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▶ This recitation

1. Brief intro into tensors
2. Backpropagation
3. Automatic Differentiation & PyTorch
4. Deep Learning Building Blocks
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Outline

Recall: Definition and representation of deep neural networks

Training deep networks

Computational infrastructure

Deep Learning Toolkit
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Tensors
• Tensors provide a natural and concise mathematical represention of data (a) and parameters (Xl, µl where

l indicates the layers).
• Tensors are multidimensional arrays and are a generalization of:

1. scalars - tensors with no indices; i.e., zeroth-rank tensor.
2. vectors - tensors with exactly one index; i.e., first-rank tensor.
3. matrices - tensors with exactly two indices; i.e., second-rank tensor.
4. etc.

Figure: From [1]
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Recall: Basic Neural Network

1-hidden-layer neural network with m neurons (fully-connected architecture):

• Parameters: X1 ∈ Rm×d, X2 ∈ Rc×m (weights), µ1 ∈ Rm, µ2 ∈ Rc (biases)
• Activation function: σ : R→ R

hx(a) :=

[
X2

]activationy
σ


weight

↓[
X1

] input
↓[
a

]
+

bias
↓[

µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[

µ2

]
, x := [X1, X2, µ1, µ2]

recursively repeat activation + affine transformation to obtain “deeper” networks.
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Minimization of the loss function

In order to use first order methods, we need to derive the gradient

∇xRn(x) :=
1
n

n∑
i=1

∇xL(h(ai; x), bi) :=
1
n

n∑
i=1

∇xLi(x) (1)

where x = [X1, µ1, . . . , Xk, µk] are the weights and biases of the network. For convenience we sometimes also
write hx(a) instead of h(a; x).

Example (Naive computation of the gradient)
Let h(a; X1, X2) = XT

2 σ(X1a), and Li(X1, X2) = (bi − XT
2 σ(X1ai))2 be the loss on a sample, then

∂Li

∂X2
= −2(bi − XT

2 σ(X1ai))σ(X1ai) (2)

∂Li

∂X1
= −2(bi − XT

2 σ(X1ai))X2 ⊙ σ′(X1ai)aT
i (3)

where ⊙ denotes element-wise product of vectors.

Many similar terms in both derivatives ⇒ Inefficient to compute them independently
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Forward pass

Forward pass scheme
Input: a(0) = a, X(l) and µ(l) for l = 1, . . . , k.
1. For l = 1, . . . , k

Compute u(l) = X(l)a(l−1) + µ(l)

Compute a(l) = σ(u(l))

X μ

aa

Figure: Computation of u(l) and a(l) starting from a(l−1)
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Backward pass

Suppose
∂L

∂a(l) is given, as well as all pre-activation and hidden layer values.

• Goal: obtain
∂L

∂X(l) ,
∂L

∂µ(l) and
∂L

∂a(l−1) .

1.

u(l) = X(l)a(l−1) + µ(l) ⇒


∂L

∂X(l) =
∂L

∂u(l) (a(l−1))T

∂L

∂µ(l) =
∂L

∂u(l)

(chain rule)

2.
a(l) = σ(u(l)) ⇒

∂L

∂u(l) =
∂L

∂a(l) ⊙ σ′(u(l)) (chain rule)

Where ⊙ is the Hadamard product (element-wise product).
3. Finally we have

u(l) = X(l)a(l−1) + µ(l) ⇒
∂L

∂a(l−1) = (X(l))T ∂L

∂u(l) (chain rule)
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Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂a(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

Compute ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T , ∂L

∂µ(l) = ∂L

∂u(l)

Compute ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

a

a

a

X

X

μ

Figure: Computation of ∂L

∂µ(l) , ∂L

∂X(l) and ∂L

∂a(l−1) starting from ∂L

∂a(l)
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Backpropagation

• Recursive computation of the derivative ∇xLi(x)

1. Forward pass: Compute all pre-activation and hidden layer values
2. Backward pass: Compute the derivative of Li with respect to the weights and biases, from last to first

layer.

Complexity of computing ∇xLi(x)

Method Complexity
Naive derivative O(k2m2)
Backpropagation O(km2)

Where m is number of neurons per layer and k is the number of layers.

Remarks: ◦ Complexity is reduced by reusing computations at each step (memoization).

