Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

A lightning tour through the optimization of deep neural networks

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

. " STIFTUNG osnscm
lions@epf| CAbIE N T T

License Information for Mathematics of Data Slides

\4

This work is released under a Creative Commons License with the following terms:
Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

» Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor's permission.
» Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

v

» Full Text of the License

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 24

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

> This recitation

Brief intro into tensors
Backpropagation

Automatic Differentiation & PyTorch
Deep Learning Building Blocks

A

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 24

Outline

Recall: Definition and representation of deep neural networks

UHELEBIN Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 24 EPFL

Tensors

e Tensors provide a natural and concise mathematical represention of data (a) and parameters (X;, y; where
l indicates the layers).
e Tensors are multidimensional arrays and are a generalization of:
1. scalars - tensors with no indices; i.e., zeroth-rank tensor.
2. vectors - tensors with exactly one index; i.e., first-rank tensor.
3. matrices - tensors with exactly two indices; i.e., second-rank tensor.
4

. etc.

] | . '
Rank O Rank 1 Rank 2 Rank 3 Rank 4
Tensor Tensor Tensor Tensor Tensor
scalar vector matrix

Figure: From [1]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 5/ 24 EPFL

Outline

Training deep networks

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 24

Recall: Basic Neural Network

1-hidden-layer neural network with m neurons (fully-connected architecture):
o Parameters: X; € Rm*X? X, ¢ REX™ (weights), 1 € R™, uo € R¢ (biases)
e Activation function: o : R =+ R

activation weight input bias bias

hx(a) := X o X1 al4(p| |+ pel, x = [X1, X2, p1, pol

hidden layer = learned features

recursively repeat activation + affine transformation to obtain “deeper” networks.

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 24

EPFL

Minimization of the loss function

In order to use first order methods, we need to derive the gradient

Vo Rn() : sz h(as;), b;) sz x) (1)

where = [X1, p1, ..., X, tx] are the weights and biases of the network. For convenience we sometimes also
write hg(a) instead of h(a;x).

ICLHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 24

Minimization of the loss function

In order to use first order methods, we need to derive the gradient

n n
1 1
VaRn(@) = ~) Val(h(ai),b) =~ Y Vali(w) (1)
i=1 i=1
where = [X1, p1, ..., X, tx] are the weights and biases of the network. For convenience we sometimes also

write hg(a) instead of h(a;x).

Example (Naive computation of the gradient)
Let h(a; X1, X2) = X 0(X1a), and L;(X1, X2) = (b; — XT 0(X1a;))? be the loss on a sample, then

L
gX; = —Q(bi — X’QTO'(Xlai))O'(Xlai) (2)
aL;
0X1

where ® denotes element-wise product of vectors.

= —Z(bi = XQTO'(Xlai))XQ © J’(Xlai)aZT (3)

Many similar terms in both derivatives = Inefficient to compute them independently

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 24

Forward pass

Forward pass scheme

Input: a© =¢a, XO and u(” forl=1,...,k.

1.Forl=1,...,k
Compute u®) = XD qgl=-1) 4 /O
Compute aV) = g(u)

XO| | o

a(—1)

X + u(l) — g

)

Figure: Computation of u® and a® starting from al—v

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Forward pass

Forward pass scheme

Input: a© =¢a, XO and u(” forl=1,...,k.

1.Forl=1,...,k
Compute u®) = XD qgl=-1) 4 /O
Compute aV) = g(u)

XO| | o

a(—1)

X + u H o

)

Figure: Computation of u® and a® starting from al—v

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Forward pass

Forward pass scheme

Input: a© =¢a, XO and u(” forl=1,...,k.

1.Forl=1,...,k
Compute u®) = XD qgl=-1) 4 /O
Compute a) = o(u®)

XO| | o

a(—1)

X —+ u(l) — O

)

Figure: Computation of u® and a® starting from al—v

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Forward pass

Forward pass scheme

Input: a© =¢a, XO and u(” forl=1,...,k.

