Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 9: Generalization in deep learning

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

Share Alike

The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

► Full Text of the License

Outline

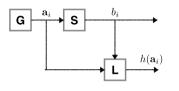
This lecture:

- ► The classical trade-off between model complexity and risk
- Generalization bounds via uniform convergence
- ► The generalization mystery in deep learning
- Implicit regularization of optimization algorithms
- ▶ Double descent curves: Generalization bounds via bias-variance decomposition
- Scaling laws
- *Generalization bounds based on algorithmic stability
- *Boosting
- *

Next lecture:

Optimization in Deep Learning

Understanding the trade-off between model complexity and expected risk



Models

Let $[\mathcal{X}_i:i=1,\ldots]$ be a nested sequence of parameter domain, i.e., $\mathcal{X}_i\subseteq\mathcal{X}_{i+1}$. For example, let $\mathcal{X}_i=$ neural networks with i neurons.

- 1. $R_n(\mathbf{x}_i^{\star}) = \min_{\mathbf{x} \in \mathcal{X}_i} R_n(\mathbf{x})$: ERM solution over \mathcal{X}_i
- 2. $R(\mathbf{x}_i^{\star})$: True risk of the ERM solution over \mathcal{X}_i
- 3. $\sup_{\mathbf{x} \in \mathcal{X}_i} |R(\mathbf{x}) R_n(\mathbf{x})|$: Worst-case Generalization error of \mathcal{X}_i

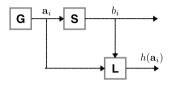
Practical performance of the ERM estimator

$$R(\mathbf{x}_i^{\star}) \le \min_{\mathbf{x} \in \mathcal{X}_i} R_n(\mathbf{x}) + \sup_{\mathbf{x} \in \mathcal{X}_i} |R(\mathbf{x}) - R_n(\mathbf{x})|$$
 (1)

As we increase the index i
ightarrow i+1 of the parameter domain, i.e., we choose a larger (more complex) model

- 1. The minimum empirical risk decreases: $\min_{\mathbf{x} \in \mathcal{X}_i} R_n(\mathbf{x}) \ge \min_{\mathbf{x} \in \mathcal{X}_{i+1}} R_n(\mathbf{x})$.
- 2. The generalization error increases: $\sup_{\mathbf{x} \in \mathcal{X}_i} |R(\mathbf{x}) R_n(\mathbf{x})| \le \sup_{\mathbf{x} \in \mathcal{X}_{i+1}} |R(\mathbf{x}) R_n(\mathbf{x})|$.
- 3. What happens with the true risk $R(\mathbf{x}_i^{\star})$?

Peeling the onion



Models

Let $d(\cdot,\cdot):\mathcal{H}^{\circ}\times\mathcal{H}^{\circ}\to\mathbb{R}^{+}$ be a metric in an extended function space \mathcal{H}° that includes \mathcal{H} ; i.e., $\mathcal{H}\subseteq\mathcal{H}^{\circ}$. Let

- 1. $h^{\circ} \in \mathcal{H}^{\circ}$ be the true, expected risk minimizing model
- 2. $h^{
 abla}\in\mathcal{H}$ be the solution under the assumed function class $\mathcal{H}\subseteq\mathcal{H}^{\circ}$
- 3. $h^* \in \mathcal{H}$ be the estimator solution
- 4. $h^t \in \mathcal{H}$ be the numerical approximation of the algorithm at time t

Practical performance

$$\underline{d(h^t, h^\circ)} \leq \underline{d(h^t, h^\star)} + \underline{d(h^\star, h^\natural)} + \underline{d(h^\flat, h^\circ)}$$
optimization error statistical error model error

where $\bar{\varepsilon}(t,n)$ denotes the total error of the Learning Machine. We can try to

- 1. reduce the optimization error with computation
- 2. reduce the statistical error with more data samples, with better estimators, and with prior information
- 3. reduce the model error with flexible or universal representations

The classical trade-off between model complexity and risk

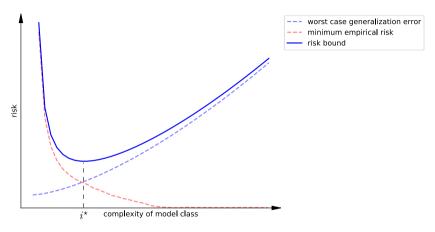


Figure: Bias-variance trade-off [20].

Occam's Razor: Simple is better than complex.

The dangers of complex function classes: sévère (cevher) overfitting

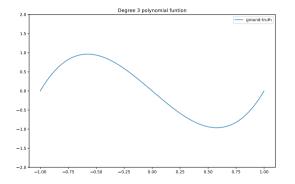


Figure: Training over a complex function class can lead to overfitting.

