature of high-resistivity regions that we
can exploit here is the fact that due to the low carrier concentrations that exist, the electric field
is independent of the carrier concentrations. The electric field is typically set by ionized dopants
(the case of SCRs) or by an external applied voltage.

A corollary of this is that the behavior of electrons and holes in a high-resistivity region is
largely uncorrelated. The reason for this is that the coupling between the electron and hole profiles
is made by the electric field. This is most clear in a quasi-neutral region in which the need to
maintain p ~ 0, tightly binds up n and p. In high-resistivity regions, on the contrary, the electric
field is independent of the carrier concentrations and hence n and p are independent of each other.

A simplified set of Schockley equations for SCR and high-resistivity regions is in Table 5.6.
There are two entries for Gauss' law (top line). The first one applies to space-charge regions
in which the electric field is determined by the ionized impurity distributions. The second one
corresponds to high-resistivity regions in which the electric field is set by the application of an
external voltage.

Typically, this equation set is to be solved in the following way. The electric field is first
obtained using the appropriate version of Gauss’ law, as explained in the previous paragraph.
Then, the electron and hole profiles are determined by solving the equation that results from
plugging the current equation into the corresponding continuity equation. Finally, the current
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equation is used to derive the current.

The procedure is particularly easy for a steady-state situation. For electrons, for example,
integrating the electron continuity equation from a point 2, to another point o yields:

Je(z1) — Je(z2) = _q/xﬁ [Gezt — U(n, p)ldzx (5.98)

]

In situations in which there is external generation, we can often neglect the net recombination
inside the region in question since n and p tend to be relatively small. In this case, we have:

Je(z1) = Je(2) = —q/ * Gt do (5.99)
I

from which the current can be quickly obtained.

An example is the best way to illustrate these procedures.

5.9.1 Example 4: Drift in a high-resistivity region under external electric field

This is a one-dimensional problem. Consider a high-resistivity chunk of n-type semiconductor of
length L with metallic contacts applied to it. Let us assume that these contacts are ideal, that
is, the bulk properties of the semiconductor extend all the way to the interface with the metal.
In equilibrium, the semiconductor is charge neutral with n, = Np and p, = n? /Mo

Let us now apply a voltage V between the two contacts. This produces a uniform electric
field £ = V/L across the sample. This case appears similar to the situations that we studied in
section 5.5. In response to the electric field carriers drift and current flows through the structure.

In general, the current density is given by: J = g(n,vdri/t 4 pot-'}fﬂﬂ), where the drift velocities

vdrift and v;frif * depend on the magnitude of the electric field. If Np is small, this current can
be very small. For example, if n, = 10'2 em ™3, the maximum current density in a Si sample at
room temperature is obtained under velocity saturation conditions and is about 1.6 A Jem? (for
a sense of proportion, typical microelectronic devices operate with current densities as high as
10° A/cm?).

Let us now illuminate the sample with a very narrow beam of photons that produces g
electron-hole pairs per unit area per second uniformly across the entire section of the sample at
a location z,, as sketched in Fig. 5.22. What is the resulting carrier concentration? How much
current flows through the sample?

The electric field that exists inside the sample separates the photogenerated carriers. The
photogenerated electrons drift to the positive terminal, while the holes drift to the negative
terminal. If both recombination is negligible, under steady state circumstances, the electron
current density is simply:
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Figure 5.22: High-resistivity semiconductor bar under an applied electric field and a steady-state photogeneration
at T,. The middle diagram shows the carrier current densities. The bottom diagram shows the excess carrier

cohcentrations.

I qo for'z < x4
g = B for z > x4
Similarly, the hole current density is:
Jp = 0 for:x <
for x > x,

Jn = qq
In consequence, the total current density is:

Ji = qu

(5.100)
(5.101)

(5.102)
(5.103)

(5.104)
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everywhere, as required by the continuity equations. This is sketched in Fig. 5.22.

The excess carrier densities are not difficult to compute. Excess electrons are only to be found
to the left of the generation point. In that region, since the electron current is due to electron
drift and is constant, the electron concentration is simply uniform in space. Hence:

' g

n o~ W for 0 <z <z, (5.105)
n =~ 0 for #y<p < L (5.106)
Similarly for holes:
P o~ 0 for0 <z <z, (5.107)
' g1
o~ -0 forz, cao< L (5.108)

Since for a given electric field, in general v§ /" < ydrift

Fig. 5.22.