1.Forl=1,...,k
Compute u®) = XD qgl=-1) 4 /O
Compute a) = o(u®)

XO| | o

a(—1)

X —+ u(l) — O

a)

Figure: Computation of u® and a® starting from al—v

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 24

Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

da®
oL OL

. OL
e Goal: obtain XD’ 8u<l) and 5a0=1"

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

da)
oL OL

. 0L
e Goal: obtain XD’ 8u<l) and 5a0=1"

u® = XDgl=1) 4,0 = 8§<L dgL' (chain rule)
a0 9u®

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

da)
oL OL

. 0L
e Goal: obtain XD’ 8u<l) and 5a0=1"

u® = xWal=1) 4,0 o 8§<L B dgL'
ou® ou®
> L AL
aV = o(u®) = oo (u®)

ou® — 9a®

Where © is the Hadamard product (element-wise product).

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

(chain rule)

(chain rule)

Backward pass

Suppose is given, as well as all pre-activation and hidden layer values.

daV)
OL
e Goal: obtain oL , oL and 9 .
oxXW " ol dall=1)
1. P
ale - f(HZU (all=t)T
u® = XWqalt=1 1 0 = { XL) out (chain rule)
a0 9u®
= oL oL
a® =o(u®) = ou® = 5a® © o' (u®) (chain rule)
Where © is the Hadamard product (element-wise product).
3. Finally we have
_ oL oL ,
u® =xWal-1 4 ;O = ST = (XHT WG (chain rule)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 24

Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

oL _ OL_(q(~1))T OL_ _ 0L

Compute XD = 7ad

Compute a(T = (xXHT 6(1)

ICLHEEIN Mathematics of Data | Prof.

oL [_ac oL
|aau—1>}_ X | 5u® }_ © _{ 9aD |

oL
oph

L H

oL oL i _OL _
Figure: Computation of (l)' ax@ and 7a(-D starting from PO)

Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

oL _ OL_(q(~1))T OL_ _ 0L

Compute XD = 7ad

Compute a(T = (xXHT 6(1)

ICLHEEIN Mathematics of Data | Prof.

oL [_ac oL
|aau—1>}_ X | 5u® }_ © _{ 9aD |

oL
oph

L H

oL oL i _OL _
Figure: Computation of (l)' ax@ and 7a(-D starting from PO)

Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

oL _ OL_(q(~1))T OL_ _ 0L

Compute XD = 7ad

Compute a(T = (xXHT 6(1)

ICLHEEIN Mathematics of Data | Prof.

oL [_ac oL
|aau—1>}_ X | 5u® }_ © _{ 9aD |

oL
o

L H

oL oL i _OL _
Figure: Computation of (l)' ax@ and 7a(-D starting from PO)

Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24

Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

AL _ 9L ((I—1)\T _O0L _ _OL
Compute 527y = 5, @ (@)%, 5.0 = 3.0
oL

— 1 oL
Compute el = (x())Tm

ICLHEEIN Mathematics of Data | Prof.

oL
|aau—1)}_ X
oL
o
oL -1
% X a0 |
i . i oL AL oL i _OL
Figure: Computation of ou (0 7% and 7a(-D starting from PO)
Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24 EPFL

Backward pass

Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values OL/da(F)

T.Fori=F,. . . .1
Compute % = % oo (u®)

AL _ 9L ((I—1)\T _O0L _ _OL
Compute 527y = 5, @ (@)%, 5.0 = 3.0
oL

— 1 oL
Compute el = (x())Tm

ICLHEEIN Mathematics of Data | Prof.

oL
|aa<‘-1>}_ X
oL
o
oL -1
5o5n }— X —{a<)|
i . i oL AL oL i _OL
Figure: Computation of ou (0 7% and 7a(-D starting from PO)
Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 24 EPFL

Backpropagation

e Recursive computation of the derivative Vo L;(x)

1. Forward pass: Compute all pre-activation and hidden layer values

2. Backward pass: Compute the derivative of L; with respect to the weights and biases, from last to first
layer.

Complexity of computing VL;(x)

Method ‘ Complexity
Naive derivative | O(k?m?)
Backpropagation O(km?)

Where m is number of neurons per layer and k is the number of layers.

Remarks: o Complexity is reduced by reusing computations at each step (memoization).

o The backpropagation has the same complexity as the forward pass (but different constants).

