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> This recitation

Brief intro into tensors
Backpropagation

Automatic Differentiation & PyTorch
Deep Learning Building Blocks

A
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Outline

Recall: Definition and representation of deep neural networks
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Tensors

e Tensors provide a natural and concise mathematical represention of data (a) and parameters (X;, y; where
l indicates the layers).
e Tensors are multidimensional arrays and are a generalization of:
1. scalars - tensors with no indices; i.e., zeroth-rank tensor.
2. vectors - tensors with exactly one index; i.e., first-rank tensor.
3. matrices - tensors with exactly two indices; i.e., second-rank tensor.
4

. etc.

] | . '
Rank O Rank 1 Rank 2 Rank 3 Rank 4
Tensor Tensor Tensor Tensor Tensor
scalar vector matrix

Figure: From [1]
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Outline

Training deep networks
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Recall: Basic Neural Network

1-hidden-layer neural network with m neurons (fully-connected architecture):
o Parameters: X; € Rm*X? X, ¢ REX™ (weights), 1 € R™, uo € R¢ (biases)
e Activation function: o : R =+ R

activation weight input bias bias

hx(a) := X o X1 al4(p| |+ pel, x = [X1, X2, p1, pol

hidden layer = learned features

recursively repeat activation + affine transformation to obtain “deeper” networks.
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Minimization of the loss function

In order to use first order methods, we need to derive the gradient

Vo Rn() : sz h(as; ), b;) sz x) (1)

where = [X1, p1, ..., X, tx] are the weights and biases of the network. For convenience we sometimes also
write hg(a) instead of h(a;x).
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Minimization of the loss function

In order to use first order methods, we need to derive the gradient

n n
1 1
VaRn(@) = ~ ) Val(h(ai),b) =~ Y Vali(w) (1)
i=1 i=1
where = [X1, p1, ..., X, tx] are the weights and biases of the network. For convenience we sometimes also

write hg(a) instead of h(a;x).

Example (Naive computation of the gradient)
Let h(a; X1, X2) = X 0(X1a), and L;(X1, X2) = (b; — XT 0(X1a;))? be the loss on a sample, then

L
gX; = —Q(bi — X’QTO'(Xlai))O'(Xlai) (2)
aL;
0X1

where ® denotes element-wise product of vectors.

= —Z(bi = XQTO'(Xlai))XQ © J’(Xlai)aZT (3)

Many similar terms in both derivatives = Inefficient to compute them independently
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Forward pass

Forward pass scheme

Input: a© =¢a, XO and u(” forl=1,...,k.

1.Forl=1,...,k
Compute u®) = XD qgl=-1) 4 /O
Compute aV) = g(u)

XO| | o

a(—1)

X + u(l) — g

)

Figure: Computation of u® and a® starting from al—v
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Forward pass scheme
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Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

da®
oL OL

. OL
e Goal: obtain XD’ 8u<l) and 5a0=1"
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Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

da)
oL OL

. 0L
e Goal: obtain XD’ 8u<l) and 5a0=1"

u® = XDgl=1) 4,0 = 8§<L dgL' (chain rule)
a0 9u®
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Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

da)
oL OL

. 0L
e Goal: obtain XD’ 8u<l) and 5a0=1"

u® = xWal=1) 4,0 o 8§<L B dgL'
ou® ou®
> L AL
aV = o(u®) = oo (u®)

ou® — 9a®

Where © is the Hadamard product (element-wise product).
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Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

daV)
OL
e Goal: obtain oL , oL and 9 .
oxXW " ol dall=1)
1. P
ale - f(HZU (all=t)T
u® = XWqalt=1 1 0 = { XL ) out (chain rule)
a0 9u®
= oL oL
a® =o(u®) = ou® = 5a® © o' (u®) (chain rule)
Where © is the Hadamard product (element-wise product).
3. Finally we have
_ oL oL ,
u® =xWal-1 4 ;O = ST = (XHT WG (chain rule)
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Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

oL _ OL_(q(~1))T OL_ _ 0L

Compute XD = 7ad

Compute a( T = (xXHT 6(1)