, it follows that p’ > n’, as sketched in

Around z, some diffusion takes place against the electric field. In consequence the excess
carrier profile softly drops to zero. The actual shape can be computed in a similar way as in
Section AT5.3.1.

The excess carrier situation depicted in Fig. 5.22 is no longer quasi-neutral. The intense
electric field has separated the photogenerated carriers. A charge dipole has been established
across the generation point.

In the derivation of Egs. 5.105-5.108, we did not need to make the low-level injection approx-
imation. In fact, since the doping level is so low, it is very likely that the carrier concentrations
greatly exceed the doping level. The one assumption that we have implicitly made is that the
carrier concentrations are not so large that they modify the electric field that was set up inside the
bar by the application of the voltage. Without this assumption, the problem would be a lot more
difficult since the field is modified by the carrier concentrations which in turn are determined
by the net magnitude of the field. These kinds of situations are known as space-charge limited
transport and their study is beyond the objectives of this book.

5.9.2 Comparison between SCR and QNR transport

The best way to appreciate the peculiarities of SCR transport is to compare it with transport in a
quasi-neutral region. Consider the example of Fig. 5.23. Shown are two uniformly-doped n-type
semiconductor bars with ohmic contacts at their ends. A voltage across both ohmic contacts is
applied. At some location in the bar, a narrow beam of light generates electron-hole pairs at a
constant rate. The bar on the left has a very low doping level and a high resistivity, as discussed
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in the previous subsection. The bar on the right has a low resistivity and can be considered
quasi-neutral and under low-level injection. Let us assume that the bar is "short” as compared
to the minority carrier diffusion length. Both are steaty-state situations.

Below each bar the excess carrier concentrations and the current densities are displayed. The
case on the left has been discussed in the previous subsection in detail. The electric field separates
the photogenerated carriers and a current density J; = qg; is established along the bar and the
outside circuit.

The case on the right requires a bit more thinking. This is a mixed minority-majority carrier
situation. We certainly know that there is no carrier separation in this case, since quasi-neutrality
imposes n’ ~ p’. What about the current? Since the sample has significant doping, there must
certainly be a majority carrier current that results from the application of the voltage, as studied
in Section 5.5. But does carrier generation also result in external current? The best way to
answer this question is to go back to the general equation set for quasi-neutral carrier transport
of Table 5.3. If, for simplicity, we assume that the electric field is small enough that mobility-type
drift applies, summing J, and J, we obtain the following expression for the total current:

dn dp
— —gqDp— 5.109
dx = dax (5 )

Ji = Je + Jn = q(npe + ppn)€ +qDe
Since the bar is uniformly doped, n, and p, do not depend on position and &, = 0. Also,
since the bar is n-type, n, > p,. Eq. 5.109 then simplifies to:

dn’ dp’
Ji ~ qnopE’ + qDe_&— —qDy, :1% (5.110)

Let us now integrate this equation along the bar, from z =0 to = = L:

JiL = qnopeV + qDe[n' (L) — n'(0)] - ¢Du[p'(L) - p'(0)] (5.111)

Sinece at & = 0 and x = L the bar has ohmic contacts where excess carrier concentrations
cannot be sustained, n/(0) = n/(L) = p/(0) = p/(L) = 0. Hence, solving for the current, we find:

Jy= rm%uev (5.112)

This is precisely the result that we obtained in Section 5.5 for an identical bar but in the
absence of carrier generation. Hence, in the low-resistivity sample, carrier photogeneration does
not result in external photocurrent through the circuit. Only a majority-carrier type current flows
as a result of the application of a voltage. In contrast, carrier separation in the high-resistivity
sample results in a photocurrent that is directly proportional to the generation rate, as given
by Eq. 5.104. In other words, in the high-resistivity sample, the photogenerated carriers are
spatially separated. Because of this and also as a consequence of the low background carrier
concentration, recombination cannot take place and all the photogenerated carriers get extracted
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Figure 5.23: Comparison of SCR transport vs. QNR transport. On the left is a high-resistivity semiconductor
bar. On the right is a low-resistivity semiconductor bar that is shorter than the diffusion length. Both are under
an applied electric field and a steady-state photogeneration at z,. The middle set of diagrams shows the excess
carrier concentrations. The bottom diagram shows the carrier current densities.

out by the electric field. In contrast, in the low-resistivity sample, all the photogenerated carriers
recombine at the ohmic contacts and no photogenerated current results. 4

5.10 Carrier multiplication and avalanche breakdown

If a high electric field is present in a semiconductor sample, impact ionization might take place.
Our analysis so far has not accounted for it. The goal of this section is to understand its impli-
cations.