The dangers of complex function classes: sévère (cevher) overfitting

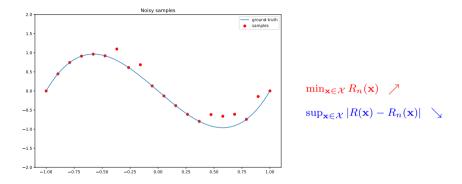


Figure: Training over a complex function class can lead to overfitting.

The dangers of complex function classes: sévère (cevher) overfitting

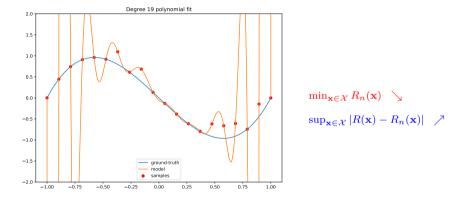
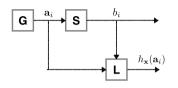


Figure: Training over a complex function class can lead to overfitting.

Estimation of parameters vs estimation of risk



Recall the general setting

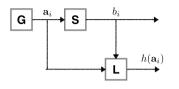
Let $R(h_{\mathbf{x}}) = \mathbb{E}L(h_{\mathbf{x}}(\mathbf{a}),b)$ be the risk function and $R_n(h_{\mathbf{x}}) = \frac{1}{n} \sum_{i=1}^n L(h_{\mathbf{x}}(\mathbf{a}_i),b_i)$ be the empirical estimate. Let $\mathcal{X} \subseteq \mathcal{X}^{\circ}$ be parameter domains, where \mathcal{X} is known. Define

- 1. $\mathbf{x}^{\circ} \in \arg\min_{\mathbf{x} \in \mathcal{X}^{\circ}} R(h_{\mathbf{x}})$: true minimum risk model
- 2. $\mathbf{x}^{\natural} \in \arg\min_{\mathbf{x} \in \mathcal{X}} R(h_{\mathbf{x}})$: assumed minimum risk model
- 3. $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{X}} R_n(h_{\mathbf{x}})$: ERM solution
- 4. \mathbf{x}^t : numerical approximation of \mathbf{x}^{\star} at time t

Nomenclature	
$R_n(\cdot)$	training error
$R(\cdot)$	test error
$R(\mathbf{x}^{\natural}) - R(\mathbf{x}^{\circ})$	modeling error
$R(\mathbf{x}^{\star}) - R(\mathbf{x}^{\natural})$	excess risk
$\sup_{\mathbf{x} \in \mathcal{X}} R(\mathbf{x}) - R_n(\mathbf{x}) $	generalization error
$R_n(\mathbf{x}^t) - R_n(\mathbf{x}^\star)$	optimization error

	$\mathcal{X} \to \mathcal{X}^{\circ}$	$n\uparrow$	$p\uparrow$
Training error	7	7	7
Excess risk	7	>	7
Generalization error	7	>	7
Modeling error	×	=	⟨ ∧>
Time	7	7	7

What theoretical challenges in Deep Learning will we study?



Models

Let $\mathcal{X} \subseteq \mathcal{X}^{\circ}$ be parameter domains, where \mathcal{X} is known. Define

- 1. $\mathbf{x}^{\circ} \in \arg\min_{\mathbf{x} \in \mathcal{X}^{\circ}} R(h_{\mathbf{x}})$: true minimum risk model
- 2. $\mathbf{x}^{\natural} \in \arg\min_{\mathbf{x} \in \mathcal{X}} R(h_{\mathbf{x}})$: assumed minimum risk model
- 3. $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{X}} R_n(h_{\mathbf{x}})$: ERM solution
- 4. \mathbf{x}^t : numerical approximation of \mathbf{x}^{\star} at time t

Practical performance in Deep Learning

$$\underbrace{R(\mathbf{x}^t) - R(\mathbf{x}^\circ)}_{\bar{\varepsilon}(t,n)} \leq \underbrace{R_n(\mathbf{x}^t) - R_n(\mathbf{x}^\star)}_{\text{optimization error}} + 2 \sup_{\mathbf{x} \in \mathcal{X}} |R(\mathbf{x}) - R_n(\mathbf{x})| + \underbrace{R(\mathbf{x}^\natural) - R(\mathbf{x}^\circ)}_{\text{model error}}$$

where $\bar{\varepsilon}(t,n)$ denotes the total error of the Learning Machine. In Deep Learning applications

- 1. Optimization error is almost zero, in spite of non-convexity. \Rightarrow lecture 10
- 2. Generalization error is usually small, but theory is lacking. \Rightarrow lecture 9 (this one)
- 3. Large architectures + inductive bias might lead to small model error.