ICLHEEIN  Mathematics of Data | Prof.

oL [ _ac oL
|aau—1>}_ X | 5u® }_ © _{ 9aD |

oL
oph

L H

oL oL i _OL _
Figure: Computation of (l)' ax@ and 7a(-D starting from PO)
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Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

AL _ 9L ( (I—1)\T _O0L _ _OL
Compute 527y = 5, @ (@)%, 5.0 = 3.0
oL

— 1 oL
Compute el = (x( ))Tm
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oL
|aau—1)}_ X
oL
o
oL -1
% X a0 |
i . i oL AL oL i _OL
Figure: Computation of ou (0 7% and 7a(-D starting from PO)
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Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
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Backpropagation

e Recursive computation of the derivative Vo L;(x)

1. Forward pass: Compute all pre-activation and hidden layer values

2. Backward pass: Compute the derivative of L; with respect to the weights and biases, from last to first
layer.

Complexity of computing VL;(x)

Method ‘ Complexity
Naive derivative | O(k?m?)
Backpropagation O(km?)

Where m is number of neurons per layer and k is the number of layers.

Remarks: o Complexity is reduced by reusing computations at each step (memoization).

o The backpropagation has the same complexity as the forward pass (but different constants).
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Outline

Computational infrastructure
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Automatic Differentiation

e Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values
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Automatic Differentiation

e Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values

e This removes the tedious manual derivation of the gradient and if implemented in a certain way, also
reduces the backward pass complexity from O(km?2) to O(km)

e For a thorough survey and explanation, see [5]
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Automatic Differentiation (AD)

Table: Reverse mode AD example, with y = f(x1,z2) = In(z1) + z122 — sin(z2) evaluated at (z1,xz2) = (2,5). After the
forward evaluation of the primals on the left, the adjoint operations on the right are evaluated in reverse. Note that both ;Tyl

Y

and 5?72 are computed in the same reverse pass, starting from the adjoint v5 = § =

% = 1. From [5]

Forward Primal Trace
=21

Reverse Adjoint (Derivative) Trace

= =2 T1 = =5.5
=v_4 = 5.
vy = =5 /N & =g =1.716
vy =Ilnv_y =1n2 _ _ s _ _
vy =w_1 X vg =2x5 U71:U71+v131,711 =0_1+01/v_1 =55
vy = sinwvg =sinb = — 7 —_Ovg — 7 = —
vy =v1 + vg = 0.693 + 10 vo vo ng'z Dvo o + U2 X v_1 1.716
vy = 4 — v3 = 10.693 + 0.959 B_1 = o 6;’21 = @y X vg =5
y =wus = 11.652 By = o3 g,’;g = ©3 X cosvg = —0.284
_ _ v _
vy = 1)4% =104 X1 =
v = 1743% =4 x 1 =1
. _ dus .
U3 = U552 =95 X (=1) =1
= 552% =75 x 1 =1
Ty =7 =1
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Autograd and Differentiable Programming

e Automatic differentiation + automatic construction of a computational graph from code
e Pedagogic version of autograd (with very readable code) available on github
e Industrial strength implementations used by Facebook and Google also available

e For cool applications on the extreme end see differentiable graphic rendering and differentiable convex
optimization solvers.
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https://github.com/mattjj/autodidact
https://pytorch.org/docs/stable/autograd.html
https://github.com/google/jax
https://github.com/BachiLi/redner
https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cvxpylayers

Outline

Deep Learning Toolkit
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Pytorch

e Popular machine learning framework developed by Facebook

e Key innovations: APIs (module structure, dataset) and dynamic graphs (helps debugging, later adopted by
tensorflow as well)

e Other frameworks worth mentioning: tensorflow (Google), mxnet (Microsoft) and Flux.jl (for julia)
e very good manual and tutorial at https://pytorch.org/docs/stable/index.html

e Two introductory notebooks are provided in this supplementary
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Deep Learning Building Blocks: Linear Layers

e Question: How shall we modify the previous 'Bias’
class to implement a linear layer?

o fi :R* - R™ ?

