Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Supplementary Lecture: Learning on Graphs

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

▶ Share Alike

► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

► Full Text of the License

Motivation: graphs are everywhere

- o Real-world data often exhibits complex relational structure, naturally represented as graphs.
- Develop ML methods to capture these relationships.

Example

- o Social Networks: Nodes represent users, edges represent friendships or connections.
- o Biological Networks: Protein-protein interactions, drug-target interactions.
- o Molecules: Represented as graphs with atoms as nodes and chemical bonds as edges.
- Knowledge Graphs: Network of relationships between entities (e.g., people, objects, places).

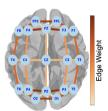


Figure: EEG electrodes as graph. Source: [1].

What are graphs?

Definition: Graph

An attributed **graph** is a tuple G = (V, E, X), where:

- $\circ V$ is a set of n vertices (nodes).
- $\circ E = \{(x_i, x_j) | x_i, x_j \in V\}$ is a set of edges (links) between them.
- $\circ~X \in \mathbb{R}^{n \times d}$ is a data matrix of **node features**, i.e., additional information associated with each node, where d is the feature dimension.

The adjacency matrix $A \in \mathbb{R}^{n \times n}$ represents the connections in the graph:

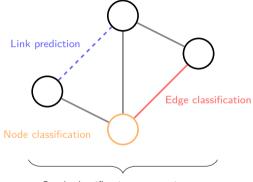
$$A_{ij} = \begin{cases} w_{ij} & \text{if } (x_i, x_j) \in E, \\ 0 & \text{otherwise,} \end{cases}$$

where w_{ij} is the weight of the edge (x_i, x_j) .

Example

- o In a social network, node features could be user profiles (age, location, interests).
- o In a molecule, node features could be atom types and chemical properties.

Tasks on graphs: overview



Graph classification, generation, ...

Figure: Overview of ML tasks on graphs.

Tasks on graphs: node-level tasks

o Node Classification: Predicting a categorical label for each node.

Example

- o Community Detection: Identifying groups of densely connected nodes in a social network.
- o Role Discovery: Determining the function of proteins in a protein-protein interaction network.

o Node Regression: Predicting a continuous value for each node.

Example

 Traffic Forecasting: Predict the traffic flow (e.g., vehicles per hour) at different points in a city's road network, where each intersection is represented as a node in a graph and road segments as edges.

Tasks on graphs: edge-level tasks

o Link Prediction: Predicting the existence of an edge between two nodes.

Example

- o Recommender Systems: Suggesting items a user might like based on past interactions.
- o Protein-Protein Interaction: Predict potential interactions between proteins in a biological network.

Tasks on graphs: graph-level tasks

o **Graph Classification:** Assigning a categorical label to an entire graph.

Example

- o Molecule Properties: Predicting the toxicity or solubility of a molecule based on its structure.
- o Scene Understanding: Classifying an image based on the objects and their relationships.
- o Graph Generation: Creating new graphs with desired properties.

Example

o **Drug Design:** Generating novel molecules with specific pharmacological properties.

Challenges of learning on graphs & graph representation learning

- o Arbitrary size and topology: Graphs have varying numbers of nodes and edges
 - be difficult to apply traditional deep learning architectures designed for fixed-sized data like images [2]

Permutation invariance

A function $h: \mathbb{R}^{|V| \times |V|} \times \mathbb{R}^{|V| \times m} \to \mathbb{R}^d$ mapping an attributed graph G to a d-dimensional embedding is permutation invariant if: $h(A,X) = h(PAP^T,PX)$ for any permutation matrix $P \in \mathbb{R}^{|V| \times |V|}$.

Graph representation learning

Core idea: Learn a mapping $f:V\to\mathbb{R}^d$ that embeds nodes $v\in V$ into a low-dimensional vector space \mathbb{R}^d , such that the embeddings capture the graph's structure and node features.

- Unlike sequences, there is often no natural order for nodes in a graph.
- o Graph models must be permutation invariant (i.e., the same output regardless of node ordering).
- o Graph representation learning allows us to apply traditional machine learning algorithms,
 - ▶ classification, regression, clustering, ... to graph data.
- o These learned embeddings are called node embeddings.

Random walk embeddings: DeepWalk

- o Core Idea: Learn node representations by capturing how nodes co-occur in random walks [9].
- Steps:
 - 1. Generate random walks starting from each node in the graph.
 - 2. Treat the walks as sentences and nodes as words.
 - 3. Use the Skip-gram model [8] to learn node embeddings.
- o Intuition: Nodes that frequently co-occur in random walks should have similar embeddings.