MGGl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 24 EPFL

Outline

Computational infrastructure

UHELEBIN Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 24 EPFL

Automatic Differentiation

e Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 24

Automatic Differentiation

e Automatic differentiation is a computational technique to compute the exact gradient of a function by
keeping track of its inputs and intermediate values

e This removes the tedious manual derivation of the gradient and if implemented in a certain way, also
reduces the backward pass complexity from O(km?2) to O(km)

e For a thorough survey and explanation, see [5]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 24

Automatic Differentiation (AD)

Table: Reverse mode AD example, with y = f(x1,z2) = In(z1) + z122 — sin(z2) evaluated at (z1,xz2) = (2,5). After the
forward evaluation of the primals on the left, the adjoint operations on the right are evaluated in reverse. Note that both ;Tyl

Y

and 5?72 are computed in the same reverse pass, starting from the adjoint v5 = § =

% = 1. From [5]

Forward Primal Trace
=21

Reverse Adjoint (Derivative) Trace

= =2 T1 = =5.5
=v_4 = 5.
vy = =5 /N & =g =1.716
vy =Ilnv_y =1n2 _ _ s _ _
vy =w_1 X vg =2x5 U71:U71+v131,711 =0_1+01/v_1 =55
vy = sinwvg =sinb = — 7 —_Ovg — 7 = —
vy =v1 + vg = 0.693 + 10 vo vo ng'z Dvo o + U2 X v_1 1.716
vy = 4 — v3 = 10.693 + 0.959 B_1 = o 6;’21 = @y X vg =5
y =wus = 11.652 By = o3 g,’;g = ©3 X cosvg = —0.284
_ _ v _
vy = 1)4% =104 X1 =
v = 1743% =4 x 1 =1
. _ dus .
U3 = U552 =95 X (=1) =1
= 552% =75 x 1 =1
Ty =7 =1
lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 24

Autograd and Differentiable Programming

e Automatic differentiation + automatic construction of a computational graph from code
e Pedagogic version of autograd (with very readable code) available on github
e Industrial strength implementations used by Facebook and Google also available

e For cool applications on the extreme end see differentiable graphic rendering and differentiable convex
optimization solvers.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 24

https://github.com/mattjj/autodidact
https://pytorch.org/docs/stable/autograd.html
https://github.com/google/jax
https://github.com/BachiLi/redner
https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cvxpylayers

Outline

Deep Learning Toolkit

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 24

Pytorch

e Popular machine learning framework developed by Facebook

e Key innovations: APIs (module structure, dataset) and dynamic graphs (helps debugging, later adopted by
tensorflow as well)

e Other frameworks worth mentioning: tensorflow (Google), mxnet (Microsoft) and Flux.jl (for julia)
e very good manual and tutorial at https://pytorch.org/docs/stable/index.html

e Two introductory notebooks are provided in this supplementary

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 24

https://pytorch.org/docs/stable/index.html

Deep Learning Building Blocks: Linear Layers

e Question: How shall we modify the previous 'Bias’
class to implement a linear layer?

o fi :R* - R™ ?

° f = X;a +
1(a) 1a+ 2
/

Figure: Linear Layer, from [4]

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 24 EPFL

Deep Learning Building Blocks: Linear Layers

o fi:R" 5 R™

e pytorch implementation: torch.nn.Linear

[~]
fi(d) = Xja+

<

/

Multi-layer perceptron (MLP): Stack several (> 2)
llinear layers, interleaved with activation functions.

Figure: Linear Layer, from [4]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 24

Deep Learning Building Blocks: Activation functions

e Non-linear functions that are applied element-wise

. . .. sigmoid

and give the neural network its expressivity 10

e MLP without nonlinearity is just a factored linear 0.8
layer 0.6
ftotal(a) = Xiotal@ + Hiotal = X2X1a + Xop1 + p2 0.4

. . . . o 1

e Historically sigmoid o(z) = o7 Was 0.2
0.0

common,but due to optimization issues, nowadays - - - - - - - - .
the rectified linear unit (RELU) relu

o(z) = relu(z) = max(z,0) is the most common 0

o fiotal(a) = Xoo(X1a + p1) + p2 is the minimal
"deep" neural network, the "deep" refers to the 10
nonlinearity "hiding" the inner projection

e torch.nn.ReLu and torch.nn.Sigmoid

respectively -20 15 -10 -5 0 5 10 15 20

e Question: How can we implement an MLP class?