◦ The backpropagation has the same complexity as the forward pass (but different constants).
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Recall: Definition and representation of deep neural networks

Training deep networks

Computational infrastructure

Deep Learning Toolkit
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Automatic Differentiation

• Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values

• This removes the tedious manual derivation of the gradient and if implemented in a certain way, also
reduces the backward pass complexity from O(km2) to O(km)

• For a thorough survey and explanation, see [5]
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Automatic Differentiation (AD)

Table: Reverse mode AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) evaluated at (x1, x2) = (2, 5). After the
forward evaluation of the primals on the left, the adjoint operations on the right are evaluated in reverse. Note that both ∂y

∂x1
and ∂y

∂x2
are computed in the same reverse pass, starting from the adjoint v̄5 = ȳ = ∂y

∂y = 1. From [5]

Forward Primal Trace
v−1 = x1 = 2
v0 = x2 = 5
v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2 × 5
v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.693 + 10
v5 = v4 − v3 = 10.693 + 0.959

y = v5 = 11.652

Reverse Adjoint (Derivative) Trace
x̄1 = v̄−1 = 5.5
x̄2 = v̄0 = 1.716

v̄−1 = v̄−1 + v̄1
∂v1

∂v−1
= v̄−1 + v̄1/v−1 = 5.5

v̄0 = v̄0 + v̄2
∂v2
∂v0

= v̄0 + v̄2 × v−1 = 1.716

v̄−1 = v̄2
∂v2

∂v−1
= v̄2 × v0 = 5

v̄0 = v̄3
∂v3
∂v0

= v̄3 × cos v0 = −0.284

v̄2 = v̄4
∂v4
∂v2

= v̄4 × 1 = 1

v̄1 = v̄4
∂v4
∂v1

= v̄4 × 1 = 1

v̄3 = v̄5
∂v5
∂v3

= v̄5 × (−1) = −1

v̄4 = v̄5
∂v5
∂v4

= v̄5 × 1 = 1

v̄5 = ȳ = 1
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Autograd and Differentiable Programming

• Automatic differentiation + automatic construction of a computational graph from code
• Pedagogic version of autograd (with very readable code) available on github
• Industrial strength implementations used by Facebook and Google also available
• For cool applications on the extreme end see differentiable graphic rendering and differentiable convex

optimization solvers.
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https://pytorch.org/docs/stable/autograd.html
https://github.com/google/jax
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Pytorch

• Popular machine learning framework developed by Facebook
• Key innovations: APIs (module structure, dataset) and dynamic graphs (helps debugging, later adopted by

tensorflow as well)
• Other frameworks worth mentioning: tensorflow (Google), mxnet (Microsoft) and Flux.jl (for julia)
• very good manual and tutorial at https://pytorch.org/docs/stable/index.html
• Two introductory notebooks are provided in this supplementary
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Deep Learning Building Blocks: Linear Layers

• fl : Rn → Rm

• fl(a) = Xla + µl

• Question: How shall we modify the previous ’Bias’
class to implement a linear layer?

Figure: Linear Layer, from [4]
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Deep Learning Building Blocks: Linear Layers

• fl : Rn → Rm

• fl(a) = Xla + µl

• pytorch implementation: torch.nn.Linear

• Multi-layer perceptron (MLP): Stack several (≥ 2)
llinear layers, interleaved with activation functions.

Figure: Linear Layer, from [4]
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Deep Learning Building Blocks: Activation functions

• Non-linear functions that are applied element-wise
and give the neural network its expressivity

• MLP without nonlinearity is just a factored linear
layer
ftotal(a) = Xtotala + µtotal = X2X1a + X2µ1 + µ2

• Historically sigmoid σ(x) = 1
1+e−x was

common,but due to optimization issues, nowadays
the rectified linear unit (RELU)
σ(x) = relu(x) = max(x, 0) is the most common

• ftotal(a) = X2σ(X1a + µ1) + µ2 is the minimal
"deep" neural network, the "deep" refers to the
nonlinearity "hiding" the inner projection

• torch.nn.ReLu and torch.nn.Sigmoid
respectively

• Question: How can we implement an MLP class?

0.0

0.2

0.4

0.6

0.8

1.0
sigmoid

20 15 10 5 0 5 10 15 20
0

5

10

15

20
relu
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Deep Learning Building Blocks: Loss functions

• Express the task that your model is intended to
perform on the data

• For regression, a sensible default is the mean
square error MSE(a, b) = 1

N

∑N

i=1(ai − bi)2

• For classification, a sensible default is cross-entropy
H(a, b) = −

∑N

i=1 ai log bi with a, b ∈ [0, 1]
• torch.nn.MSELoss and

torch.nn.CrossEntropyLoss respectively
Figure: From [7]
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Deep Learning Building Blocks: Convolutional Layers