DeepWalk: skip-gram model

Skip-gram objective [8]

Maximize the probability of observing context nodes given a center node in the random walk:

$$\max_{\phi} \frac{1}{n} \sum_{u \in V} \sum_{v \in N_R(u)} \log \mathsf{p}(v|u;\phi),$$

where ϕ is the embedding map and $N_R(u)$ is the multiset of nodes visited in random walks starting from node u. $\mathsf{p}(v|u;\phi) \text{ is usually efficiently parametrized with softmax as } \mathsf{p}(u\mid v;\phi) = \frac{\exp(\phi(u)^\top\phi(v))}{\sum_{v\in V} \exp(\phi(w)^\top\phi(v))}.$

Example

Consider a random walk: [A, B, C, D, E].

- o With a context window size of 2, for the center node C, the context nodes are B, D.
- \circ The skip-gram model aims to maximize the probabilities $p(B|C;\phi)$ and $p(D|C;\phi)$.

node2vec: exploring local and global structure

- o node2vec [4] is an unsupervised learning method to generate vector embeddings of nodes in a graph.
- o It combines properties of both breadth-first (BFS) and depth-first (DFS) graph search strategies.
- o Goal: Learn to map nodes to a continuous vector space where nodes with similar neighborhoods are close.
- o Random walk controlled by two parameters:
 - **p** (return parameter): Controls the likelihood of returning to the previous node.
 - ▶ q (in-out parameter): Controls the likelihood of exploring inward vs. outward nodes.

node2vec: biased random walk

o node2vec generates biased random walks to explore the graph structure.

Transition probability

Let c_i be the i-th node in the random walk, the transition probability from node v to x is

$$p(c_i = x | c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

where π_{vx} is the unnormalized transition probability and Z is the normalization constant.

Biased random walk

Given a random walk that just traversed edge (t,v) and is currently at node v, the unnormalized transition probability to node x is:

$$\pi_{vx} = \begin{cases} \frac{1}{p}, & \text{if } d_{tx} = 0 \text{ (return to previous node)} \\ 1, & \text{if } d_{tx} = 1 \text{ (stay at the same distance)} \\ \frac{1}{q}, & \text{if } d_{tx} = 2 \text{ (move further away)} \end{cases}$$

where d_{tx} is the shortest path distance between nodes t and x.

node2vec: optimization objective

- o Skip-gram model is used to optimize the node embeddings.
- o Goal: Maximize the log-probability of observing context nodes.

Objective function

Given a source node u, the node2vec objective maximizes the log-probability of observing its network neighborhood $N_S(u)$ with sampling strategy S:

$$\max_{f} \sum_{u \in V} \log p(N_S(u)|\phi(u)).$$

- o Assume conditional independence: $\mathsf{p}(N_S(u)|\phi(u)) = \prod_{n_i \in N_S(u)} \mathsf{p}(n_i|\phi(u)).$
- $\quad \text{o Model probability using softmax: } \mathsf{p}(n_i|\phi(u)) = \frac{\exp(\phi(n_i)^\top \phi(u))}{\sum_{u \in V} \exp(\phi(v)^\top \phi(u))}.$

Beyond shallow embeddings: the need for GNNs

- o Recap limitations of shallow methods:
 - ► Transductivity: Cannot generalize to unseen nodes/graphs
 - ▶ Structural similarity: Struggles to capture higher-order patterns
 - ▶ Node features: Unable to leverage rich attribute information

Example

In a molecule classification task, the chemical properties are often determined by substructures involving multiple atoms. Shallow embeddings may fail to represent these complex substructures effectively.

- \circ Shallow encoders are limited by the expressiveness of the adjacency matrix A as a similarity measure \to can't easily capture complex, multi-hop relationships.
- o Motivatess Graph Neural Networks (GNNs) as a solution.

Overview of a GNN layer

Aggregating information

Core concept: Aggregate information from neighbors to update node representations [2].

- o Two-step process:
 - 1. Message computation: Transforms neighbor information into messages.
 - 2. Message aggregation: Combines messages from neighbors.

Non-linearity (activation function) is applied for expressiveness to obtain embedding $\boldsymbol{h}_v^{(l)}$.

Example

In a citation network, a paper's embedding could be updated based on both its own content and the aggregated information from papers that cite it.

Overview of a GNN layer (cont.)

