
Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

A lightning tour through the optimization of deep neural networks
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

License Information for Mathematics of Data Slides

▶ This work is released under a Creative Commons License with the following terms:
▶ Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

▶ Non-Commercial
▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the

work for commercial purposes – unless they get the licensor’s permission.
▶ Share Alike

▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor’s work.

▶ Full Text of the License

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 24

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

▶ This recitation

1. Brief intro into tensors
2. Backpropagation
3. Automatic Differentiation & PyTorch
4. Deep Learning Building Blocks

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 24

Outline

Recall: Definition and representation of deep neural networks

Training deep networks

Computational infrastructure

Deep Learning Toolkit

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 24

Tensors
• Tensors provide a natural and concise mathematical represention of data (a) and parameters (Xl, µl where

l indicates the layers).
• Tensors are multidimensional arrays and are a generalization of:

1. scalars - tensors with no indices; i.e., zeroth-rank tensor.
2. vectors - tensors with exactly one index; i.e., first-rank tensor.
3. matrices - tensors with exactly two indices; i.e., second-rank tensor.
4. etc.

Figure: From [1]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 24

Outline

Recall: Definition and representation of deep neural networks

Training deep networks

Computational infrastructure

Deep Learning Toolkit

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 24

Recall: Basic Neural Network

1-hidden-layer neural network with m neurons (fully-connected architecture):

• Parameters: X1 ∈ Rm×d, X2 ∈ Rc×m (weights), µ1 ∈ Rm, µ2 ∈ Rc (biases)
• Activation function: σ : R→ R

hx(a) :=

[
X2

]activationy
σ


weight

↓[
X1

] input
↓[
a

]
+

bias
↓[

µ1

]
︸ ︷︷ ︸

hidden layer = learned features

+

bias
↓[

µ2

]
, x := [X1, X2, µ1, µ2]

recursively repeat activation + affine transformation to obtain “deeper” networks.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 24

Minimization of the loss function

In order to use first order methods, we need to derive the gradient

∇xRn(x) :=
1
n

n∑
i=1

∇xL(h(ai; x), bi) :=
1
n

n∑
i=1

∇xLi(x) (1)

where x = [X1, µ1, . . . , Xk, µk] are the weights and biases of the network. For convenience we sometimes also
write hx(a) instead of h(a; x).

Example (Naive computation of the gradient)
Let h(a; X1, X2) = XT

2 σ(X1a), and Li(X1, X2) = (bi − XT
2 σ(X1ai))2 be the loss on a sample, then

∂Li

∂X2
= −2(bi − XT

2 σ(X1ai))σ(X1ai) (2)

∂Li

∂X1
= −2(bi − XT

2 σ(X1ai))X2 ⊙ σ′(X1ai)aT
i (3)

where ⊙ denotes element-wise product of vectors.

Many similar terms in both derivatives ⇒ Inefficient to compute them independently

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 24

Minimization of the loss function

In order to use first order methods, we need to derive the gradient

∇xRn(x) :=
1
n

n∑
i=1

∇xL(h(ai; x), bi) :=
1
n

n∑
i=1

∇xLi(x) (1)

where x = [X1, µ1, . . . , Xk, µk] are the weights and biases of the network. For convenience we sometimes also
write hx(a) instead of h(a; x).

Example (Naive computation of the gradient)
Let h(a; X1, X2) = XT

2 σ(X1a), and Li(X1, X2) = (bi − XT
2 σ(X1ai))2 be the loss on a sample, then

∂Li

∂X2
= −2(bi − XT

2 σ(X1ai))σ(X1ai) (2)

∂Li

∂X1
= −2(bi − XT

2 σ(X1ai))X2 ⊙ σ′(X1ai)aT
i (3)

where ⊙ denotes element-wise product of vectors.

Many similar terms in both derivatives ⇒ Inefficient to compute them independently

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 24

Forward pass

Forward pass scheme
Input: a(0) = a, X(l) and µ(l) for l = 1, . . . , k.
1. For l = 1, . . . , k

Compute u(l) = X(l)a(l−1) + µ(l)

Compute a(l) = σ(u(l))

X μ

aa

Figure: Computation of u(l) and a(l) starting from a(l−1)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Forward pass

Forward pass scheme
Input: a(0) = a, X(l) and µ(l) for l = 1, . . . , k.
1. For l = 1, . . . , k

Compute u(l) = X(l)a(l−1) + µ(l)

Compute a(l) = σ(u(l))

X μ

aa

Figure: Computation of u(l) and a(l) starting from a(l−1)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Forward pass

