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Outline

This lecture :
▶ The classical trade-off between model complexity and risk
▶ Generalization bounds via uniform convergence
▶ The generalization mystery in deep learning
▶ Implicit regularization of optimization algorithms
▶ Double descent curves: Generalization bounds via bias-variance decomposition
▶ Scaling laws
▶ ⋆Generalization bounds based on algorithmic stability
▶ ⋆Boosting
▶ ⋆...

Next lecture :
▶ Optimization in Deep Learning
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Understanding the trade-off between model complexity and expected risk

Models
Let [Xi : i = 1, . . .] be a nested sequence of parameter domain, i.e.,
Xi ⊆ Xi+1. For example, let Xi = neural networks with i neurons.

1. Rn(x⋆
i ) = minx∈Xi

Rn(x): ERM solution over Xi

2. R(x⋆
i ): True risk of the ERM solution over Xi

3. supx∈Xi
|R(x) − Rn(x)|: Worst-case Generalization error of Xi

Practical performance of the ERM estimator

R(x⋆
i ) ≤ min

x∈Xi

Rn(x) + sup
x∈Xi

|R(x) − Rn(x)| (1)

As we increase the index i → i + 1 of the parameter domain, i.e., we choose a larger (more complex) model
1. The minimum empirical risk decreases: minx∈Xi

Rn(x) ≥ minx∈Xi+1 Rn(x).
2. The generalization error increases: supx∈Xi

|R(x) − Rn(x)| ≤ supx∈Xi+1 |R(x) − Rn(x)|.

3. What happens with the true risk R(x⋆
i )?
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Peeling the onion

Models
Let d(·, ·) : H◦ × H◦ → R+ be a metric in an extended function space
H◦ that includes H; i.e., H ⊆ H◦. Let

1. h◦ ∈ H◦ be the true, expected risk minimizing model
2. h♮ ∈ H be the solution under the assumed function class H ⊆ H◦

3. h⋆ ∈ H be the estimator solution
4. ht ∈ H be the numerical approximation of the algorithm at time t

Practical performance

d(ht, h◦)︸       ︷︷       ︸
ε̄(t,n)

≤ d(ht, h⋆)︸       ︷︷       ︸
optimization error

+ d(h⋆, h♮)︸       ︷︷       ︸
statistical error

+ d(h♮, h◦)︸       ︷︷       ︸
model error

,

where ε̄(t, n) denotes the total error of the Learning Machine. We can try to
1. reduce the optimization error with computation
2. reduce the statistical error with more data samples, with better estimators, and with prior information
3. reduce the model error with flexible or universal representations
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The classical trade-off between model complexity and risk

Figure: Bias-variance trade-off [20].

Occam’s Razor: Simple is better than complex.
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The dangers of complex function classes: sévère (cevher) overfitting
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Figure: Training over a complex function class can lead to overfitting.
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The dangers of complex function classes: sévère (cevher) overfitting
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Figure: Training over a complex function class can lead to overfitting.

minx∈X Rn(x) ↗

supx∈X |R(x) − Rn(x)| ↘
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Figure: Training over a complex function class can lead to overfitting.

minx∈X Rn(x) ↘

supx∈X |R(x) − Rn(x)| ↗
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Estimation of parameters vs estimation of risk

Nomenclature
Rn(·) training error

R(·) test error
R(x♮) − R(x◦) modeling error
R(x⋆) − R(x♮) excess risk

supx∈X |R(x) − Rn(x)| generalization error
Rn(xt) − Rn(x⋆) optimization error

Recall the general setting
Let R(hx) = EL(hx(a), b) be the risk function and
Rn(hx) = 1

n

∑n

i=1 L(hx(ai), bi) be the empirical estimate.
Let X ⊆ X ◦ be parameter domains, where X is known. Define

1. x◦ ∈ arg minx∈X ◦ R(hx): true minimum risk model
2. x♮ ∈ arg minx∈X R(hx): assumed minimum risk model
3. x⋆ ∈ arg minx∈X Rn(hx): ERM solution
4. xt: numerical approximation of x⋆ at time t

X → X ◦ n ↑ p ↑
Training error ↘ ↗ ↘
Excess risk ↗ ↘ ↗
Generalization error ↗ ↘ ↗
Modeling error ↘ = ↭
Time ↗ ↗ ↗
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What theoretical challenges in Deep Learning will we study?

Models
Let X ⊆ X ◦ be parameter domains, where X is known. Define

1. x◦ ∈ arg minx∈X ◦ R(hx): true minimum risk model
2. x♮ ∈ arg minx∈X R(hx): assumed minimum risk model
3. x⋆ ∈ arg minx∈X Rn(hx): ERM solution
4. xt: numerical approximation of x⋆ at time t

Practical performance in Deep Learning

R(xt) − R(x◦)︸                 ︷︷                 ︸
ε̄(t,n)

≤ Rn(xt) − Rn(x⋆)︸                     ︷︷                     ︸
optimization error

+2 sup
x∈X

|R(x) − Rn(x)|︸                         ︷︷                         ︸
generalization error

+ R(x♮) − R(x◦)︸                 ︷︷                 ︸
model error

where ε̄(t, n) denotes the total error of the Learning Machine. In Deep Learning applications
1. Optimization error is almost zero, in spite of non-convexity. ⇒ lecture 10
2. Generalization error is usually small, but theory is lacking. ⇒ lecture 9 (this one)
3. Large architectures + inductive bias might lead to small model error.
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Generalization error bounds and Rademacher Complexity

Goal: Obtain generalization bounds for multi-layer, fully-connected neural networks

◦ We want to find high-probability upper bounds for the quantity

sup
x∈X

|R(x) − Rn(x)|

◦ Need a notion of complexity to derive generalization bounds for infinite classes of functions

Definition (Rademacher Complexity [10])
Let A = {a1, . . . , an} ⊆ Rp and let {vi : i = 1, . . . , n} be independent Rademacher random variables i.e.,
taking values uniformly in {−1, +1} (coin flip). Let H be a class of functions of the form h : Rp → R. The
Rademacher complexity of H with respect to A is defined as:

RA(H) B Ev sup
h∈H

1
n

n∑
i=1

vih(ai).