Generalization error bounds and Rademacher Complexity

Goal: Obtain generalization bounds for multi-layer, fully-connected neural networks

• We want to find high-probability upper bounds for the quantity

$$\sup_{\mathbf{x} \in \mathcal{X}} |R(\mathbf{x}) - R_n(\mathbf{x})|$$

Need a notion of complexity to derive generalization bounds for infinite classes of functions

Definition (Rademacher Complexity [10])

Let $A = \{\mathbf{a}_1, \dots, \mathbf{a}_n\} \subseteq \mathbb{R}^p$ and let $\{v_i : i = 1, \dots, n\}$ be independent Rademacher random variables i.e., taking values uniformly in $\{-1,+1\}$ (coin flip). Let $\mathcal H$ be a class of functions of the form $h:\mathbb R^p o\mathbb R$. The Rademacher complexity of \mathcal{H} with respect to A is defined as:

$$\mathcal{R}_A(\mathcal{H}) \coloneqq \mathbb{E}_v \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \frac{\mathbf{v}_i h(\mathbf{a}_i).$$

Remarks: $\circ \mathcal{R}_A(\mathcal{H})$ measures how well we fit random (± 1) with the output of an element of \mathcal{H} on the set A.

The derivation of Rademacher Complexity for specific function classes are in the appendix.

Fundamental theorem about the Rademacher Complexity

Theorem (See Theorem 3.3 and 5.8 in [37])

Suppose that the loss function has the form $L(h_{\mathbf{x}}(\mathbf{a}), b) = \phi(b \cdot h_{\mathbf{x}}(\mathbf{a}))$ for a 1-Lipschitz function $\phi : \mathbb{R} \to \mathbb{R}$.

Let $\mathcal{H}_{\mathcal{X}} := \{h_{\mathbf{x}} : \mathbf{x} \in \mathcal{X}\}$ be a class of parametric functions $h_{\mathbf{x}} : \mathbb{R}^p \to \mathbb{R}$. For any $\delta > 0$, with probability at least $1 - \delta$ over the draw of an i.i.d. sample $\{(\mathbf{a}_i, b_i)_{i=1}^n, \text{ letting } A = (\mathbf{a}_1, \dots, \mathbf{a}_n), \text{ the following holds: } \}$

$$\sup_{\mathbf{x} \in \mathcal{X}} |R_n(\mathbf{x}) - R(\mathbf{x})| \le 2\mathbb{E}_A \mathcal{R}_A(\mathcal{H}_{\mathcal{X}}) + \sqrt{\frac{\ln(2/\delta)}{2n}},$$

$$\sup_{\mathbf{x} \in \mathcal{X}} |R_n(\mathbf{x}) - R(\mathbf{x})| \le 2\mathcal{R}_A(\mathcal{H}_{\mathcal{X}}) + 3\sqrt{\frac{\ln(4/\delta)}{2n}}.$$

Assumption is true for common losses

- $L(h_{\mathbf{x}}(\mathbf{a}), b) = \log(1 + \exp(-b \cdot h_{\mathbf{x}}(\mathbf{a}))) \Rightarrow \phi(z) := \log(1 + \exp(z))$ (logistic loss)
- $L(h_{\mathbf{x}}(\mathbf{a}), b) = \max(0, 1 b \cdot h_{\mathbf{x}}(\mathbf{a})) \Rightarrow \phi(z) := \max(0, 1 z)$ (hinge loss)

The complexity vs risk trade-off in practice (I)

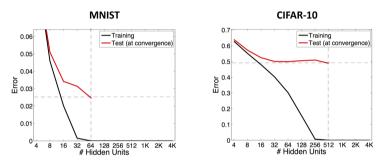


Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [42].

Empirical error becomes zero for a wide enough network. What should happen for even wider networks?

The complexity vs risk trade-off in practice (II)

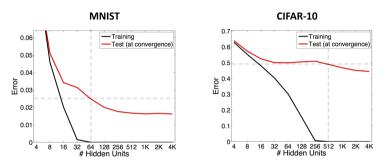


Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [42].

Test error continues to go down even if we keep incresing the complexity of the model!

How well do complexity measures correlate with generalization?

name	definition	$correlation^1$
Frobenius distance to initialization [39]	$\sum_{i=1}^d \ \mathbf{X}_i - \mathbf{X}_i^0\ _F^2$	-0.263
Spectral complexity ² [8]	$\prod_{i=1}^{d} \ \mathbf{X}_{i}\ \left(\sum_{i=1}^{d} \frac{\ \mathbf{X}_{i}\ _{2,1}^{3/2}}{\ \mathbf{X}_{i}\ ^{3/2}} \right)^{2/3}$	-0.537
Parameter Frobenius norm	$\sum_{i=1}^d \ \mathbf{X}_i\ _F^2$	0.073
Fisher-Rao [33]	$\frac{\sum_{i=1}^{d} \ \mathbf{X}_i\ _F^2}{\sum_{i=1}^{n} \left\langle \mathbf{x}, \nabla_{\mathbf{x}} \ell(h_{\mathbf{x}}(\mathbf{a}_i), b_i) \right\rangle}$	0.078
Path-norm [43]	$\sum_{(i_0,,i_d)}\prod_{j=1}^d \left(\mathbf{X}_{i_j,i_{j-1}} ight)^2$	0.373

Table: Complexity measures compared in the empirical study [30], and their correlation with generalization

Complexity measures are still far from explaining generalization in Deep Learning!