Forward pass scheme
Input: a(0) = a, X(l) and µ(l) for l = 1, . . . , k.
1. For l = 1, . . . , k

Compute u(l) = X(l)a(l−1) + µ(l)

Compute a(l) = σ(u(l))

X μ

aa

Figure: Computation of u(l) and a(l) starting from a(l−1)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Forward pass

Forward pass scheme
Input: a(0) = a, X(l) and µ(l) for l = 1, . . . , k.
1. For l = 1, . . . , k

Compute u(l) = X(l)a(l−1) + µ(l)

Compute a(l) = σ(u(l))

X μ

aa

Figure: Computation of u(l) and a(l) starting from a(l−1)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Backward pass

Suppose
∂L

∂a(l) is given, as well as all pre-activation and hidden layer values.

• Goal: obtain
∂L

∂X(l) ,
∂L

∂µ(l) and
∂L

∂a(l−1) .

1.

u(l) = X(l)a(l−1) + µ(l) ⇒


∂L

∂X(l) =
∂L

∂u(l) (a(l−1))T

∂L

∂µ(l) =
∂L

∂u(l)

(chain rule)

2.
a(l) = σ(u(l)) ⇒

∂L

∂u(l) =
∂L

∂a(l) ⊙ σ′(u(l)) (chain rule)

Where ⊙ is the Hadamard product (element-wise product).
3. Finally we have

u(l) = X(l)a(l−1) + µ(l) ⇒
∂L

∂a(l−1) = (X(l))T ∂L

∂u(l) (chain rule)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass

Suppose
∂L

∂a(l) is given, as well as all pre-activation and hidden layer values.

• Goal: obtain
∂L

∂X(l) ,
∂L

∂µ(l) and
∂L

∂a(l−1) .

1.

u(l) = X(l)a(l−1) + µ(l) ⇒


∂L

∂X(l) =
∂L

∂u(l) (a(l−1))T

∂L

∂µ(l) =
∂L

∂u(l)

(chain rule)

2.
a(l) = σ(u(l)) ⇒

∂L

∂u(l) =
∂L

∂a(l) ⊙ σ′(u(l)) (chain rule)

Where ⊙ is the Hadamard product (element-wise product).
3. Finally we have

u(l) = X(l)a(l−1) + µ(l) ⇒
∂L

∂a(l−1) = (X(l))T ∂L

∂u(l) (chain rule)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass

Suppose
∂L

∂a(l) is given, as well as all pre-activation and hidden layer values.

• Goal: obtain
∂L

∂X(l) ,
∂L

∂µ(l) and
∂L

∂a(l−1) .

1.

u(l) = X(l)a(l−1) + µ(l) ⇒


∂L

∂X(l) =
∂L

∂u(l) (a(l−1))T

∂L

∂µ(l) =
∂L

∂u(l)

(chain rule)

2.
a(l) = σ(u(l)) ⇒

∂L

∂u(l) =
∂L

∂a(l) ⊙ σ′(u(l)) (chain rule)

Where ⊙ is the Hadamard product (element-wise product).

3. Finally we have
u(l) = X(l)a(l−1) + µ(l) ⇒

∂L

∂a(l−1) = (X(l))T ∂L

∂u(l) (chain rule)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass

Suppose
∂L

∂a(l) is given, as well as all pre-activation and hidden layer values.

• Goal: obtain
∂L

∂X(l) ,
∂L

∂µ(l) and
∂L

∂a(l−1) .

1.

u(l) = X(l)a(l−1) + µ(l) ⇒


∂L

∂X(l) =
∂L

∂u(l) (a(l−1))T

∂L

∂µ(l) =
∂L

∂u(l)

(chain rule)

2.
a(l) = σ(u(l)) ⇒

∂L

∂u(l) =
∂L

∂a(l) ⊙ σ′(u(l)) (chain rule)

Where ⊙ is the Hadamard product (element-wise product).
3. Finally we have

u(l) = X(l)a(l−1) + µ(l) ⇒
∂L

∂a(l−1) = (X(l))T ∂L

∂u(l) (chain rule)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂a(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

Compute ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T , ∂L

∂µ(l) = ∂L

∂u(l)

Compute ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

a

a

a

X

X

μ

Figure: Computation of ∂L

∂µ(l) , ∂L

∂X(l) and ∂L

∂a(l−1) starting from ∂L

∂a(l)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂a(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

Compute ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T , ∂L

∂µ(l) = ∂L

∂u(l)

Compute ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

a

a

a

X

X

μ

Figure: Computation of ∂L

∂µ(l) , ∂L

∂X(l) and ∂L

∂a(l−1) starting from ∂L

∂a(l)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂a(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