Remarks: ◦ RA(H) measures how well we fit random (±1) with the output of an element of H on the set A.
◦ The derivation of Rademacher Complexity for specific function classes are in the appendix.
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Fundamental theorem about the Rademacher Complexity

Theorem (See Theorem 3.3 and 5.8 in [37])
Suppose that the loss function has the form L(hx(a), b) = ϕ(b · hx(a)) for a 1-Lipschitz function ϕ : R→ R.

Let HX := {hx : x ∈ X } be a class of parametric functions hx : Rp → R. For any δ > 0, with probability at
least 1 − δ over the draw of an i.i.d. sample {(ai, bi)}n

i=1, letting A = (a1, . . . , an), the following holds:

sup
x∈X

|Rn(x) − R(x)| ≤ 2EARA(HX ) +

√
ln(2/δ)

2n
,

sup
x∈X

|Rn(x) − R(x)| ≤ 2RA(HX ) + 3

√
ln(4/δ)

2n
.

Assumption is true for common losses
▶ L(hx(a), b) = log(1 + exp(−b · hx(a))) ⇒ ϕ(z) := log(1 + exp(z)) (logistic loss)
▶ L(hx(a), b) = max(0, 1 − b · hx(a)) ⇒ ϕ(z) := max(0, 1 − z) (hinge loss)
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The complexity vs risk trade-off in practice (I)
“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
• There exist global mins with large #hidden units have test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [42].

Empirical error becomes zero for a wide enough network. What should happen for even wider networks?
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The complexity vs risk trade-off in practice (II)
“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
• There exist global mins with large #hidden units have test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [42].

Test error continues to go down even if we keep incresing the complexity of the model!
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How well do complexity measures correlate with generalization?

name definition correlation1

Frobenius distance to initialization [39]
∑d

i=1 ∥Xi − X0
i ∥2

F −0.263

Spectral complexity2 [8]
∏d

i=1 ∥Xi∥
(∑d

i=1
∥Xi∥3/2

2,1
∥Xi∥3/2

)2/3

−0.537

Parameter Frobenius norm
∑d

i=1 ∥Xi∥2
F 0.073

Fisher-Rao [33] (d+1)2

n

∑n

i=1 ⟨x, ∇xℓ(hx(ai), bi)⟩ 0.078
Path-norm [43]

∑
(i0,...,id)

∏d

j=1

(
Xij ,ij−1

)2
0.373

Table: Complexity measures compared in the empirical study [30], and their correlation with generalization

Complexity measures are still far from explaining generalization in Deep Learning!

A more recent evaluation of many complexity measures is available [19].

1Kendall’s rank correlation coefficient
2The definition in [30] differs slightly
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The benefits of overparametrization

Overparameterization: #model parameters ≫ #training data
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Figure: Overparametrization leads to benign overfitting.

minx∈X Rn(x) ↘

supx∈X |R(x) − Rn(x)| ↘
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The generalization mystery in deep learning

A gap between theory and practice
◦ In practice, simple algorithms like SGD can
train neural networks to zero error and
achieve low test error.
◦ This happens even for large and complex
neural network architectures.
◦ Complexity measures like the Rademacher
complexity suggest the opposite behaviour
(overfitting)
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Multiple global minimizers of the empirical risk

parameter

ris
k

empirical risk

◦ The global minimum is R⋆
n

, but many parameters can attain such value.
◦ Each minimizer of the empirical risk might have a different true risk.
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Multiple global minimizers of the empirical risk

parameter

ris
k

empirical risk

global optima

◦ The global minimum is R⋆
n , but many parameters can attain such value.

◦ Each minimizer of the empirical risk might have a different true risk.
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Multiple global minimizers of the empirical risk

parameter

ris
k

empirical risk
true risk

global optima

◦ The global minimum is R⋆
n , but many parameters can attain such value.

◦ Each minimizer of the empirical risk might have a different true risk.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 41



Not all global minimizers are the same

◦ Consider a simple 2D classification task, and train a neural network with fixed step-size SGD.

◦ The plots below correspond to two different global minimizers:
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SGD almost never lands on the global minimum on the right! Why?
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Understanding the implicit bias of optimization algorithms

◦ SGD seems to be biased towards good global minimizers (low true risk).
◦ Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.
◦ Can we characterize this implicit bias?

Definition (Algorithm)
We will refer to a function (deterministic or randomized) A : Z → X , mapping Z 7→ AZ as an algorithm with
input Z ∈ Z and output AZ ∈ X .

Example: Gradient Descent Algorithm
We denote GD(T,α,x0,∇f) := T -steps of GD with stepsize α, starting from x0, using gradient ∇f .
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What is implicit regularization?

Definition (Implicit Regularization of a Deterministic Algorithm)
Consider a minimization problem

F ⋆ = min
x∈X

F (x) (2)

and let A be a deterministic algorithm with input Z ∈ Z and output AZ ∈ X .