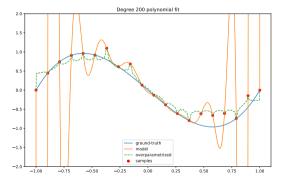
A more recent evaluation of many complexity measures is available [19].

¹Kendall's rank correlation coefficient

²The definition in [30] differs slightly

The benefits of overparametrization

Overparameterization: #model parameters >> #training data



$$\min_{\mathbf{x} \in \mathcal{X}} R_n(\mathbf{x}) \searrow$$

$$\sup_{\mathbf{x} \in \mathcal{X}} |R(\mathbf{x}) - R_n(\mathbf{x})| \searrow$$

Figure: Overparametrization leads to benign overfitting.

The generalization mystery in deep learning

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION

Chivuan Zhang*

Massachusetts Institute of Technology chiyuan@mit.edu

Benjamin Recht†

University of California, Berkeley brecht@berkeley.edu

Samy Bengio

Google Brain bengio@google.com

Moritz Hardt

Google Brain mrtz@google.com

Oriol Vinyals

Google DeepMind vinyals@google.com

ABSTRACT

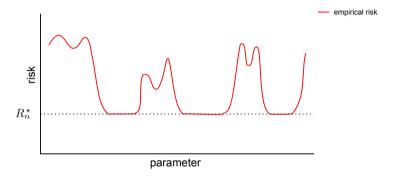
Despite their massive size, successful deep artificial neural networks can exhibit a remarkably small difference between training and test performance. Conventional wisdom attributes small generalization error either to properties of the model family, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional approaches fail to explain why large neural networks generalize well in practice. Specifically, our experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a random labeling of the training data. This phenomenon is qualitatively unaffected by explicit regularization, and occurs even if we replace the true images by completely unstructured random noise. We corroborate these experimental findings with the article construction should be the representation of the control of the second of the control of the control of the second of the secon

A gap between theory and practice

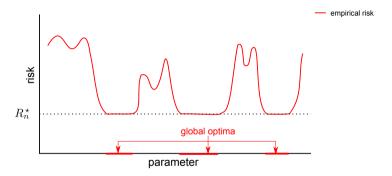
- In practice, simple algorithms like SGD can train neural networks to zero error and achieve low test error.
- This happens even for large and complex neural network architectures.
- Complexity measures like the Rademacher complexity suggest the opposite behaviour (overfitting)

Multiple global minimizers of the empirical risk



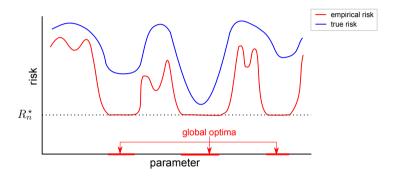
 \circ The global minimum is R_n^\star

Multiple global minimizers of the empirical risk



 \circ The global minimum is R_n^\star , but many parameters can attain such value.

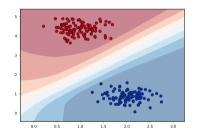
Multiple global minimizers of the empirical risk

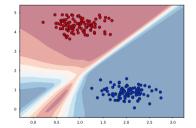


- \circ The global minimum is R_n^\star , but many parameters can attain such value.
- o Each minimizer of the empirical risk might have a different true risk.

Not all global minimizers are the same

- \circ Consider a simple 2D classification task, and train a neural network with fixed step-size SGD.
- o The plots below correspond to two different global minimizers:





SGD almost never lands on the global minimum on the right! Why?

Understanding the implicit bias of optimization algorithms

- o SGD seems to be *biased* towards *good* global minimizers (low true risk).
- o Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.
- o Can we characterize this implicit bias?

Understanding the implicit bias of optimization algorithms

- o SGD seems to be *biased* towards *good* global minimizers (low true risk).
- o Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.
- o Can we characterize this implicit bias?

Definition (Algorithm)

We will refer to a function (deterministic or randomized) $\mathscr{A}: \mathcal{Z} \to \mathcal{X}$, mapping $Z \mapsto \mathscr{A}_Z$ as an algorithm with input $Z \in \mathcal{Z}$ and output $\mathscr{A}_Z \in \mathcal{X}$.

Example: Gradient Descent Algorithm

We denote $GD_{(T,\alpha,\mathbf{x}^0,\nabla f)}:=T$ -steps of GD with stepsize α , starting from \mathbf{x}^0 , using gradient ∇f .

What is implicit regularization?