° f = X;a +
1(a) 1a+ 2
/

Figure: Linear Layer, from [4]
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Deep Learning Building Blocks: Linear Layers

o fi:R" 5 R™

e pytorch implementation: torch.nn.Linear

[~ ]
fi(d) = Xja+

<

/

Multi-layer perceptron (MLP): Stack several (> 2)
llinear layers, interleaved with activation functions.

Figure: Linear Layer, from [4]
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Deep Learning Building Blocks: Activation functions

e Non-linear functions that are applied element-wise

. . .. sigmoid

and give the neural network its expressivity 10

e MLP without nonlinearity is just a factored linear 0.8
layer 0.6
ftotal(a) = Xiotal@ + Hiotal = X2X1a + Xop1 + p2 0.4

. . . . o 1

e Historically sigmoid o(z) = o7 Was 0.2
0.0

common,but due to optimization issues, nowadays - - - - - - - - .
the rectified linear unit (RELU) relu

o(z) = relu(z) = max(z,0) is the most common 0

o fiotal(a) = Xoo(X1a + p1) + p2 is the minimal
"deep" neural network, the "deep" refers to the 10
nonlinearity "hiding" the inner projection

e torch.nn.ReLu and torch.nn.Sigmoid

respectively -20 15 -10 -5 0 5 10 15 20

e Question: How can we implement an MLP class?
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Deep Learning Building Blocks: Loss functions

Classification Regression
— V;ude\ 2004 — :’Iude\ . .
L 1 o Pationt
o Express the task that your model is intended to b [ —
perform on the data 0l° _| 100+
o For regression, a sensible default is the mean P .
£ o5 3
square error M SE(a,b) = % Z (a; — b;)? © £
o] #|-100 4
e For classification, a sensible default is cross-entropy .
N .
H(a,b) = — Zi:l a; logb; with a,b € [0, 1] -5 —2009
e torch.nn.MSELoss and -0 -5 0 5 10 -2 0 2
Gene 1 Gene 1

torch.nn.CrossEntropyLoss respectively
Figure: From [7]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 24



Deep Learning Building Blocks: Convolutional Layers

e apply an MLP across spatial locations of an image Convolution layer
to learn a filter

o fy i ROXHXW _y gmxH—k+1xW—k+1 Input
n 1 4|1 |o |2 |2]1]38/[3]1
> X1 *ai +
° fila)= w
¢
i=1 Xl,0,i % @i T+ Ho 1|2 |0 |1

e x x a denotes the cross correlation operator, i.e. a
sliding window inner product:

(x*a); = ijl Zitj—1a;. The window size k is

also called kernel size Output
e reduces spatial dimensions, effectively subsampling 9 0 1 3 | 5| 3 6

the input, other parameters include stride and

dilation (can find explanations online) W-w+1

e PyTorch implementation: torch.nn.ConvNd for
N € {1, 2,3} dimensional convolution Figure: Convolution operation, from [6]
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Deep Learning Building Blocks: Attention Layers

o f; : RTm 5 RT™ explicitly maps between sets
o f;(a) = Attention(a)X,a

e where the Attention(mba) is a weight matrix defined rowise

as Attention(a), = softmax ((anaTXg)r)

e originally conceived to help RNNs with long range
dependencies, requires explicit order encoding

e currently dominates both RNNs and CNNs for sequence and

vision tasks

e computationally and memory heavy in the original formO(T?)

but recent work improved this to =~ O(T).
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softmax( FFF\/:T H:l ) H}

i :

Figure: Attention Layer, from [3]
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Advanced material

Optional reading material for additional building blocks and the complexity of backpropagation.
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Deep Learning Building Blocks: Recurrent Layers

e introduces hidden state hy € RH into the training
process, generally trained through unrolling the
computation graph across time steps T'

o fi :R" x RH - R™ x R¥ | but when training
implicitly RT"» — RT>™ x RT-H since we unroll
through time

o fi(at), ht = g(ar—1,ht—1)

e hg is some initial value,often the zero vector

e g() is usually the GRU or LSTM unit which uses Figure: Recurrent Layer, from [2]

an MLP to predict updates to the hidden state as
well as the output
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Deep Learning Building Blocks: Transposed-Convolutional Layers