We say that A solves problem (2) and has implicit regularization H : X × Z → R if

AZ ∈ arg min
F (x)=F ⋆

H(x, Z).

Given the input Z ∈ Z, the algorithm outputs a global minimizer of F that, additionaly, minimizes H(·, Z).
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Implicit bias of gradient descent for linear regression

◦ Consider for example an underdetermined linear system

Ax = b, with A ∈ Rn×p, n < p

◦ If a solution exists (i.e., b ∈ colspan(A)), then there is an infinite number of solutions to this system.

Finding a solution
To find a valid x, we could apply one of the optimization algorithms seen in class to the convex problem

arg min
x∈Rp

1
2

∥Ax − b∥2
2

Among all the possible solutions, which one will the algorithm converge to ?
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Same problem and same initialization vs different algorithms and different solutions

Initialization

Gradient 
Descent

AdaGrad

Ax = b

Euclidean norm 
ball

Consider the following simple 2D example :[
1 2

] [x1
x2

]
= 5

Different Solutions
Gradient Descent and AdaGrad converge to different
points on the line.
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t
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100

102

|A
xt

b|
2 2

GD
AdaGrad
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Implicit bias of gradient descent for linear regression

◦ Gradient descent seems to converge to the closest one in terms of ℓ2-norm.

Theorem (Implicit bias of Gradient Descent [21])
For the underdetermined, realizable linear system

F ⋆ = min
x∈X

F (x) =
1
2

∥Ax − b∥2
2

the gradient descent algorithm GD(T,α,x0,∇F ), for T = ∞ and for any x0 ∈ Rp, and valid step-size α, has
implicit bias H(x) = ∥x − x0∥2, i.e.,

GD(T =∞,α,x0,∇F ) = arg min
F (x)=F ⋆

∥x − x0∥2.

Remark: ◦ The theorem also holds for stochastic gradient descent, see [3].
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Same problem and same initialization vs different algorithms and different solutions

Initialization

Gradient 
Descent

AdaGrad

Ax = b

Euclidean norm 
ball

Proof : For simplicity, take x0 = 0.
▶ The gradient of F is AT (Ax − b).
▶ This implies that ∀x, ∇f(x) ∈ colspan(AT ).

GD iterates stay in the rowspan
Gradient Descent is therefore constrained to the space

colspan(AT ) = rowspan(A)

So its limit point at T = ∞ is in rowspan(A).

▶ Note that because of the preconditionning,
AdaGrad can get out of the rowspan(A).
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Same problem and same initialization vs different algorithms and different solutions

x\ + h, h 2 null(A)

x̂candidate

x\

Proof (continued):
▶ The minimum norm solution

x̂candidate = arg min
x:Ax=b

∥x∥2
2

is also in rowspan(A).
▶ So both x̂candidate and the limit point of GD are

solutions of Ax = b that are in the rowspan(A)
▶ Since nullA ∩ rowspan(A) = {0}, there can only

be one solution in the rowspan(A), so

x⋆
GD = x̂candidate
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Implicit bias for linear models

◦ We can extend this analysis to linear models:

arg min
x∈Rp

F (x) :=
n∑

i=1

L(⟨x, ai⟩, bi).

◦ If the observations are realizable and there are many global minima Glob = {x : F (x) = 0}, then

Theorem (Implicit Bias of Gradient Descent [21])
If the loss L is convex and has a unique (attained) minimum, then the iterates xt of Gradient Descent converge
to the global minimum that is closest to initialization x0 in the ℓ2-distance :

xt −−−−→
t→∞

arg min
x∈Glob

∥x − x0∥2

Proof : (Sketch) The assumption on L implies the problem reduces to a linear system: If x is a global
minimum, we must have ⟨x, ai⟩ = bi for all i ∈ {1, .., n}. We can recycle the results we have just seen.
Remarks: ◦ Implicit bias for wide two-layer neural networks [16] can be found in supplementary material.
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The double descent phenomenon

◦ A failure of conventional wisdom

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑

k=1

akφ(x ; vk ) where φ(x ; v):=e
√−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: The classical U-shaped risk curve vs. double-descent risk curve. source: [11].

▶ classical large-sample limit setting: n → ∞ under fixed p

▶ high dimensional setting: n and p comparably large
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Double descent curve in practice (I)
◦ Typical examples:
▶ linear/nonlinear regression [25]
▶ random features, random forest, and shallow neural networks [11]
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(b) A fully connected neural network

Figure: Experiments on MNIST. Source: [11].
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Double descent curve in practice (II)

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT
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ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution
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Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise.
Right: Test error, shown for varying train epochs. source: [40].
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Double descent curve in practice (III)

Figure: Left: The double descent phenomenon, where the number of parameters is used as the model complexity. Middle: The
norm of the learned model is peaked around n ≈ p. Right: The test error against the norm of the learnt model. The color bar
indicate the number of parameters and the arrows indicates the direction of increasing model size. Their relationship are closer
to the convention wisdom than to a double descent. source: [44]. This is the same setting as in Section 5.2 of [41].
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Underparametrized regime

Figure: Low generalization but high empirical error Figure: Sweet spot for the model complexity
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Interpolation threshold

Figure: The unique degree 19 polynomial that can fit 20 samples.
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Benign overfitting in the over-parametrized regime

Figure: A degree 200 polynomial that can harmlessly fits noisy 20 points.
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Figure: Double descent for polynomial fits

Benign Overfitting [9]: good prediction with zero training error
▶ Statistical wisdom: a predictor should not fit too well.
▶ deep networks fit perfectly on noisy data and generalize well on test data.
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Deep learning is driven by scale
◦ The trend is to use ever larger models with increasing data sizes, which requires even more computation.