As we discussed in Ch. 3, the driving force behind impact ionization is the carrier flux. When

*Note that there is a small photoconductive current in the low-resistivity sample that arises from the small
modification of the conductivity of the sample as a result of carrier generation. This current is much smaller than
g, the maximum photogenerated current that can be produced.
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Figure 5.24: Sketch of carrier multiplication produced by impact ionization in a semiconductor region with a
uniform electric field.

impact ionization is significant in a certain semiconductor region, the current that flows through
that region can be substantially higher than expected from the analysis carried out so far in this
chapter. In addition to the current contributed by the primary carriers, our focus up to this
point, we must account for the secondary carriers that are generated by impact ionization. If
the electric field is high enough, there might well be tertiary carriers, generated by the secondary
carriers, and so on. This is sketched in Fig. 5.24. This process is called carrier multiplication
and it is much like an atomic fission chain reaction in which neutrons, one of the products of the
fission of an atom, can cause the fission of additional atoms.

The analogy between carrier multiplication and a nuclear chain reaction can be extended one
step further - carrier multiplication can go "critical.” If the electric field is high enough, the
secondary carriers, both electrons and holes, generated by the impact ionization of the primary
carriers can themselves generate more carriers. At the same time, the primary carriers continue
generating more secondary carriers as they drift in the high field region. If the electric field is
high enough, a runaway situation or carrier avalanche can arise in which the total current grows
exponentially. If left unchecked, the current density or the power dissipation can reach levels that
cause device destruction. This is called avalanche breakdown.

Avalanche breakdown is the dominant breakdown mechanism in microelectronic devices. The
importance of understanding and correctly modeling avalanche breakdown cannot be overem-
phasized. A miscalculation here might well mean severe device degradation or even destruction.
Even if the maximum current that can flow through a device is limited by some means, such as
an outside circuit, so that device destruction is averted, a mode of operation in which avalanche
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breakdown occurs in a device is largely useless since large and uncontrolled currents flow 5. In
the design of just about any microelectronic device, the need to avoid entering, even getting close
to, avalanche breakdown imposes design criteria that limit the performance of the device. For
example, for a given base design, the frequency response of a bipolar transistor is essentially set
by the design of the collector. This is also what controls the breakdown voltage of the device.
The performance/breakdown trade-off is one of the most important design compromises that a
device designer must carefully weigh.

Carrier multiplication, even if mild enough so that it does not lead to avalanche breakdown,
is an important phenomenom that demands careful assessment in a device. In devices for analog
applications, carrier multiplication becomes accompanied by substantial noise. In MESFETS, it
results in unwanted gate current. In floating-body silicon-on-insulator (SOI) MOSFETS, it leads
to the so-called "kink” effect.

One might think that carrier multiplication could be an excellent amplification mechanism,
to implement a ”semiconductor photomultiplier” for electrical and optical signals. This would be
the case if impact ionization was only triggered by one type of carrier. Consider, for example, a
situation where electrons are flowing through a certain semiconductor region. If the electric field
increases to the point that significant electron impact ionization takes place, more electrons are
produced. In consequence, the total electron current increases in a manner that is proportional to
the incoming one. The trouble is with the holes generated by impact ionization. If along the way
they also acquire enough energy from the electric field so that they can produce impact ionization
events themselves, the tertiary electrons that are generated are not in phase with the primary
electrons that started the process. This "blurs” the signal that is carried by the primary electrons.
This is why carrier multiplication is very "noisy”. Only if the impact ionization coefficient of one
type of carrier is much higher than the other, carrier multiplication can be exploited as a gain
mechanism. This can be done in specially constructed "superlattices” of two or more carefully
selected semiconductors.