Definition (Implicit Regularization of a Deterministic Algorithm)

Consider a minimization problem

$$F^* = \min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}) \tag{2}$$

and let $\mathscr A$ be a deterministic algorithm with input $Z\in\mathcal Z$ and output $\mathscr A_Z\in\mathcal X.$

We say that $\mathscr A$ solves problem (2) and has implicit regularization $H:\mathcal X\times\mathcal Z\to\mathbb R$ if

$$\mathscr{A}_Z \in \operatorname*{arg\,min}_{F(\mathbf{x})=F^*} H(\mathbf{x},Z).$$

Given the input $Z \in \mathcal{Z}$, the algorithm outputs a global minimizer of F that, additionally, minimizes $H(\cdot, Z)$.

Implicit bias of gradient descent for linear regression

o Consider for example an underdetermined linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \text{ with } \mathbf{A} \in \mathbb{R}^{n \times p}, \quad n < p$$

o If a solution exists (i.e., $b \in colspan(A)$), then there is an *infinite number of solutions* to this system.

Finding a solution

To find a valid \mathbf{x} , we could apply one of the optimization algorithms seen in class to the convex problem

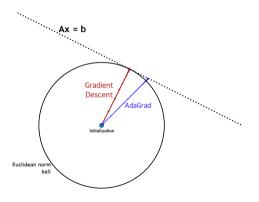
$$\underset{\mathbf{x} \in \mathbb{R}^p}{\operatorname{arg\,min}} \, \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Among all the possible solutions, which one will the algorithm converge to ?

Same problem and same initialization vs different algorithms and different solutions

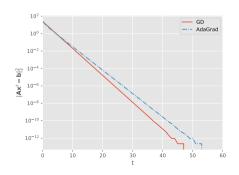
Consider the following simple 2D example :

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 5$$



Different Solutions

Gradient Descent and AdaGrad converge to *different* points on the line.



Implicit bias of gradient descent for linear regression

 \circ Gradient descent seems to converge to the closest one in terms of ℓ_2 -norm.

Theorem (Implicit bias of Gradient Descent [21])

For the underdetermined, realizable linear system

$$F^* = \min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

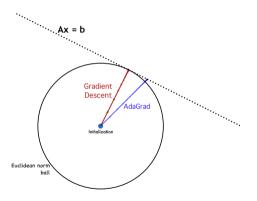
the gradient descent algorithm $GD_{(T,\alpha,\mathbf{x}^0,\nabla F)}$, for $T=\infty$ and for any $\mathbf{x}^0\in\mathbb{R}^p$, and valid step-size α , has implicit bias $H(\mathbf{x})=\|\mathbf{x}-\mathbf{x}^0\|_2$, i.e.,

$$GD_{(T=\infty,\alpha,\mathbf{x}^0,\nabla F)} = \underset{F(\mathbf{x})=F^{\star}}{\operatorname{arg \, min}} \|\mathbf{x} - \mathbf{x}_0\|_2.$$

Remark:

o The theorem also holds for stochastic gradient descent, see [3].

Same problem and same initialization vs different algorithms and different solutions



Proof: For simplicity, take $\mathbf{x}_0 = 0$.

- ▶ The gradient of F is $\mathbf{A}^T(\mathbf{A}\mathbf{x} \mathbf{b})$.
- ▶ This implies that $\forall \mathbf{x}, \nabla f(\mathbf{x}) \in \mathbf{colspan}(\mathbf{A}^T)$.

GD iterates stay in the rowspan

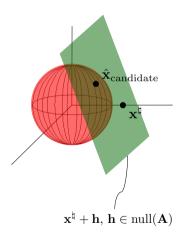
Gradient Descent is therefore constrained to the space

$$\mathbf{colspan}(\mathbf{A}^T) = \mathbf{rowspan}(\mathbf{A})$$

So its limit point at $T = \infty$ is in $\mathbf{rowspan}(\mathbf{A})$.

Note that because of the preconditionning, AdaGrad can get out of the rowspan(A).

Same problem and same initialization vs different algorithms and different solutions



Proof (continued):

▶ The minimum norm solution

$$\hat{\mathbf{x}}_{\mathsf{candidate}} = \underset{\mathbf{x}: \mathbf{A} \mathbf{x} = \mathbf{b}}{\operatorname{arg min}} \|\mathbf{x}\|_{2}^{2}$$

is also in rowspan(A).