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 24

Deep Learning Building Blocks: Loss functions

Classification Regression
— V;ude\ 2004 — :’Iude\ . .
L 1 o Pationt
o Express the task that your model is intended to b [—
perform on the data 0l° _| 100+
o For regression, a sensible default is the mean P .
£ o5 3
square error M SE(a,b) = % Z (a; — b;)? © £
o] #|-100 4
e For classification, a sensible default is cross-entropy .
N .
H(a,b) = — Zi:l a; logb; with a,b € [0, 1] -5 —2009
e torch.nn.MSELoss and -0 -5 0 5 10 -2 0 2
Gene 1 Gene 1

torch.nn.CrossEntropyLoss respectively
Figure: From [7]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 24

Deep Learning Building Blocks: Convolutional Layers

e apply an MLP across spatial locations of an image Convolution layer
to learn a filter

o fy i ROXHXW _y gmxH—k+1xW—k+1 Input
n 1 4|1 |o |2 |2]1]38/[3]1
> X1 *ai +
° fila)= w
¢
i=1 Xl,0,i % @i T+ Ho 1|2 |0 |1

e x x a denotes the cross correlation operator, i.e. a
sliding window inner product:

(x*a); = ijl Zitj—1a;. The window size k is

also called kernel size Output
e reduces spatial dimensions, effectively subsampling 9 0 1 3 | 5| 3 6

the input, other parameters include stride and

dilation (can find explanations online) W-w+1

e PyTorch implementation: torch.nn.ConvNd for
N € {1, 2,3} dimensional convolution Figure: Convolution operation, from [6]

MGGl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 24 EPFL

Deep Learning Building Blocks: Attention Layers

o f; : RTm 5 RT™ explicitly maps between sets
o f;(a) = Attention(a)X,a

e where the Attention(mba) is a weight matrix defined rowise

as Attention(a), = softmax ((anaTXg)r)

e originally conceived to help RNNs with long range
dependencies, requires explicit order encoding

e currently dominates both RNNs and CNNs for sequence and

vision tasks

e computationally and memory heavy in the original formO(T?)

but recent work improved this to =~ O(T).

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 24/ 24

Q T

softmax(FFF\/:T H:l) H}

i :

Figure: Attention Layer, from [3]

References |

[1] Tensors—Representation of Data In Neural Networks, Dec 2019.
[Online; accessed 22. Oct. 2020].
(Cited on page 5.)

[2

File:Recurrent neural network unfold.svg - Wikimedia Commons, Oct 2020.
[Online; accessed 15. Oct. 2020].
(Cited on page 40.)

Jay Alammar.

The lllustrated Transformer, Oct 2020.
[Online; accessed 15. Oct. 2020].

(Cited on page 36.)

[3

[4

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre,
Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash,
Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol
Vinyals, Yujia Li, and Razvan Pascanu.

Relational inductive biases, deep learning, and graph networks, 2018.

(Cited on pages 31, 32, and 42.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 8 EPFL

References ||

tilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
5] Atilim G Baydin, Barak A. Pearl Al And ich Radul, and Jeffrey Mark Siskind
Automatic differentiation in machine learning: a survey, 2018.
(Cited on pages 25, 26, and 27.)

[6] Francois Fleuret.
7.1. Transposed convolutions, 2023.
(Cited on pages 35 and 41.)

[7

petercour.