Figure: Amortized combined hardware and energy cost to train frontier AI models over time. Source: [17].
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Deep learning is driven by scale (cont.)

◦ Scaling factors: larger models, more data, more compute.

◦ Tuning model architecture and dataset size are expensive.

Questions: ◦ If you have a given budget of compute, what model would you train on how much data?

◦ Can we predict testloss(model size, data, optimization steps, ...) such that

▶ compute is within budget,

before committing to large-scale experiments?
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Scaling laws

Definition (Neural scaling law [26])
Neural scaling laws describe how neural network performance changes as key factors are scaled up or down.

Remarks: ◦ In general, neural networks (pre)training can be characterized by four factors:a

1. Size of the model (N): number of parameters

2. Size of the training dataset (D): number of samples or tokens

3. Compute (C): measured in FLOPS

4. Test loss after training (L): generalization performance

aNote the notational change!
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Scale and performance
◦ Increasing compute, dataset and model size improves performance, particularly in language models.

Figure: Neural scaling laws for language modelling. Source: [31]

Remarks: ◦ Language modeling performance improves smoothly as we “scale.”
◦ For optimal performance all three factors must be scaled up in tandem.
◦ Test performance has a power-law relationship with each individual factor.
◦ These are empirical curve fits rather than scaling “theory.”
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Do we need larger models?

Figure: A series of language model training runs, with model sizes from 103 to 109 parameters. Source: [31].

Remarks: ◦ Large models are more sample-efficient than small models.
◦ Larger models reach the same level of performance with fewer optimization steps.
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Scaling laws: power law relationships
◦ Test loss exhibits a power law relationship with available resources.

Scaling Laws [31]
1. For models with a limited number of parameters, trained to convergence on sufficiently large datasets:

L(N) =
(

Nc

N

)αN

, αN ∼ 0.076, Nc ∼ 8.8 × 1013 (parameters)

2. For large models trained with a limited dataset with early stopping:

L(D) =
(

Dc

D

)αD

, αD ∼ 0.095, Dc ∼ 5.4 × 1013 (input samples)

3. When training with a limited amount of compute, a sufficiently large model, and a sufficiently small batch
size (making optimal use of compute):

L(Cmin) =
(

Cc
min

Cmin

)αmin
C

, αmin
C ∼ 0.050, Cc

min ∼ 3.1 × 108 (PF-days)

Remarks: ◦ [31] estimated the constants through extensive empirical analysis on language models.
◦ Scaling laws hold in many domains: speech [26], image classification [56], etc.
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Chinchilla Scaling Laws

◦ Kaplan’s scaling laws [31] used a fixed learning rate schedule.

◦ [27] suggests to schedule the learning rate such that it decays to ≈ 1/10 of the max learning rate.

Chinchilla Scaling Laws [27]
Hoffman et al. [27] propose the following approach combining model size and data size:

L(N, D) = E +
A

Nα
+

B

Dβ
,

where E is the irrecoverable error and A, B, α, β are estimated constants.
Chinchilla states that the model size N and the number of training tokens D should be scaled equally with

compute C, where the optimal scaling is estimated as Nopt ∝ C0.49, Dopt ∝ C0.51.

Remarks: ◦ For a given increase in compute, both the model and dataset should be increased proportionally.

◦ Models trained with balanced scaling can outperform larger models trained on less data.
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Wrap up!

◦ The visualizations can be deceiving to understand the high-dimensional behavior

◦ Are we really in the interpolation regime in machine learning?

Theorem (Probability of interpolation [6])
Given a p-dimensional dataset An = {a1, . . . , an} with i.i.d. samples, where ai ∼ N (0, I) for all i = 1, . . . , n,
the probability that a new sample a ∼ N (0, I)is in the interpolation regime (i.e., within the convex hull of An)
has the following limiting behavior

lim
p→∞

p(a ∈ ConvexHull(An)) =
{

1 if n > 2p/2/p;
0 if n < 2p/2/p.

◦ We are most likely in the extrapolation regime [5].
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⋆Concentration inequality

◦ Main tool for generalization bound: concentration inequalities!

▶ Measure of how far is an empirical average from the true mean

Theorem (Hoeffding’s Inequality [37])
Let Y1, . . . , Yn be i.i.d. random variables with Yi taking values in the interval [ai, bi] ⊆ R for all i = 1, . . . , n.
Let Sn := 1

n

∑n

i=1 Yi. It holds that

P (|Sn − E[Sn]| > t) ≤ 2 exp
(

−
2n2t2∑n

i=1(bi − ai)2

)
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⋆Generalization bound for a singleton

Lemma
For i = 1, . . . , n, let (ai, bi) ∈ Rp × {−1, 1} be independent random variables and hx : Rp → R be a function
parametrized by x ∈ X . Let X = {x0} and L(hx(a), b) = {sign(hx(a)) , b} be the 0-1 loss.
With probability at least 1 − δ, we have that

sup
x∈X

|R(x) − Rn(x)| = |R(x0) − Rn(x0)| ≤

√
ln(2/δ)

2n
.

Proof.
Note that E[ 1

n

∑n

i=1 L(hx0 (ai), bi)] = R(x0), the expected risk of the parameter x0. Moreover
L(hx0 (ai), bi) ∈ [0, 1]. We can use Hoeffding’s inequality and obtain

P(|Rn(x0) − R(x0)| > t) = P

(∣∣∣∣∣ 1
n

n∑
i=1

Li(hx0 (ai), bi) − R(x0)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2nt2

)
Setting δ := 2 exp

(
−2nt2

)
we have that t =

√
ln 2/δ

2n
, thus obtaining the result.