- ► So both $\hat{\mathbf{x}}_{candidate}$ and the limit point of GD are solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$ that are in the $\mathbf{rowspan}(\mathbf{A})$
- ► Since $\mathbf{null} \mathbf{A} \cap \mathbf{rowspan}(\mathbf{A}) = \{0\}$, there can only be one solution in the $\mathbf{rowspan}(\mathbf{A})$, so

$$\mathbf{x}_{\mathsf{GD}}^{\star} = \hat{\mathbf{x}}_{\mathsf{candidate}}$$

Implicit bias for linear models

• We can extend this analysis to linear models:

$$\arg\min_{\mathbf{x}\in\mathbb{R}^p} F(\mathbf{x}) := \sum_{i=1}^n L(\langle \mathbf{x}, \mathbf{a}_i \rangle, b_i).$$

o If the observations are realizable and there are many global minima $\mathbf{Glob} = \{\mathbf{x} : F(\mathbf{x}) = 0\}$, then

Theorem (Implicit Bias of Gradient Descent [21])

If the loss L is convex and has a unique (attained) minimum, then the iterates \mathbf{x}^t of Gradient Descent converge to the global minimum that is closest to initialization \mathbf{x}_0 in the ℓ_2 -distance :

$$\mathbf{x}^t \xrightarrow[t \to \infty]{} \underset{\mathbf{x} \in \mathbf{Glob}}{\operatorname{arg\,min}} \|\mathbf{x} - \mathbf{x}_0\|_2$$

Proof: (Sketch) The assumption on L implies the problem reduces to a linear system: If \mathbf{x} is a global minimum, we must have $\langle \mathbf{x}, \mathbf{a}_i \rangle = b_i$ for all $i \in \{1, ..., n\}$. We can recycle the results we have just seen.

Remarks: o Implicit bias for wide two-layer neural networks [16] can be found in supplementary material.

The double descent phenomenon

o A failure of conventional wisdom

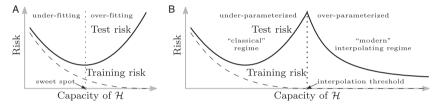


Figure: The classical U-shaped risk curve vs. double-descent risk curve. source: [11].

- lacktriangle classical large-sample limit setting: $n o \infty$ under fixed p
- ightharpoonup high dimensional setting: n and p comparably large

Double descent curve in practice (I)

- o Typical examples:
 - ▶ linear/nonlinear regression [25]
 - random features, random forest, and shallow neural networks [11]

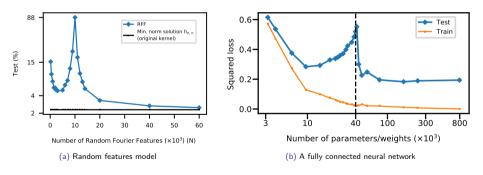


Figure: Experiments on MNIST. Source: [11].

Double descent curve in practice (II)

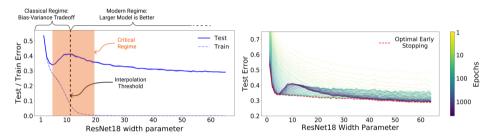


Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. source: [40].

Double descent curve in practice (III)

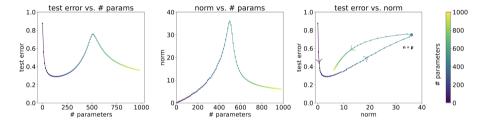


Figure: Left: The double descent phenomenon, where the number of parameters is used as the model complexity. Middle: The norm of the learned model is peaked around $n \approx p$. Right: The test error against the norm of the learnt model. The color bar indicate the number of parameters and the arrows indicates the direction of increasing model size. Their relationship are closer to the convention wisdom than to a double descent. source: [44]. This is the same setting as in Section 5.2 of [41].

Underparametrized regime

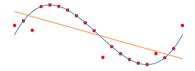


Figure: Low generalization but high empirical error

Figure: Sweet spot for the model complexity

Interpolation threshold

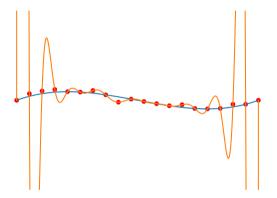


Figure: The unique degree 19 polynomial that can fit 20 samples.

Benign overfitting in the over-parametrized regime

Figure: A degree 200 polynomial that can harmlessly fits noisy 20 points.

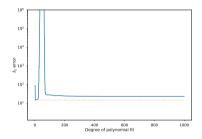


Figure: Double descent for polynomial fits

Benign Overfitting [9]: good prediction with zero training error

- Statistical wisdom: a predictor should not fit too well.
- deep networks fit perfectly on noisy data and generalize well on test data.

Deep learning is driven by scale

o The trend is to use ever larger models with increasing data sizes, which requires even more computation.

Figure: Amortized combined hardware and energy cost to train frontier AI models over time. Source: [17].

Deep learning is driven by scale (cont.)

- o Scaling factors: larger models, more data, more compute.
- o Tuning model architecture and dataset size are expensive.

Questions:

- o If you have a given budget of compute, what model would you train on how much data?
- \circ Can we predict $testloss(model\ size, data, optimization\ steps, ...)$ such that
 - compute is within budget,

before committing to large-scale experiments?

Scaling laws

Definition (Neural scaling law [26])

Neural scaling laws describe how neural network performance changes as key factors are scaled up or down.