• apply an MLP across spatial locations of an image
to learn a filter

• fl : Rn×H×W → Rm×H−k+1×W −k+1

• fl(a) =


∑n

i=1 Xl,1,i ⋆ ai + µ1
...∑n

i=1 Xl,o,i ⋆ ai + µo


• x ⋆ a denotes the cross correlation operator, i.e. a

sliding window inner product:
(x ⋆ a)i =

∑k

j=1 xi+j−1aj . The window size k is
also called kernel size

• reduces spatial dimensions, effectively subsampling
the input, other parameters include stride and
dilation (can find explanations online)

• PyTorch implementation: torch.nn.ConvNd for
N ∈ {1, 2, 3} dimensional convolution Figure: Convolution operation, from [6]
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Deep Learning Building Blocks: Attention Layers

• fl : RT,n → RT,m,explicitly maps between sets
• fl(a) = Attention(a)Xva
• where the Attention(mba) is a weight matrix defined rowise

as Attention(a)r = softmax
((

XqaaT XT
k

)
r

)
• originally conceived to help RNNs with long range

dependencies, requires explicit order encoding
• currently dominates both RNNs and CNNs for sequence and

vision tasks
• computationally and memory heavy in the original formO(T 2)

but recent work improved this to ≈ O(T ).
Figure: Attention Layer, from [3]
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Advanced material

Optional reading material for additional building blocks and the complexity of backpropagation.
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Deep Learning Building Blocks: Recurrent Layers

• introduces hidden state ht ∈ RH into the training
process, generally trained through unrolling the
computation graph across time steps T

• fl : Rn × RH → Rm × RH , but when training
implicitly RT,n → RT,m × RT,H since we unroll
through time

• fl(at), ht = g(at−1, ht−1)
• h0 is some initial value,often the zero vector
• g()̇ is usually the GRU or LSTM unit which uses

an MLP to predict updates to the hidden state as
well as the output

Figure: Recurrent Layer, from [2]
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Deep Learning Building Blocks: Transposed-Convolutional Layers

• apply an MLP across spatial locations of an image
to learn a filter

• fl : Rn×H×W → Rm×H+k−1×W +k−1

• fl(a) =


∑n

i=1 Xl,1,i ⋆ ai + µ1
...∑n

i=1 Xl,o,i ⋆ ai + µo


• x ⋆ a denotes the transposed cross correlation

operator: (x ⋆ a)i =
∑k

j=1 xjai+j−1.

• increases spatial dimensions, effectively
oversampling the input, other parameters include
stride and dilation (can find explanations online)

• PyTorch implementation:
torch.nn.ConvTransposeNd for N ∈ {1, 2, 3}
dimensional transposed convolution

Figure: Transposed convolution operation, from [6]
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Deep Learning Building Blocks: Graphical Layers

• generalizes attention to sparse,non-euclidean
geometry and variable cardinality sets of inputs

• fl : El−1, V−1, u−1 → El, Vl, ul where the Ei, Vi

are the sets of edge and node attribute tensors
respectively and u is a graph level attribute tensor
(from [4])

• updates to e, v, u tensors follow the template
x = Agg(Proj(Neigh(x))) i.e. we aggregate the
projected elements of the neighourhood set of an
element x.

• Examples for Agg are sum,mean,max, Proj is
usually a neural network and the Neigh set are the
nodes connected by an edge, to a node by various
edges or all elements in the graph respectively for
e, v, u.

Figure: Graphical Layer, from [4]
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Using networks for multi-class classification

Definition (Score-based classifier)
For a network h : Rd → Rc define the score-based
classifier ih : Rd → {1, . . . , c} as

ih(a) = arg max
i∈{1,...,c}

[h(a)]i

One output per class, choose the class corresponding to
the maximum output. Example:

f(x0) =

 0.1
−0.8
1.4
1.1

 =⇒ if (a) = 3

Definition (Cross-entropy loss)
Let a ∈ Rd be a sample with label b ∈ {1, . . . , c}

L(h(a), b) = − log
(

exp(h(a)b)∑c

j=1 exp(h(a)j)

)
ei ∈ Rc denotes the i-th canonical vector.

Most common loss for classification via ERM with
neural networks. Example:

h(a) =

 0.1
−0.8
1.4
1.1

 L(f(a), 2) = 2.95

L(f(a), 3) = 0.75
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Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1. For l = 1, . . . , k

▶ u(l) = X(l)a(l−1) + µ(l)

▶ a(l) = σ(u(l))

Forward pass is O(km2)

Backward pass scheme
1. For l = k, . . . , 1
▶ ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

▶ ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T

▶ ∂L

∂µ(l) = ∂L

∂u(l)

▶ ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

Backward pass is O(km2)
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