The general mathematical treatment of carrier multiplication needs to use the complete set, of
equations of Table 5.1. Simplifications are possible in steady state situations in which the electric
field is either set by the doping distribution or an externally applied voltage and is not modified
by the carrier concentrations. In these circumstances, the continuity equations can be simplified
if impact ionization is the dominant generation mechanism and recombination is negligible. This
is often reasonable since the high electric field maintains the carrier concentrations low. In the
simplified analysis here, we are also going to neglect carrier diffusion. Substituting the generation
function for impact ionization from Eq. 4.109 into the continuity equations 5.3 and 5.4, and
neglecting the time-dependent and recombination terms, we get:

dJe o d-]h.
dr  dz

= ael|Je| + ap|Jn (5.113)

where a. and oy, are, respectively, the electron and hole impact ionization coefficients. The
absolute signs are to insure that the generation functions are always positive. The two continuity

5There are some exceptions to this. Certain voltage reference circuits are based on diodes biased at avalanche
breakdown.
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Table 5.7: Equation set for one-dimensional steady-state situation with imposed electric field and where carrier
multiplication is the dominant generation mechanism.

equations are actually redundant, since in steady state the total current J; = J.+Jp is independent
of position. Table 5.7 summarizes the carrier equation set for steady-state carrier multiplication
under a fixed electric field.

The best way to conceptually understand carrier multiplication and its implications is to study
an example,

5.10.1 Example 5: Carrier multiplication in a high-resistivity region with uni-
form electric field

Consider a high resistivity uniformly-doped region again under an external electric field, as shown
in Fig. 5.25. A narrow but penetrating beam of light impinges on the right-hand side of the sample
generating g; electron-hole pairs per em? every s. This is a case similar to the example discussed
in Section 5.9.1, but with x, = L. Following the analysis carried out in Section 5.9.1, the holes
are instantly collected at the metal contact but the electrons drift through the high-resistivity
region until they reach the other end of the structure.

In the absence of significant carrier multiplication, the current through the high-field region
is entirely supported by electrons and is given by J; = J. = gg;. If carrier multiplication is taking
place, as the photogenerated electrons drift down the sample, they generate secondary electrons
and holes which can also, in turn, generate more carriers. In these conditions, the current profile
is obtained by solving the differential equation 5.113. Since with our choice of axis and electric
field, both J. and Jj, are positive, we have:

dJe.

dr

= e + apJy (5.114)

It is advantageous to write this equation in terms of the total current .J;:
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Figure 5.25: Top: sketch of a high-resistivity uniformly-doped sample with carrier multiplication started by a
sheet of electrons generated at one end. Below. the resulting electron, hole and total currents are sketched in both
cases ae > ap and ap > .

dJ,
dx

= (e — ap)Je + an; (5.115)

This equation has to be solved subject to the boundary condition that Je(L) = qq.

The solution to this differential equation is:

Octh

Je(z) = [1+ e(@r=ae)a) . gelan=ae)z (5.116)

Qp — O
where A is a constant to be determined and J; is unknown.

A is obtained by demanding that at z = 0, the total current is solely supported by electrons.
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This is because the sign of the electric field prevents any holes from being collected at that contact.
Hence, J.(x = 0) = J;, which substituted in Eq. 5.116 results in A = Ji(ae + ap)/(ae — ap).
We must also demand, as mentioned above, that J.(x = L) = qg;. This gives the expression

of Jg:

O — Qe

e 5.117
i q491 iy — l’_)f[sf?-(a"’ —ae)L ( )

Plugging A and J; into Eq. 5.116 yields the final result:

an — ace(uh._u"?)w .
Je('x) = qgq P— aee(“h—“e)L (‘3118)
which satisfies the boundary conditions.
The hole current is simply:
ue[e[ah _QP}T — 1]

Jp=Jy —Je = qq (5.119)

G — Qee(ah_ﬂ'f‘)-{'

All the currents are sketched in Fig. 5.25. It is interesting to discuss the shape of these
currents depending on the relative magnitude of a, and aj. If a, > ap, electrons tend to be the
source of most impact ionization events. In consequence, the electron current grows exponentially
as the electrons travel from the generation point at z = L to z = 0. If ap > a., the contrary
situation takes place. It is the hole current that grows exponentially since they are responsible for
the bulk of the generation events. In both cases, however, the process is started by the electrons
generated at # = L. In both cases too, the contribution to the total current carried out by the
electrons increases from right to left as required by the sign of the electric field.