Remarks: o In general, neural networks (pre)training can be characterized by four factors:^a

- 1. Size of the model (N): number of parameters
- 2. Size of the training dataset (D): number of samples or tokens
- 3. Compute (C): measured in FLOPS
- 4. Test loss after training (L): generalization performance

^aNote the notational change!

Scale and performance

o Increasing compute, dataset and model size improves performance, particularly in language models.

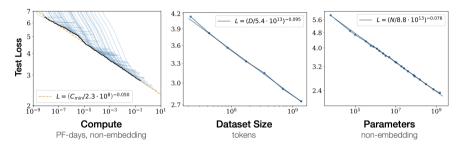


Figure: Neural scaling laws for language modelling. Source: [31]

Remarks: • Language modeling performance improves smoothly as we "scale."

- o For optimal performance all three factors must be scaled up in tandem.
- o Test performance has a power-law relationship with each individual factor.
- These are empirical curve fits rather than scaling "theory."

Do we need larger models?

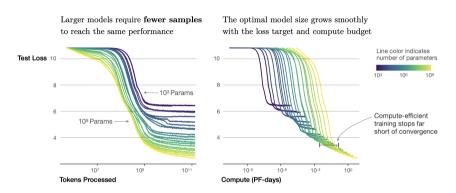


Figure: A series of language model training runs, with model sizes from 10^3 to 10^9 parameters. Source: [31].

Remarks: o Large models are more sample-efficient than small models.

o Larger models reach the same level of performance with fewer optimization steps.

Scaling laws: power law relationships

o Test loss exhibits a power law relationship with available resources.

Scaling Laws [31]

1. For models with a limited number of parameters, trained to convergence on sufficiently large datasets:

$$L(N) = \left(rac{N_c}{N}
ight)^{lpha_N}, \quad lpha_N \sim 0.076, \quad N_c \sim 8.8 imes 10^{13} ext{ (parameters)}$$

2. For large models trained with a limited dataset with early stopping:

$$L(D) = \left(\frac{D_c}{D}\right)^{\alpha_D}, \quad \alpha_D \sim 0.095, \quad D_c \sim 5.4 \times 10^{13} \text{ (input samples)}$$

3. When training with a limited amount of compute, a sufficiently large model, and a sufficiently small batch size (making optimal use of compute):

$$L(C_{\min}) = \left(rac{C_{\min}^c}{C_{\min}}
ight)^{lpha_C^{\min}}, \quad lpha_C^{\min} \sim 0.050, \quad C_{\min}^c \sim 3.1 imes 10^8 \; ext{(PF-days)}$$

Remarks: o [31] estimated the constants through extensive empirical analysis on language models.

o Scaling laws hold in many domains: speech [26], image classification [56], etc.

Chinchilla Scaling Laws

- o Kaplan's scaling laws [31] used a fixed learning rate schedule.
- \circ [27] suggests to schedule the learning rate such that it decays to pprox 1/10 of the max learning rate.

Chinchilla Scaling Laws [27]

Hoffman et al. [27] propose the following approach combining model size and data size:

$$L(N,D) = E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}},$$

where E is the irrecoverable error and A, B, α, β are estimated constants.

Chinchilla states that the model size N and the number of training tokens D should be scaled equally with compute C, where the optimal scaling is estimated as $N_{\rm opt} \propto C^{0.49}, D_{\rm opt} \propto C^{0.51}$.

Remarks: o For a given increase in compute, both the model and dataset should be increased proportionally.

o Models trained with balanced scaling can outperform larger models trained on less data.

Wrap up!

- o The visualizations can be deceiving to understand the high-dimensional behavior
- o Are we really in the interpolation regime in machine learning?

Theorem (Probability of interpolation [6])

Given a p-dimensional dataset $\mathcal{A}_n = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ with i.i.d. samples, where $\mathbf{a}_i \sim \mathcal{N}(0, I)$ for all $i = 1, \dots, n$, the probability that a new sample $\mathbf{a} \sim \mathcal{N}(0, I)$ is in the interpolation regime (i.e., within the convex hull of \mathcal{A}_n) has the following limiting behavior

$$\lim_{p \to \infty} p(\mathbf{a} \in \textit{ConvexHull}(\mathcal{A}_n)) = \begin{cases} 1 & \text{if } n > 2^{p/2}/p; \\ 0 & \text{if } n < 2^{p/2}/p. \end{cases}$$

• We are most likely in the extrapolation regime [5].