Compute ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T , ∂L

∂µ(l) = ∂L

∂u(l)

Compute ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

a

a

a

X

X

μ

Figure: Computation of ∂L

∂µ(l) , ∂L

∂X(l) and ∂L

∂a(l−1) starting from ∂L

∂a(l)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂a(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

Compute ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T , ∂L

∂µ(l) = ∂L

∂u(l)

Compute ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

a

a

a

X

X

μ

Figure: Computation of ∂L

∂µ(l) , ∂L

∂X(l) and ∂L

∂a(l−1) starting from ∂L

∂a(l)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂a(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

Compute ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T , ∂L

∂µ(l) = ∂L

∂u(l)

Compute ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

a

a

a

X

X

μ

Figure: Computation of ∂L

∂µ(l) , ∂L

∂X(l) and ∂L

∂a(l−1) starting from ∂L

∂a(l)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backpropagation

• Recursive computation of the derivative ∇xLi(x)

1. Forward pass: Compute all pre-activation and hidden layer values
2. Backward pass: Compute the derivative of Li with respect to the weights and biases, from last to first

layer.

Complexity of computing ∇xLi(x)

Method Complexity
Naive derivative O(k2m2)
Backpropagation O(km2)

Where m is number of neurons per layer and k is the number of layers.

Remarks: ◦ Complexity is reduced by reusing computations at each step (memoization).

◦ The backpropagation has the same complexity as the forward pass (but different constants).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 24

Outline

Recall: Definition and representation of deep neural networks

Training deep networks

Computational infrastructure

Deep Learning Toolkit

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 24

Automatic Differentiation

• Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values

• This removes the tedious manual derivation of the gradient and if implemented in a certain way, also
reduces the backward pass complexity from O(km2) to O(km)

• For a thorough survey and explanation, see [5]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 24

Automatic Differentiation

• Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values

• This removes the tedious manual derivation of the gradient and if implemented in a certain way, also
reduces the backward pass complexity from O(km2) to O(km)

• For a thorough survey and explanation, see [5]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 24

Automatic Differentiation (AD)

Table: Reverse mode AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) evaluated at (x1, x2) = (2, 5). After the
forward evaluation of the primals on the left, the adjoint operations on the right are evaluated in reverse. Note that both ∂y

∂x1
and ∂y

∂x2
are computed in the same reverse pass, starting from the adjoint v̄5 = ȳ = ∂y

∂y = 1. From [5]

Forward Primal Trace
v−1 = x1 = 2
v0 = x2 = 5
v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2 × 5
v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.693 + 10
v5 = v4 − v3 = 10.693 + 0.959

y = v5 = 11.652

Reverse Adjoint (Derivative) Trace
x̄1 = v̄−1 = 5.5
x̄2 = v̄0 = 1.716

v̄−1 = v̄−1 + v̄1
∂v1

∂v−1
= v̄−1 + v̄1/v−1 = 5.5

v̄0 = v̄0 + v̄2
∂v2
∂v0

= v̄0 + v̄2 × v−1 = 1.716

v̄−1 = v̄2
∂v2

∂v−1
= v̄2 × v0 = 5

v̄0 = v̄3
∂v3
∂v0

= v̄3 × cos v0 = −0.284

v̄2 = v̄4
∂v4
∂v2

= v̄4 × 1 = 1

v̄1 = v̄4
∂v4
∂v1

= v̄4 × 1 = 1

v̄3 = v̄5
∂v5
∂v3

= v̄5 × (−1) = −1

v̄4 = v̄5
∂v5
∂v4

= v̄5 × 1 = 1

v̄5 = ȳ = 1

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 24

Autograd and Differentiable Programming

• Automatic differentiation + automatic construction of a computational graph from code
• Pedagogic version of autograd (with very readable code) available on github
• Industrial strength implementations used by Facebook and Google also available
• For cool applications on the extreme end see differentiable graphic rendering and differentiable convex

optimization solvers.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 24

https://github.com/mattjj/autodidact
https://pytorch.org/docs/stable/autograd.html
https://github.com/google/jax
https://github.com/BachiLi/redner
https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cvxpylayers

Outline

Recall: Definition and representation of deep neural networks

Training deep networks

Computational infrastructure

Deep Learning Toolkit

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 24

Pytorch

• Popular machine learning framework developed by Facebook
• Key innovations: APIs (module structure, dataset) and dynamic graphs (helps debugging, later adopted by

tensorflow as well)
• Other frameworks worth mentioning: tensorflow (Google), mxnet (Microsoft) and Flux.jl (for julia)
• very good manual and tutorial at https://pytorch.org/docs/stable/index.html
• Two introductory notebooks are provided in this supplementary

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 24

https://pytorch.org/docs/stable/index.html

Deep Learning Building Blocks: Linear Layers

• fl : Rn → Rm

• fl(a) = Xla + µl

• Question: How shall we modify the previous ’Bias’
class to implement a linear layer?