□
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⋆Generalization bound for finite sets

Lemma
For i = 1, . . . , n, let (ai, bi) ∈ Rp × {−1, 1} be independent random variables and hx : Rp → R be a function
parametrized by x ∈ X . Let X be a finite set and L(hx(a), b) = {sign(hx(a)) , b} be the 0-1 loss.
With probability at least 1 − δ, we have that

sup
x∈X

|R(x) − Rn(x)| ≤

√
ln |X | + ln(2/δ)

2n
.

Proof.
Let X = {x1, . . . , x|X |}. We can use a union bound and the analysis of the singleton case to obtain:

P(∃j : |Rn(xj) − R(xj)| > t) ≤
|X |∑
j=1

P(|Rn(xj) − R(xj)| > t) = 2|X | exp
(

− 2nt2
)

Setting δ := 2|X | exp
(

−2nt2
)

, we have that t =
√

ln |X |+ln 2
δ

2n
, thus obtaining the result.

□
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⋆Visualizing Rademacher complexity

Figure: Rademacher complexity measures correlation with random signs
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⋆Visualizing Rademacher complexity

(a) High Rademacher Complexity (b) Large Generalization error
(memorization)

(c) Low Rademacher Complexity (d) Low Generalization error

Figure: Rademacher complexity and Generalization error
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⋆Computing the Rademacher complexity of linear functions

Theorem
Let X := {x ∈ Rp : ∥x∥2 ≤ λ} and let HX be the class of functions of the form hx : Rp → R, hx(a) = ⟨x, a⟩,
for some x ∈ X }. Let A = {a1, . . . , an} ⊆ Rp such that maxi=1,...,n ∥ai∥ ≤ M . It holds that
RA(HX ) ≤ λM/

√
n.

Proof.

RA(HX ) = E sup
∥x∥2≤λ

1
n

n∑
i=1

vi⟨x, a⟩

= E sup
∥x∥2≤λ

1
n

〈
x,

n∑
i=1

via

〉

≤
1
n

λE

∥∥∥∥∥
n∑

i=1

viai

∥∥∥∥∥
2

(C-S)

⇒ RA(HX ) ≤
1
n

λ

(
E

n∑
i=1

∥viai∥2
2

)1/2

(Jensen)

≤
1
n

λ

(
n∑

i=1

∥ai∥2
2

)1/2

≤ λM/
√

n

□
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⋆Rademacher complexity estimates of fully connected Neural Networks

Notation
For a matrix X ∈ Rn,m, ∥X∥ denotes its spectral norm. Let X:,k be the k-th column of X. We define

∥X∥2,1 = ∥(∥X:,1∥2, . . . , ∥X:,m∥2)∥1. (3)

Theorem (Spectral bound [8])
For positive integers p0, p1, . . . , pd = 1, and positive reals λ1, . . . , λd and ν1, . . . , νd, define the set

X := {(X1, . . . , Xd) : Xi ∈ Rpi×pi−1 , ∥Xi∥ ≤ λi, ∥XT
i ∥2,1 ≤ νi}

Let HX be the class of neural networks hx : Rp → R, hx = Xd ◦ σ ◦ . . . ◦ σ ◦ X1 where x = (X1, . . . , Xd) ∈ X .
Suppose that σ is 1-Lipschitz. Let A = {a1, . . . , an} ⊆ Rp, M := maxi=1,...,n ∥ai∥ and
W := max{pi : i = 0, . . . , d}.

The Rademacher complexity of HX with respect to A is bounded as

RA(HX ) = O

 log(W )M
√

n

d∏
i=1

λi

(
d∑

j=1

ν
2/3
j

λ
2/3
j

)3/2
 . (4)
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⋆Implicit bias for linearly separable datasets

◦ For linearly separable datasets, we know of an algorithm capable of finding a separating hyperplane.

◦ It maximizes the margin (i.e., distance between the boundary and the nearest training-data point).

Hard-margin Support Vector Machines
The hard margin Support Vector Machine solves the
following optimization problem :

arg min
x∈Rp

∥x∥2 subject to yi⟨x, ai⟩ ≥ 1.

It finds a hyperplane that maximizes the margin. It
does so by design.
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⋆Implicit bias for linearly separable datasets

◦ What happens if we do not explicitly enforce margin maximization?

Theorem (Implicit Bias of Gradient Descent on Separable Data [51, 21])
For the logistic loss (and some other strictly monotonically decreasing losses) and for linearly separable datasets,
the direction of the iterates xt of Gradient Descent for any initialization converges to the hard-margin SVM
direction:

xt

∥xt∥2
−−−−→
t→∞

x⋆
SVM

∥x⋆
SVM∥2

where x⋆
SVM =

{
arg min

x∈Rp
∥x∥2 subject to yi⟨x, ai⟩ ≥ 1

}

Remarks: ◦ Here, without explicit instructions, gradient descent maximizes the margin.

◦ The rate of this convergence is O
(

1
log t

)
.
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⋆Implicit bias for linearly separable datasets

◦ A similar result can be established for stochastic gradient descent for the logistic loss on separable datasets.

Theorem (Implicit Bias of Stochastic Gradient Descent on Separable Data [38])
The direction of the iterates xt of Stochastic Gradient Descent for any initialization and for a small enough
fixed step-size, converges almost surely to the hard-margin SVM direction:∥∥∥∥ xt

∥xt∥2
−

x⋆
SVM

∥x⋆
SVM∥2

∥∥∥∥
2

= O

( 1
log t

)
Remarks: ◦ This result is particularly interesting as it establishes convergence of fixed step-size SGD.