Message passing formulation

$$m_v^{(l)} = \mathsf{AGG}^{(l)}\left(\left\{m_u^{(l)}|u\in\mathcal{N}(v)\right\}\right). \tag{1}$$

- o $m_u^{(l)}$: Message from neighbor u to node v at layer l.
- o $AGG^{(l)}(\cdot)$: Aggregation function at layer l (e.g., sum, mean, max).
- $\circ \mathcal{N}(v)$: Set of neighbors of node v.

Remarks:

 \circ The node's own information at the previous layer is often also included in the aggregation by $h_v^{(l)} = \mathsf{COMBINE}^{(l)}\left(h_v^{(l-1)}, m_v^{(l)}\right)$.

Classical GNN layers

Graph Convolutional Network (GCN) [7]

- o Aggregates neighbor information using MEAN.
- o Computationally efficient due to its straightforward formulation.
- o Can be expressed in matrix form, enabling efficient implementation.

$$h_v^{(l)} = \sigma \left(W^{(l)} \sum_{u \in \mathcal{N}(v) \cup \{v\}} \frac{h_u^{(l-1)}}{|\mathcal{N}(v)| + 1} \right),$$

where:

- o $h_v^{(l)}$: Node embedding of node v at layer l.
- o $\mathcal{N}(v)$: Set of neighbors of node v.
- $\circ \ W^{(l)}$: Learnable weight matrix at layer l.
- o $\sigma(\cdot)$: Activation function (e.g., ReLU).

Classical GNN layers (cont.)

GraphSAGE [5]

- o Employs a two-stage aggregation process:
 - 1. Aggregate information from the node's neighbors.
 - 2. Concatenate the result from step 1 with the node's previous embedding.

Message passing in GraphSAGE:

$$h_{\mathcal{N}(v)}^{(l)} = \mathsf{AGGREGATE}_k \left(\{ h_u^{(l-1)} : u \in \mathcal{N}(v) \} \right)$$

$$h_v^{(l)} = \sigma\left(W^{(l)} \cdot \mathsf{CONCAT}(h_v^{(l-1)}, h_{\mathcal{N}(v)}^{(l)})\right)$$

- o Offers flexibility through different aggregation options:
 - ► Mean aggregation (similar to GCN).
 - ▶ Max-pooling aggregation: Selects the maximum value across feature dimensions.
 - ▶ LSTM aggregation: Applies LSTMs to a random permutation of the node's neighbors.

Stacking GNN layers

- o Building a multi-layer GNN allows to capture increasingly complex relationships within the graph.
- o Each layer expands the receptive field, incorporating information from nodes further away.

Multi-Layer GNN structure

- o Input: Raw node features $X \in \mathbb{R}^{n \times d}$
- \circ Hidden Layers: Apply L GNN layers sequentially, where each layer k produces embeddings $H^{(k)} \in \mathbb{R}^{n \times d'}$.
- Output: Final node embeddings $Z = H^{(L)} \in \mathbb{R}^{n \times d'}$.

Example

Let $\hat{A}=D^{-1/2}AD^{-1/2}$ be the normalized adjacency matrix. A 2-layer GCN can be expressed as:

$$H^{(1)} = \sigma(\hat{A}XW^{(0)})$$
$$Z = H^{(2)} = \sigma(\hat{A}H^{(1)}W^{(1)})$$

- **Remarks:** \circ The receptive field of a node at layer k is the set of nodes influencinc its embedding at that layer.
 - \circ For a standard GNN, the receptive field corresponds to the k-hop neighborhood.

The over-smoothing problem

- o As we increase the number of GNN layers, the receptive fields of different nodes start to overlap.
- o This leads to nodes aggregating similar information, causing their embeddings to converge.
- o This phenomenon is known as over-smoothing.

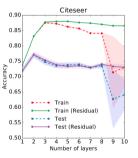


Figure: Illustration of over-smoothing in a GCN. Source: [7].

Remarks:

 \circ Key Takeaway: Carefully choose the number of GNN layers! Too few layers may limit expressiveness, but too many layers can lead to over-smoothing. Usually L=2.

Hierarchical pooling

Motivation

Graph-level tasks (e.g., predicting molecule properties or classifying social network structures) often require capturing hierarchical information present in the graph. Traditional GNNs with max/average pooling struggle to represent this hierarchy effectively.

DiffPool: differentiable graph pooling [13]

DiffPool learns a differentiable clustering of nodes at each layer, enabling the GNN to operate on progressively coarsened graph representations.