Figure: Linear Layer, from [4]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 24

Deep Learning Building Blocks: Linear Layers

• fl : Rn → Rm

• fl(a) = Xla + µl

• pytorch implementation: torch.nn.Linear

• Multi-layer perceptron (MLP): Stack several (≥ 2)
llinear layers, interleaved with activation functions.

Figure: Linear Layer, from [4]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 24

Deep Learning Building Blocks: Activation functions

• Non-linear functions that are applied element-wise
and give the neural network its expressivity

• MLP without nonlinearity is just a factored linear
layer
ftotal(a) = Xtotala + µtotal = X2X1a + X2µ1 + µ2

• Historically sigmoid σ(x) = 1
1+e−x was

common,but due to optimization issues, nowadays
the rectified linear unit (RELU)
σ(x) = relu(x) = max(x, 0) is the most common

• ftotal(a) = X2σ(X1a + µ1) + µ2 is the minimal
"deep" neural network, the "deep" refers to the
nonlinearity "hiding" the inner projection

• torch.nn.ReLu and torch.nn.Sigmoid
respectively

• Question: How can we implement an MLP class?

0.0

0.2

0.4

0.6

0.8

1.0
sigmoid

20 15 10 5 0 5 10 15 20
0

5

10

15

20
relu

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 24

Deep Learning Building Blocks: Loss functions

• Express the task that your model is intended to
perform on the data

• For regression, a sensible default is the mean
square error MSE(a, b) = 1

N

∑N

i=1(ai − bi)2

• For classification, a sensible default is cross-entropy
H(a, b) = −

∑N

i=1 ai log bi with a, b ∈ [0, 1]
• torch.nn.MSELoss and

torch.nn.CrossEntropyLoss respectively
Figure: From [7]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 24

Deep Learning Building Blocks: Convolutional Layers

• apply an MLP across spatial locations of an image
to learn a filter

• fl : Rn×H×W → Rm×H−k+1×W −k+1

• fl(a) =


∑n

i=1 Xl,1,i ⋆ ai + µ1
...∑n

i=1 Xl,o,i ⋆ ai + µo


• x ⋆ a denotes the cross correlation operator, i.e. a

sliding window inner product:
(x ⋆ a)i =

∑k

j=1 xi+j−1aj . The window size k is
also called kernel size

• reduces spatial dimensions, effectively subsampling
the input, other parameters include stride and
dilation (can find explanations online)

• PyTorch implementation: torch.nn.ConvNd for
N ∈ {1, 2, 3} dimensional convolution Figure: Convolution operation, from [6]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 24

Deep Learning Building Blocks: Attention Layers

• fl : RT,n → RT,m,explicitly maps between sets
• fl(a) = Attention(a)Xva
• where the Attention(mba) is a weight matrix defined rowise

as Attention(a)r = softmax
((

XqaaT XT
k

)
r

)
• originally conceived to help RNNs with long range

dependencies, requires explicit order encoding
• currently dominates both RNNs and CNNs for sequence and

vision tasks
• computationally and memory heavy in the original formO(T 2)

but recent work improved this to ≈ O(T).
Figure: Attention Layer, from [3]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 24

References I

[1] Tensors—Representation of Data In Neural Networks, Dec 2019.
[Online; accessed 22. Oct. 2020].
(Cited on page 5.)

[2] File:Recurrent neural network unfold.svg - Wikimedia Commons, Oct 2020.
[Online; accessed 15. Oct. 2020].
(Cited on page 40.)

[3] Jay Alammar.
The Illustrated Transformer, Oct 2020.
[Online; accessed 15. Oct. 2020].
(Cited on page 36.)

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre,
Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash,
Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol
Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks, 2018.
(Cited on pages 31, 32, and 42.)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 8

References II

[5] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey, 2018.
(Cited on pages 25, 26, and 27.)

[6] Francois Fleuret.
7.1. Transposed convolutions, 2023.
(Cited on pages 35 and 41.)