◦ Both SGD and GD have the same implicit bias towards maximizing margins.
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⋆Implicit bias for non-convex objectives

◦ Characterizing implicit bias of stochastic gradient descent for non-convex objectives is an active research area.

◦ Some papers study deep matrix factorization as a first step towards getting results for neural networks.

Deep Matrix Factorization
Deep matrix factorization consists of parametrizing a matrix M as a product of N matrices:

M = XN XN−1 . . . X1

which can be understood as parametrizing M by a depth N “linear neural network,” i.e., a neural network with
no activations and with weight matrices X.
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⋆Implicit bias for deep matrix completion

◦ The matrix completion problem consists of filling the missing entries of a partially observed matrix.

◦ The deep matrix factorization approach consists of solving the following problem with gradient descent:

arg min
XN ,XN−1...,X1

∑
(i,j)∈Ω

([XN XN−1 . . . X1]i,j − bi,j)2.

◦ It was conjectured in 2017 [22] that gradient descent was biased towards solutions with small nuclear norm.

Theorem (Implicit Regularization May Not Be Explainable by Norms (2020) [48])
For deep matrix completion the implicit bias can not be expressed as a function of a norm or semi-norm.
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⋆Implicit bias for wide two-layer neural networks

◦ Assume a wide two-layer neural network hx(a) = 1
m

∑m

i=1 σ(⟨xi, a⟩), where m is the width

◦ An integral representation parameterized with a probability measure ν is given by

hν(a) =
∫
Rp

σ(⟨x, a⟩)dν(x) .

Theorem (Implicit bias of gradient flow on two-layer neural networks [16])
Under proper initialization and technical conditions (in particular, of convergence), the output of the gradient
flow hνt under a proper normalization scheme converges to a certain max-margin classifier.

Remarks: ◦ Gradient flow is the continuous limit of gradient descent [50].

◦ Fixing the hidden layer (i.e., random features) leads to a max-margin classifier in RKHS [16].

◦ Other extensions of implicit bias of SGD depend on different models or settings:
▶ overparameterized least squares [55], diagonal linear networks [46], stochastic differential

equations [32].
▶ multi-pass SGD [59], diferent noise types [12, 23], different momentum types [54].
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⋆Implicit bias for wide two-layer neural networks

◦ Assume that we have a wide two-layer neural network hx(a) = 1
m

∑m

i=1 σ(⟨xi, a⟩)
◦ An integral representation parameterized with a probability measure ν

hν(ai) =
∫
Rp

σ(⟨x, ai⟩)dν(x) ,

◦ ν ∈ P2(Rd+2) in the set of probability measures with finite second moment
◦ the variation norm: ∥h∥F1

= minν∈P2(Rd+2)
{

1
2

∫
∥x∥2

2 dν(x); hν(ai) =
∫

σ(⟨x, ai⟩)dν(x)
}

Theorem (Implicit Bias of wide two-layer Neural Networks [16])
Assume that ν0 = USd ⊗ U{−1,1}, the training set is consistent ([ai = aj ] =⇒ [bi = bj ]) and technical
conditions (in particular, of convergence). Then hνt / ∥hνt ∥F1

trained by an exponential tail loss converges to
the F1-max-margin classifier, i.e. it solves

max
∥h∥F1 ≤1

min
i∈[n]

bih(ai) ,

◦ Gradient flow is the continuous limit of gradient descent [50].

◦ Fixing the hidden layer (i.e., random features) leads to a max-margin classifier in RKHS [16].
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⋆Example: Benign overfitting of DNNs on binary classification [57]

Problem setting: linear signal with label noise
▶ clean data distribution (ã, b̃) ∼ ρ̃

◦ b̃ ∼ {+1, −1}, ã = z + b̃µ
◦ µ-separated, 1-subgaussian, log-concave distributions in Rd

▶ under a noise rate η, marginal distribution is the same: ρA = ρ̃A over A with dTV(ρ, ρ̃) ≤ η

▶ labels are flipped with probability η(a): Pr[b(a) = b̃] = 1 − η and Pr[b(a) , b̃] = η

▶ DNNs with ReLU trained by gradient descent under the logistic loss

Theorem (Binary classification)
Under the above setting and assumptions, after t steps, DNNs can obtain the Bayes-optimal test error

P(a,b)∼ρ(b , sgn(h(a; X(t)))) ≤ η + exp
(

− λΘ
(

tα(1 − 2η)
Liph(a;X(t))

)2)
, w.h.p ,

where α is the step size and η is the label flip rate.

Remarks: ◦ smaller Lipchitz constant, faster convergence rate
◦ Lipschitz constant used for generalization
◦ NTK initialization: lazy training regime
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⋆From neural networks to random features model [28, 47]

1-hidden-layer neural network with m neurons (fully-connected architecture):

Let X1 ∈ Rm×p, a ∈ Rp, X2 ∈ Rm, and µ2 ∈ R

hx(a) :=

[
X2

] activationy
σ


weight

↓[
X1

] input
↓[
a

]
+

bias
↓[

µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = fixed random features

+

bias
↓[

µ2

]
, x := [X1, X2, µ1, µ2]

▶ X1: Gaussian initialization and then fixed
▶ X2: to be learned
▶ over-parameterized model: #neurons m > #training data n
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⋆Double descent: random features model (I)

◦ high dimensions: #training data n, #neurons m, feature dimension p are comparably large

(a) SGD vs. min-norm solution (b) Bias ≲ B1 + B2 + B3 (c) Variance ≲ V1 + V2 + V3

Figure: Test MSE, Bias, and Variance of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for
p = 784 and n = 600 across the Gaussian kernel. Source: [35].