Core idea:

- Standard GNN modules extract node embeddings at each layer.
- o A separate GNN learns a soft cluster assignment matrix $S^{(k)} \in \mathbb{R}^{n_k \times n_{k+1}}$ for each layer k.

DiffPool algorithm [13]

Learning cluster assignments

Two GNN modules are used.

- \circ Embedding GNN: $Z^{(k)} = \mathsf{GNN}_k^{\mathsf{embed}}(A^{(k)}, X^{(k)})$ This GNN focuses on extracting informative node embeddings.
- \circ Pooling GNN (followed by row-wise softmax): $S^{(k)} = \mathsf{SOFTMAX}(\mathsf{GNN}_k^{\mathsf{pool}}(A^{(k)}, X^{(k)}))$ This GNN learns which nodes to group together in clusters.

Graph coarsening

The soft assignments are used to pool nodes into clusters.

- \circ Pooled Embeddings: $X^{(k+1)} = S^{(k)}{}^T Z^{(k)}$. The original embeddings are combined based on the cluster assignments.
- \circ Coarsened Adjacency Matrix: $A^{(k+1)} = S^{(k)}^T A^{(k)} S^{(k)}$. This reflects the connections between the newly formed clusters.

- o DiffPool produces soft cluster assignments that allow differential pooling operation.
- o This learnable coarsening allows for better generalization on graph-level tasks, capturing both local (node-level) and global (graph-level) features.

Representational power of GNNs: GIN [12]

Graph Isomorphism Network (GIN)

The GIN layer update rule is defined as:

$$h_v^{(k)} = \mathsf{MLP}^{(k)} \left((1 + \epsilon^{(k)}) h_v^{(k-1)} + \sum_{u \in N(v)} h_u^{(k-1)} \right), \tag{2}$$

where:

- o $h_v^{(k)}$ is the embedding of node v at layer k.
- o $MLP^{(k)}$ is a multi-layer perceptron at layer k.
- $\circ \ \epsilon^{(k)}$ is a learnable scalar at layer k.

The graph-level readout for GIN is:

$$h_G = \mathsf{CONCAT}\left(\sum_{v \in V} h_v^{(k)} \middle| k = 0, ..., K\right). \tag{3}$$

Representational power of GNNs: the Weisfeiler-Lehman test

Weisfeiler-Lehman (WL) test [6]

The WL test is an iterative algorithm for graph isomorphism testing. It assigns colors to nodes based on their neighborhood structure:

$$c^{(k+1)}(v) = \mathsf{HASH}\left(c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)}\right) \tag{4}$$

where:

- $\circ c^{(k)}(v)$ is the color of node v at iteration k,
- o HASH is an injective function that maps different inputs to distinct colors.

- \circ If two graphs have different color histograms after convergence, they are guaranteed to be non-isomorphic.
- The other direction does not hold: there are non-isomorphic graphs where the difference is not detected (e.g., some regular graphs).

Representational power of GNNs: GIN's expressiveness

Theorem (Xu et al., ICLR 2019, [12])

GIN is as powerful as the WL test in distinguishing graph structures. GIN with sufficient layers can map any two graphs that the WL test deems non-isomorphic to different embeddings.

- o GIN has the highest possible representational power among message-passing GNNs.
- \circ GIN achieves this by using an injective aggregation function (summation) and MLPs, which are universal approximators.

E(n) equivariant GNNs [10]

Permutation invariance vs equivariance

A function f(A,X) is permutation invariant if reordering the nodes in the graph does not change the output:

$$f(A', X') = f(A, X) \tag{5}$$

where $A' = PAP^T$ and X' = PX for any permutation matrix P. A function F(A,X) is permutation equivariant if reordering the nodes in the graph leads to a corresponding reordering of the output. Formally:

$$F(A', X') = PF(A, X) \tag{6}$$

where $A' = PAP^T$ and X' = PX for any permutation matrix P.

E(n) equivariant GNNs [10]

 $\mathsf{E}(\mathsf{n})$ GNNs are designed to be equivariant to rotations and translations in Euclidean space. For a graph with coordinates C and features H, an $\mathsf{E}(\mathsf{n})$ GNN $\mathsf{EGNN}(H,C,A)$ satisfies:

$$H, CQ + s = \mathsf{EGNN}(H, CQ + s, A) \tag{7}$$

for any rotation matrix Q and shift s.

E(n) equivariant GNNs (cont.)