It is interesting to define a multiplication coefficient, M. as the ratio of the total current
flowing through the structure to the current that started the multiplication process J.(L) = qg:

M= iz C

5.120
o — agelan—ac)l ( )

There are two limits to M. If the electric field is small, both ionization coefficients are very
small. This allows us to linearize the exponential in the denominator of M and obtain M ~ 1.
In this case, carrier multiplication is negligible.

At the other extreme, at high electric fields, since both terms in the denominator of Eq. 5.120
are positive, it is entirely possible for the denominator to go to zero and for M to diverge. When
this happens, J; grows without bounds and avalanche breakdown takes place. In the example
considered here, this occurs when:

Cap=alfi=1n 2% (5.121)

e
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Figure 5.26: Multiplication coefficient M, and M — 1 as a function of electric field for a 0.2 um long Si sample
with uniform electric field.

For a sample of given length L, this condition can be reached by increasing the voltage applied
to the sample and hence the electric field. If oy, > a., for example, when the field is small, both
impact ionization coefficients are small and (o) — a.)L is very small. As the field increases, both
coefficients increase and their difference increases too. At a certain voltage, the condition 5.121
is satisfied and the sample goes into breakdown. The same happens if a, > aj. The voltage at
which this occurs is the breakdown voltage, BV

Fig. 5.26 shows an example of a calculation of the multiplication coefficient for a 0.2 pm long
Si sample under a uniform electric field. At an electric field of & = 5 x 10° V/em the sample goes

into avalanche breakdown. This is called the critical breakdown field. The breakdown voltage of
this sample is BV = 10 V.

The critical electric field is not a fundamental parameter of a material. Depending on the
field distribution and the sample size, the critical field can be rather different. The only reliable
way to compute the breakdown voltage in a given situation is to carry out a similar analysis to
the one presented in this example.

It often occurs that we are interested in impact ionization in situations in which carrier
multiplication is not very significant. This is the case, for example, when analyzing the substrate
current in MOSFETSs. In these cases, the multiplication coefficient is not a good parameter since
its value is very close to unity for a wide range of electric fields. Instead, it is more useful to
focus on M — 1, which reflects only the current produced by carriers generated through impact
ionization. M —1 depends very strongly on the electric field. Fig. 5.26 shows M — 1 as a function
of electric field for the example discussed in this section.
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Exercise 5.6: Consider a 0.2 pm long high-resistivity region of a Si sample under an applied
electric field of € = 5 x 10° V/cm al room lemperature. a) Calculate the multiplicalion coefficient.
b) If there is a triggering current of 1 pA, calculate the impact ionization current that is produced
and the tofal current that flows through the sample. ¢) If we now increase the length of this
high-resistivity region without changing the electric field, caleulate the eritical length that results in
avalanche breakdown. -

a) The first step in solving this problem is to get the appropriate values of the ionization coefficients

from the analylical expressions given in Appendix E. For an field of & = 5 x 10° V/cm, the

ionization coefficients are @, = 6.0 x 10* em~! and o) = 3.9 x 10* em~ L.

We can now plug into the expression of the multiplication coefficient:

The total eurrent that flows through the sample is M times the triggering current:

Solving for Lepi:

Oh — (e 3.9 x 10* - 6.0 x 10?

RS ah — 0@ —a)L 3.9 x 109 — 6.0 x 10%e(3-9x10:—6.0<109)02x10-4 59

b) The impact ionization current is given by the triggering current times M — 1. Then:

Lii= (M = 1)Iyig = (50— 1) x 1 pA =49 uA

Iy = Mg =50 x 1 pA =50 pA
¢) Avalanche breakdown occurs when the following condition is met:
(an — Gie)Lopie = In 22

e

T i 1 }1195-— 1 n3.9x104
R h— 0o . 30x10°—6.0x10%  6.0x 104

=0.21 pum.