Transposed convolution layer

Input

e apply an MLP across spatial locations of an image 5 | 3 )
to learn a filter )
w

fl :RanxW — RmxH*Fk*lXW*Fk*l
Yo Xiixai 4+
o fila)= :

n
Zi:1 Xi,0,i * @i + o
e x x a denotes the transposed cross correlation 36 | -3
K
operator: (z*a); =y

j=1 Tt =L o 0o
e increases spatial dimensions, effectively *
oversampling the input, other parameters include a1 21
stride and dilation (can find explanations online) -
e PyTorch implementation: ’
torch.nn.ConvTransposeNd for N € {1, 2,3} ‘ 2 I T ‘ -2 I ! ‘
dimensional transposed convolution Wiw_1

Figure: Transposed convolution operation, from [6]
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Deep Learning Building Blocks: Graphical Layers

e generalizes attention to sparse,non-euclidean
geometry and variable cardinality sets of inputs

o fi:E;_1,V_1,u_1 — E;, Vi, ul where the E;,V;
are the sets of edge and node attribute tensors

respectively and u is a graph level attribute tensor
(from [4])

=1
-
3

{
:\

<
yavd

—_ V’
e updates to e, v, u tensors follow the template
z = Agg(Proj(Neigh(z))) i.e. we aggregate the
projected elements of the neighourhood set of an E— —-E
element z.

. Edge block Node block Global block
e Examples for Agg are sum,mean,max, Proj is

usually a neural network and the Neigh set are the Figure: Graphical Layer, from [4]
nodes connected by an edge, to a node by various

edges or all elements in the graph respectively for

e,v,u.
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Using networks for multi-class classification

Definition (Score-based classifier)

For a network h : R* — R¢ define the score-based
classifier i, : R4 — {1,...,c} as

ip(a) = argmax [h(a)];
ie{l,...,c}

One output per class, choose the class corresponding to
the maximum output. Example:

0.1
—-0.8
1.4
1.1

- if(a) =3

f(x0) =

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Definition (Cross-entropy loss)
Let a € R? be a sample with label b € {1,...,c}

ey
L@@w%—lg<z;ﬁWW@m>

e; € R¢ denotes the i-th canonical vector.

Most common loss for classification via ERM with
neural networks. Example:

Ol ] Lira),2) =295
—-0.8
h(a) = 14 4 ‘
11 L(f(a),3) =0.75
Slide 7/ 8 EPFL



Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1.Forl=1,...,k
> u) = xWgal-1) 4 /O

> a®) = o(u®)

Backward pass scheme

1.Forl =k,.
oL  _ (1)
groke aam ©o'(u)
oL _ (I—1\T
> % = saar (@)
» OL _ 0L
o) T au®)
OL  _ (v (I\T _OL
> aa(lfl) - (X ) Bu(l)
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Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1.Forl=1,...,k
> u) = XWal=1 4 ;0 = O(m?2)
> o =o(u®) = O(m)

Forward pass is O(km?)

Backward pass scheme

1.Forl =k,.
oL __ / l
¥ B = aam © o' (ulh)
OL I—1)\T
> 5% = e (@)
» OL _ 0L
au®) T au®)
> 8L _ (v (T _OL
Fa0-m = (XY 5o
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Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1.Forli=1,...,k

b = XOgl-D 4 4O S O(m?)
> o =o(u®) = O(m)

Forward pass is O(km?)

Backward pass scheme

1.Forl =k,.
> 2 = aam @o'(u“)) = O(m)
> 3;9(L(l) = du(l) (@=NT = O(m?)
» OL _ _OL :>0()

ap® u)

> 5o = (XO)T 2L = 0(m?)

Backward pass is O(km?)
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