[7] petercour.
Machine Learning Classification vs Regression.
DEV Community, Jul 2019.
(Cited on page 34.)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 8

Advanced material

Optional reading material for additional building blocks and the complexity of backpropagation.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 8

Deep Learning Building Blocks: Recurrent Layers

• introduces hidden state ht ∈ RH into the training
process, generally trained through unrolling the
computation graph across time steps T

• fl : Rn × RH → Rm × RH , but when training
implicitly RT,n → RT,m × RT,H since we unroll
through time

• fl(at), ht = g(at−1, ht−1)
• h0 is some initial value,often the zero vector
• g()̇ is usually the GRU or LSTM unit which uses

an MLP to predict updates to the hidden state as
well as the output

Figure: Recurrent Layer, from [2]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 8

Deep Learning Building Blocks: Transposed-Convolutional Layers

• apply an MLP across spatial locations of an image
to learn a filter

• fl : Rn×H×W → Rm×H+k−1×W +k−1

• fl(a) =


∑n

i=1 Xl,1,i ⋆ ai + µ1
...∑n

i=1 Xl,o,i ⋆ ai + µo


• x ⋆ a denotes the transposed cross correlation

operator: (x ⋆ a)i =
∑k

j=1 xjai+j−1.

• increases spatial dimensions, effectively
oversampling the input, other parameters include
stride and dilation (can find explanations online)

• PyTorch implementation:
torch.nn.ConvTransposeNd for N ∈ {1, 2, 3}
dimensional transposed convolution

Figure: Transposed convolution operation, from [6]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 8

Deep Learning Building Blocks: Graphical Layers

• generalizes attention to sparse,non-euclidean
geometry and variable cardinality sets of inputs

• fl : El−1, V−1, u−1 → El, Vl, ul where the Ei, Vi

are the sets of edge and node attribute tensors
respectively and u is a graph level attribute tensor
(from [4])

• updates to e, v, u tensors follow the template
x = Agg(Proj(Neigh(x))) i.e. we aggregate the
projected elements of the neighourhood set of an
element x.

• Examples for Agg are sum,mean,max, Proj is
usually a neural network and the Neigh set are the
nodes connected by an edge, to a node by various
edges or all elements in the graph respectively for
e, v, u.

Figure: Graphical Layer, from [4]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 8

Using networks for multi-class classification

Definition (Score-based classifier)
For a network h : Rd → Rc define the score-based
classifier ih : Rd → {1, . . . , c} as

ih(a) = arg max
i∈{1,...,c}

[h(a)]i

One output per class, choose the class corresponding to
the maximum output. Example:

f(x0) =

 0.1
−0.8
1.4
1.1

 =⇒ if (a) = 3

Definition (Cross-entropy loss)
Let a ∈ Rd be a sample with label b ∈ {1, . . . , c}

L(h(a), b) = − log
(

exp(h(a)b)∑c

j=1 exp(h(a)j)

)
ei ∈ Rc denotes the i-th canonical vector.

Most common loss for classification via ERM with
neural networks. Example:

h(a) =

 0.1
−0.8
1.4
1.1

 L(f(a), 2) = 2.95

L(f(a), 3) = 0.75

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 8

Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1. For l = 1, . . . , k

▶ u(l) = X(l)a(l−1) + µ(l)

▶ a(l) = σ(u(l))

Forward pass is O(km2)

Backward pass scheme
1. For l = k, . . . , 1
▶ ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

▶ ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T

▶ ∂L

∂µ(l) = ∂L

∂u(l)

▶ ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

Backward pass is O(km2)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 8

Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1. For l = 1, . . . , k

▶ u(l) = X(l)a(l−1) + µ(l) ⇒ O(m2)
▶ a(l) = σ(u(l)) ⇒ O(m)

Forward pass is O(km2)

Backward pass scheme
1. For l = k, . . . , 1
▶ ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l))

▶ ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T

▶ ∂L

∂µ(l) = ∂L

∂u(l)

▶ ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l)

Backward pass is O(km2)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 8

Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1. For l = 1, . . . , k

▶ u(l) = X(l)a(l−1) + µ(l) ⇒ O(m2)
▶ a(l) = σ(u(l)) ⇒ O(m)

Forward pass is O(km2)

Backward pass scheme
1. For l = k, . . . , 1
▶ ∂L

∂u(l) = ∂L

∂a(l) ⊙ σ′(u(l)) ⇒ O(m)

▶ ∂L

∂X(l) = ∂L

∂u(l) (a(l−1))T ⇒ O(m2)

▶ ∂L

∂µ(l) = ∂L

∂u(l) ⇒ O(1)

▶ ∂L

∂a(l−1) = (X(l))T ∂L

∂u(l) ⇒ O(m2)

Backward pass is O(km2)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 8

	Recall: Definition and representation of deep neural networks
	Training deep networks
	Computational infrastructure
	Deep Learning Toolkit
	Appendix