5.11 Summary

e The systems of equations of Table 5.1 describe carrier behavior in semiconductors. These

equations can be solved exactly using CAD tools in three dimensions. Appropriate sim-
plifications for a few important families of problems can yield key insight regarding the
dominant physics.

e Concept of quasi-neutrality: absence of substantial volume charge. Quasi-neutrality implies

that the divergence of the total current density is zero everywhere. Quasi-neutrality is more
likely the higher the mobile carrier concentrations. Quasi-neutrality is a pervasive situation
in semiconductor devices.

e Majority-carrier situations: characterized by the application of an external voltage without

perturbing the carrier concentrations from their equilibrium values. In this family of prob-
lems, minority carriers play no role. The current through the semiconductor is determined
by majority-carrier drift. The relevant time constant for majority-carrier situations is the
dielectric relaxation time which is often much shorter than the time scale of interest.
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e Minority-carrier situations are those with bottlenecks dominated by minority carrier phe-
nomena, typically diffusion, drift, recombination and generation. Dominant processes can
be identified by estimating the magnitude of the key length scales: diffusion length and
the sample length. In dynamic problems, key time constants are the carrier lifetime and
the transit time. The identification and estimation of the dominant length scale and time
scale of minority carrier problems is a very valuable skill of great practical significance to
microelectronic device engineers.

e Space-charge regions: regions with very low carrier concentrations, high resistivity and a
substantial electric field. Carrier drift is the most significant transport mechanism.

e Impact ionization in space charge regions produces carrier multiplication and can result
in avalanche breakdown. This often limits the maximum voltage that can be handled by
a device (the breakdown voltage). An ability to estimate the breakdown voltage and an
understanding of its leading dependencies are essential skills for a device engineer.

5.12 Further reading

This chapter has covered a lot of territory. There is no single book with a treatment that is
parallel to the one here. Several books, however, contain complementary material.

A First Course in Differential Equations with Applications by D. G. Zill, Prindle, We-
ber and Schmidt, 1979 (ISBN 0-87150-266-6, QA372.Z54). This is a text on the theory, methods
of solution and applications of ordinary differential equations. This book is very clearly written
and contains many examples from different fields of physics and engineering. The techniques
taught in this book come handy to solve many different types of minority-carrier problems.

Conduction of Heat in Solids by H. S. Carslaw and J. C. Jaeger, Oxford University Press,
1959 (ISBN 0-19-853303-9, QC321.C321). The mathematics of minority carrier transport share a
lot with that of conduction of heat in solids. This classical text (first published in 1946) presents a
very complete mathematical treatment of heat conduction in solids in several coordinate systems.
This might be useful in some specific circumstances since many minority carrier-type problems
have a dual heat conduction problem.
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AT5.1 Continuity equations in integral form

The continuity equations derived in Section 5.1 are particularly intuitive when written in an
integral form. We can easily do this by extending Eq. 5.1 to a finite volume V' enclosed by a
surface S:

3/ i = / (G — R)dV + 1/ J..dS (5.122)

at Jv v q.Js

Similarly for holes:
9 it s ‘
—f pdV = /(G— R)dV — —/ Jo.dB (5.123)
ot Jv Jv qJs

These equations clearly state that the total number of carriers inside a certain volume changes
in time if there is net carrier generation or if there is net flow of carriers through its surface.

The continuity equation for charge is also very intuitive when expressed in an integral form.
If we multiply both of the above equations by g and we subtract the first one from the second
one and use Eq. 5.5, we get:

9/ pdV = —f J;.dS (5.124)
ot Jv s

This now makes clear that if there is net charge increasing in time in a certain volume of
a semiconductor it is because there is net current flowing into that volume (negative surface
integral).

In steady state, the time derivatives in Eqgs. 5.122, 5.123, 5.124 become zero. From Eq. 5.124
we can conclude that there cannot be net current into any region of the semiconductor. From
Eqgs. 5.122 and 5.123, if we substitute G.,; — U for R — G, we can write:

[ TS = [ FdS=g [ (Gext ~ V)V (5.125)
JE JS A"

This states that in steady state, the integral of the carrier current extended over the surface
of an enclosed volume is equal (with the appropriate sign) to the net generation of carriers taking
place inside the enclosed volume. This is an observation that derives directly from the continuity
equations and that comes handy in a few situations.

ATH.2 Dielectric relaxation

A uniformly doped semiconductor in thermal equilibrium, in the absence of any surface effects,
is charge neutral at every point in space. Suppose that through some external influence we can