▶ random features regression solved by SGD: interplay between excess risk and optimization
▶ bias variance decomposition for understanding multiple randomness sources
▶ monotonic decreasing bias and unimodal variance ⇒ double descent
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⋆Double descent: random features model (II)

Algorithm data assumption solution type Result on risk curve
[25] Gaussian closed-form variance ↗ ↘
[36] i.i.d on sphere closed-form variance, bias ↗ ↘
[18] Gaussian closed-form refined decomposition on variance
[1] Gaussian closed-form fully decomposition on variance
[34] general closed-form ↗ ↘
[4] Gaussian GD variance ↗ ↘
[35] sub-Gaussian SGD variance ↗ ↘, bias ↘

Table: Comparison of representative random features on double descent.

◦ multiple randomness sources: data sampling, label noise, initialization

◦ phase transition due to non-monotonic variance
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⋆From multiple global minimizers to single global minimizer

◦ Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].3

◦ In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).

◦ Define feature mapping a 7→ ∂h
∂x (a, x0), the (empirical) neural tangent kernel (NTK) [29] is defined as

K(ai, aj) := ⟨∇xh(ai, x), ∇xh(aj , x)⟩ , ∀i, j ∈ [n] .

Training dynamics [29]
Under the squared loss, the dynamics of h(a, x) is equivalent to kernel regression

ḣ(a, x(t)) = ∇xh(a, x)ẋ(t) = K∞(a, ai)(h(a, x(t)) − b),

where, under proper initialization and large enough width, we have

K∞ := lim
width→∞

Kx(0)(ai, aj) = Ex[Kx(0)(ai, aj)].

Remarks: ◦ NTK stays unchanged during training
◦ General loss functions: equivalence between infinite NNs and kernel methods [15]
▶ e.g., NN trained by soft margin loss vs. SVM trained by subgradient descent

3Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.
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⋆Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])
For a DNN with a large enough width trained by (S)GD on {(ai, bi)}n

i=1, under proper data assumptions and
step-size η, we have
▶ global convergence

L(x(t)) ≤ [1 − ηλmin(K∞)]tL(x(0)) whp,

where λmin(K∞) is the minimum eigenvalue of K∞.

▶ generalization guarantee

R(hx(t)) ≲ O

(√
b⊤K−1

∞ b
n

)
+ O

( 1
√

n

)
whp.

Remarks: ◦ The minimum eigenvalue of NTK plays an important role!
▶ robustness: generate adversarial examples [53]
▶ image denoising [52]
▶ neural architecture search in a “train-free” fashion [58, 14]

◦ Under proper assumptions, we have λmin(K∞) = Ω(p) [45] for the input dimension p
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⋆Peeling the onion (risk minimization setting) - Decomposition details

R(xt) − R(x♮) = R(xt) − Rn(xt) + Rn(xt) − Rn(x⋆)+ Rn(x⋆) − Rn(x♮)︸                     ︷︷                     ︸
≤0

+ Rn(x♮) − R(x♮)

≤ Rn(xt) − Rn(x⋆) + R(xt) − Rn(xt) + Rn(x♮) − R(x♮)︸                                                 ︷︷                                                 ︸
2 supx∈X |Rn(x)−R(x)|

R(xt) − R(x◦) = R(xt) − R(x♮) + R(x♮) − R(x◦)

≤ Rn(xt) − Rn(x⋆) + 2 sup
x∈X

|Rn(x) − R(x)| + R(x♮) − R(x◦)
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⋆Generalization bounds based on uniform stability — definitions

Definition (Empirical Risk on a set)
Let S := [(a1, b1), . . . , (an, bn)] be an i.i.d. sample drawn from a distribution on A × B. Let L : B × B → R be
a loss function and H be a class of functions h : A → B. The empirical risk of h ∈ H on the set S is defined as:

RS(h) :=
1
n

n∑
i=1

L(h(ai), bi)

(Almost) same definition as before. Makes explicit the dependence on the set S.

Definition (Expected Generalization Error)
Let A : Z → H be a randomized algorithm that takes as input a finite sample S of arbitrary size, and outputs a
function AS ∈ H. Suppose that S = [(a1, b1), . . . , (an, bn)] is an i.i.d. sample form probability distribution on
A × B. The expected generalization error on a sample of size n is the value

E[RS(AS) − R(AS))]

the expectation is taken with respect to the draw of the sample S and the randomness of A .
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⋆Generalization bounds based on uniform stability — Fundamental theorem (I)

Theorem (Hardt et al. 2016 [24])
Let A be uniformly stable with stability (βn)n≥1, then for a random i.i.d. sample S of size n, the expected
generalization error is bounded as follows

E[|RS(AS) − R(AS))|] ≤ βn

Proof.
Let S = [(a1, b1), . . . , (an, bn)] and S′ = [(a′

1, b′
1), . . . , (a′

n, bn)] be two i.i.d. samples of size n. Denote

S(i) := [(a1, b1), . . . , (ai−1, bi−1), (a′
i, b′

i), (ai+1, bi+1), . . . , (an, bn)]

the sample that results from replacing (ai, bi) by (a′
i, b′

i) in S.