Transformation in EGNNs

EGNNs updates both node features and spatial coordinates:

$$h_i^{l+1}, c_i^{l+1} = \mathsf{EGNN}(h_i^l, c_i^l, e_{ij})$$

where h_i^l is the node feature of node i at layer l, c_i^l is the coordinate embedding, e_{ij} is the edge feature between nodes i and j.

Message passing in EGNNs

Message between nodes i and j: $m_{ij} = \phi_e(h_i^l, h_i^l, \|c_i^l - c_j^l\|, e_{ij})$

Coordinate update: $c_i^{l+1} = c_i^l + \sum_{j \neq i} (c_i^l - c_j^l) \phi_c(m_{ij})$

Message aggregation: $m_i = \sum_{j \neq i} m_{ij}$

Node feature update: $h_i^{l+1} = \phi_h(h_i^l, m_i)$

Example

E(n) equivariant GNNs are particularly useful for 3D molecular data, where the spatial arrangement of atoms is critical for determining molecular properties.

Generalization of message passing

Let us consider a more general form of a message-passing neural network [3]:

Convolutional

- Traditional graph convolution.
- \circ Aggregate neighbor features with weights determined by edge attributes c_{ij} .

$$h_i = \phi\left(x_i, \bigoplus_{j \in \mathcal{N}_i} c_{ij} \psi(x_j)\right)$$

Attentional

- $\begin{tabular}{ll} \circ Use attention mechanism to \\ compute edge-specific weights \\ α_{ij}. \end{tabular}$
- Attention score depends on node features.

$$h_i = \phi\left(x_i, \bigoplus_{j \in \mathcal{N}_i} \alpha(x_i, x_j) \psi(x_j)\right)$$

Message passing

- General form of message passing.
- \circ Use learned message functions m_{ij} to aggregate information.

$$h_i = \phi\left(x_i, \bigoplus_{j \in \mathcal{N}_i} \psi(x_i, x_j)\right)$$

Graph attention networks (GAT) [11]

Adapting self-attention to graphs

- o GATs [11] apply self-attention to graph-structured data.
- \circ Node i's representation is updated by attending to its neighbors:

$$h_i^{(l)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij}^{(l)} W^{(l)} h_j^{(l-1)} \right).$$

o $\alpha_{ij}^{(l)}$ is the attention weight from node j to node i in layer l.

Attention mechanism

o Computed similarly to Transformers, but using node features:

$$\alpha_{ij}^{(l)} = \operatorname{softmax}_j \left(\operatorname{LeakyReLU} \left(a^T [W^{(l)} h_i^{(l-1)} || W^{(l)} h_j^{(l-1)}] \right) \right).$$

References |

- Arshia Afzal, Grigorios Chrysos, Volkan Cevher, and Mahsa Shoaran.
 REST: Efficient and accelerated EEG seizure analysis through residual state updates.
 In International Conference on Machine Learning, volume 235, pages 271–290, 2024.
 (Cited on page 3.)
- [2] Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda.
 A gentle introduction to deep learning for graphs.
 Neural Networks, 129:203–221, 2020.
 (Cited on pages 9 and 16.)

[3] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, 2021. (Cited on page 29.)

- [4] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
 - In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864, 2016.

(Cited on page 12.)

References II

- [5] Will Hamilton, Zhitao Ying, and Jure Leskovec.
 Inductive representation learning on large graphs.
 In Advances in neural information processing systems, volume 30, 2017.
 (Cited on page 19.)
- [6] Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its variants. In ICASSP, pages 8533–8537. IEEE, 2021. (Cited on page 25.)
- [7] Thomas N Kipf and Max Welling.
 Semi-supervised classification with graph convolutional networks.
 In International Conference on Learning Representations, 2022.
 (Cited on pages 18 and 21.)
- [8] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In *International Conference on Learning Representations*, 2013. (Cited on pages 10 and 11.)

EPFL

References III

[9] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.

Deepwalk: Online learning of social representations.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710, 2014.

(Cited on page 10.)

[10] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.

In International Conference on Machine Learning, pages 9323–9332. PMLR, 2021.

(Cited on page 27.)

[11] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.

In International Conference on Learning Representations, 2018. (Cited on page 30.)

[12] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.

How powerful are graph neural networks?

In International Conference on Learning Representations, 2019.

(Cited on pages 24 and 26.)

References IV

[13] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances in neural information processing systems, volume 31, 2018. (Cited on pages 22 and 23.)