Machine Learning Classification vs Regression.
DEV Community, Jul 2019.
(Cited on page 34.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 8 EPFL

Advanced material

Optional reading material for additional building blocks and the complexity of backpropagation.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 8

Deep Learning Building Blocks: Recurrent Layers

e introduces hidden state hy € RH into the training
process, generally trained through unrolling the
computation graph across time steps T'

o fi :R" x RH - R™ x R¥ | but when training
implicitly RT"» — RT>™ x RT-H since we unroll
through time

o fi(at), ht = g(ar—1,ht—1)

e hg is some initial value,often the zero vector

e g() is usually the GRU or LSTM unit which uses Figure: Recurrent Layer, from [2]

an MLP to predict updates to the hidden state as
well as the output

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 8

Deep Learning Building Blocks: Transposed-Convolutional Layers

Transposed convolution layer

Input

e apply an MLP across spatial locations of an image 5 | 3)
to learn a filter)
w

fl :RanxW — RmxH*Fk*lXW*Fk*l
Yo Xiixai 4+
o fila)= :

n
Zi:1 Xi,0,i * @i + o
e x x a denotes the transposed cross correlation 36 | -3
K
operator: (z*a); =y

j=1 Tt =L o 0o
e increases spatial dimensions, effectively *
oversampling the input, other parameters include a1 21
stride and dilation (can find explanations online) -
e PyTorch implementation: ’
torch.nn.ConvTransposeNd for N € {1, 2,3} ‘ 2 I T ‘ -2 I ! ‘
dimensional transposed convolution Wiw_1

Figure: Transposed convolution operation, from [6]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 8

Deep Learning Building Blocks: Graphical Layers

e generalizes attention to sparse,non-euclidean
geometry and variable cardinality sets of inputs

o fi:E;_1,V_1,u_1 — E;, Vi, ul where the E;,V;
are the sets of edge and node attribute tensors

respectively and u is a graph level attribute tensor
(from [4])

=1
-
3

{
:\

<
yavd

—_ V’
e updates to e, v, u tensors follow the template
z = Agg(Proj(Neigh(z))) i.e. we aggregate the
projected elements of the neighourhood set of an E— —-E
element z.

. Edge block Node block Global block
e Examples for Agg are sum,mean,max, Proj is

usually a neural network and the Neigh set are the Figure: Graphical Layer, from [4]
nodes connected by an edge, to a node by various

edges or all elements in the graph respectively for

e,v,u.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 8

Using networks for multi-class classification

Definition (Score-based classifier)

For a network h : R* — R¢ define the score-based
classifier i, : R4 — {1,...,c} as

ip(a) = argmax [h(a)];
ie{l,...,c}

One output per class, choose the class corresponding to
the maximum output. Example:

0.1
—-0.8
1.4
1.1

- if(a) =3

f(x0) =

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Definition (Cross-entropy loss)
Let a € R? be a sample with label b € {1,...,c}

ey
L@@w%—lg<z;ﬁWW@m>

e; € R¢ denotes the i-th canonical vector.

Most common loss for classification via ERM with
neural networks. Example:

Ol] Lira),2) =295
—-0.8
h(a) = 14 4 ‘
11 L(f(a),3) =0.75
Slide 7/ 8 EPFL

Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1.Forl=1,...,k
> u) = xWgal-1) 4 /O

> a®) = o(u®)

Backward pass scheme

1.Forl =k,.
oL _ (1)
groke aam ©o'(u)
oL _ (I—1\T
> % = saar (@)
» OL _ 0L
o) T au®)
OL _ (v (I\T _OL
> aa(lfl) - (X) Bu(l)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 8

Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1.Forl=1,...,k
> u) = XWal=1 4 ;0 = O(m?2)
> o =o(u®) = O(m)

Forward pass is O(km?)

Backward pass scheme

1.Forl =k,.
oL __ / l
¥ B = aam © o' (ulh)
OL I—1)\T
> 5% = e (@)
» OL _ 0L
au®) T au®)
> 8L _ (v (T _OL
Fa0-m = (XY 5o

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 8

Complexity of Backpropagation

The size of each layer (including input) is O(m), and the number of layers is O(k).

Forward pass scheme
1.Forli=1,...,k

b = XOgl-D 4 4O S O(m?)
> o =o(u®) = O(m)

Forward pass is O(km?)

Backward pass scheme

1.Forl =k,.
> 2 = aam @o'(u“)) = O(m)
> 3;9(L(l) = du(l) (@=NT = O(m?)
» OL _ _OL :>0()

ap® u)

> 5o = (XO)T 2L = 0(m?)

Backward pass is O(km?)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 8

	Recall: Definition and representation of deep neural networks
	Training deep networks
	Computational infrastructure
	Deep Learning Toolkit
	Appendix