E[RS(AS)] = E

[
1
n

n∑
i=1

L(AS(ai), bi)

]
= E

[
1
n

n∑
i=1

L(AS(i) (a′
i), b′

i)

]

= E

[
1
n

n∑
i=1

L(AS(i) (a′
i), b′

i) −
1
n

n∑
i=1

L(AS(a′
i), b′

i)

]
+ E

[
1
n

n∑
i=1

L(AS(a′
i), b′

i)

]
□
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⋆Generalization bounds based on uniform stability — Fundamental theorem (II)

Proof. (continued).
We have

E[RS(AS)] = E

[
1
n

n∑
i=1

L(AS(i) (a′
i), b′

i) −
1
n

n∑
i=1

L(AS(a′
i), b′

i)

]
+ E

[
1
n

n∑
i=1

L(AS(a′
i), b′

i)

]
Note that S and S(i) only differ in one sample: uniform stability allows bounding the first term as:

= E

[
1
n

n∑
i=1

L(AS(i) (a′
i), b′

i) −
1
n

n∑
i=1

L(AS(a′
i), b′

i)

]
=

1
n

n∑
i=1

E
[
L(AS(i) (a′

i), b′
i) − L(AS(a′

i), b′
i)
]

≤ βn

Finally note that because the samples (ai, bi) are independent of S we have:

E

[
1
n

n∑
i=1

L(AS(a′
i), b′

i)

]
= R(AS)

analogously we can show E [R(AS) − RS(AS)] ≤ βn. □
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⋆Alternatives to complexity-based generalization bounds

◦ So far we have seen that complexity based generalization bounds:
▶ characterize worst-case scenario

▶ not tight in practice

▶ disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm?

YES!
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⋆Formal definition of stability (I)

Definition (Uniform Stability [24])
Let A : Z → H be a randomized algorithm with input a finite sample S, and output a function AS ∈ H.

The algorithm A has uniform stability (βn)n≥1 with respect to the loss function L if for all subsets
S, S′ ⊆ A × B such that |S| = |S′| = n and S and S′ differ in at most one sample:

sup
(a,b)∈A×B

E|L(AS(a), b) − L(AS′ (a), b)| ≤ βn

The expectation is taken with respect to the randomness in the algorithm A .

Misnomer: Lower stability (small values of βn) means the difference in the output of the algorithm is smaller.
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⋆Formal definition of stability (II)

Figure: Algorithm B is less stable than algorithm A .
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⋆The stability of SGD
◦ Let hx ∈ HX be an element of a parametric function class. Consider the ERM optimization objective:

f(x) :=
1
n

n∑
i=1

fi(x), fi(x) := L(hx(ai), bi).

◦ The SGD iterates for t = 0, . . . , T are xt+1 = xt − αt∇xfi(xt), for i ∼ Unif[n].

Algorithm Assumptions on fi Stability

SGD convex, L-smooth, β-Lipschitz, αt ≤ 2/L
β2

n

∑T

t=0 αt

SGD µ-str convex, L-smooth, β-Lipschitz, αt ≤ 2/L
β2

nµ

SGD µ-str convex, L-smooth, β-Lipschitz, αt =
1
µt

β2 + Lρ

nµ

SGD avg. iterate convex, L-smooth, β-Lipschitz
β2T

nL

SGD non-convex, L-smooth, β-Lipschitz, αt = 1/t
1 + 1/β

n
β

2
L+1 T

L
L+1

Table: Summary of stability upper bounds for different assumptions on the objective function [24]
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⋆Effect of the number of iterations on the stability of SGD and the generalization error

Figure 3: Normalized euclidean distance between parameters of two models trained under on
di↵erent random substitution on Cifar 10. Here we show the di↵erences between individual
model layers.

Figure 4: Parameter distance versus generalization error on Cifar10.

22

Figure: Normalized parameter distance between two networks trained on two datasets S, S′ differing only in one sample,
training error, test error and generalization error (0-1 loss) on CIFAR10 [24].

◦ Parameter distance is a stronger notion than stability.
◦ More iterations ⇒ Parameter distance increases (we expect stability to increase).
◦ Generalization error follows the same behavior as the parameter distance (proxy for stability).
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Larger models generalize better
◦ Test Loss Results: Generalization to other data distributions shows smooth improvement with model size
across datasets (WebText2, Wikipedia, Books, Common Crawl).

Figure: Left: Larger models improve test loss across different data distributions. Right: Transfer improves with test
performance. Source: [31].

Remarks: ◦ Generalization performance to other data distributions improves smoothly with model size.
◦ Scaling laws hold even when train , test distribution.
◦ Higher generalization on training distribution improves transfer on other distributions.
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Double descent in 1998: AdaBoost

Definition (Informal [49])
“Boosting solves hard machine learning problems by forming a very smart committee of grossly incompetent but
carefully selected members.”

AdaBoost
1. Initialize the observation weights wi = 1/N , i = 1, 2, . . . , N

2. For t = 1 to T :
2.1 Fit a classifier hx,t(a) to the training data using weights wi.
2.2 Compute

errt =

∑N

i=1
wiI(bi , hx,t(ai))∑N

i=1
wi

.

2.3 Compute αt = log((1− errt)/errt).
2.4 Set wi ← wi · exp[αt · I(bi , hx,t(ai))], i = 1, 2, . . . , N .

3. Output h(a) =
[∑T

t=1 αthx,t(a)
]
.

Remarks: ◦ At each round, the weights are updated so the weak learner focuses on the hard examples.

◦ The more iterations are run, the more complex the output function becomes (e.g., overfitting).
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AdaBoost with large number of rounds

Figure: AdaBoost on letters dataset [7]. Test error keeps
improving even after 0 training error is reached.

Margin theory [7]
The margin is a measure of confidence in the prediction. Boosting can be shown to increase the margin at each
round.
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