*Concentration inequality

- o Main tool for generalization bound: concentration inequalities!
 - ▶ Measure of how far is an empirical average from the true mean

Theorem (Hoeffding's Inequality [37])

Let Y_1, \ldots, Y_n be i.i.d. random variables with Y_i taking values in the interval $[a_i, b_i] \subseteq \mathbb{R}$ for all $i = 1, \ldots, n$. Let $S_n := \frac{1}{n} \sum_{i=1}^n Y_i$. It holds that

$$\mathbb{P}(|S_n - E[S_n]| > t) \le 2 \exp\left(-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

*Generalization bound for a singleton

Lemma

For $i=1,\ldots,n$, let $(\mathbf{a}_i,b_i)\in\mathbb{R}^p\times\{-1,1\}$ be independent random variables and $h_\mathbf{x}:\mathbb{R}^p\to\mathbb{R}$ be a function parametrized by $\mathbf{x}\in\mathcal{X}$. Let $\mathcal{X}=\{\mathbf{x}_0\}$ and $L(h_\mathbf{x}(\mathbf{a}),b)=\{sign(h_\mathbf{x}(\mathbf{a}))\neq b\}$ be the 0-1 loss. With probability at least $1-\delta$, we have that

$$\sup_{\mathbf{x} \in \mathcal{X}} |R(\mathbf{x}) - R_n(\mathbf{x})| = |R(\mathbf{x}_0) - R_n(\mathbf{x}_0)| \le \sqrt{\frac{\ln(2/\delta)}{2n}}.$$

Proof.

Note that $E[\frac{1}{n}\sum_{i=1}^n L(h_{\mathbf{x}_0}(\mathbf{a}_i),b_i)] = R(\mathbf{x}_0)$, the expected risk of the parameter \mathbf{x}_0 . Moreover $L(h_{\mathbf{x}_0}(\mathbf{a}_i),b_i) \in [0,1]$. We can use Hoeffding's inequality and obtain

$$\mathbb{P}(|R_n(\mathbf{x}_0) - R(\mathbf{x}_0)| > t) = \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n L_i(h_{\mathbf{x}_0}(\mathbf{a}_i), b_i) - R(\mathbf{x}_0)\right| > t\right) \le 2\exp\left(-2nt^2\right)$$

Setting $\delta:=2\exp\left(-2nt^2\right)$ we have that $t=\sqrt{\frac{\ln 2/\delta}{2n}}$, thus obtaining the result.

*Generalization bound for finite sets

Lemma

For $i=1,\ldots,n$, let $(\mathbf{a}_i,b_i)\in\mathbb{R}^p\times\{-1,1\}$ be independent random variables and $h_\mathbf{x}:\mathbb{R}^p\to\mathbb{R}$ be a function parametrized by $\mathbf{x}\in\mathcal{X}$. Let \mathcal{X} be a finite set and $L(h_\mathbf{x}(\mathbf{a}),b)=\{sign(h_\mathbf{x}(\mathbf{a}))\neq b\}$ be the 0-1 loss. With probability at least $1-\delta$, we have that

$$\sup_{\mathbf{x} \in \mathcal{X}} |R(\mathbf{x}) - R_n(\mathbf{x})| \le \sqrt{\frac{\ln |\mathcal{X}| + \ln(2/\delta)}{2n}}.$$

Proof.

Let $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_{|\mathcal{X}|}\}$. We can use a union bound and the analysis of the singleton case to obtain:

$$\mathbb{P}(\exists j: |R_n(\mathbf{x}_j) - R(\mathbf{x}_j)| > t) \le \sum_{j=1}^{|\mathcal{X}|} \mathbb{P}(|R_n(\mathbf{x}_j) - R(\mathbf{x}_j)| > t) = 2|\mathcal{X}| \exp\left(-2nt^2\right)$$

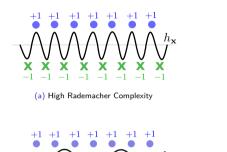
Setting $\delta:=2|\mathcal{X}|\exp\left(-2nt^2\right)$, we have that $t=\sqrt{\frac{\ln|\mathcal{X}|+\ln\frac{2}{\delta}}{2n}}$, thus obtaining the result.

*Visualizing Rademacher complexity

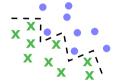
$$+1$$
 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$

Figure: Rademacher complexity measures correlation with random signs

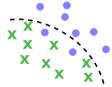
*Visualizing Rademacher complexity



(c) Low Rademacher Complexity



(b) Large Generalization error (memorization)



(d) Low Generalization error

Figure: Rademacher complexity and Generalization error

*Computing the Rademacher complexity of linear functions

Theorem

Let $\mathcal{X}:=\{\mathbf{x}\in\mathbb{R}^p:\|\mathbf{x}\|_2\leq\lambda\}$ and let $\mathcal{H}_{\mathcal{X}}$ be the class of functions of the form $\mathbf{h}_{\mathbf{x}}:\mathbb{R}^p\to\mathbb{R}, h_{\mathbf{x}}(\mathbf{a})=\langle\mathbf{x},\mathbf{a}\rangle$, for some $\mathbf{x}\in\mathcal{X}\}$. Let $A=\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subseteq\mathbb{R}^p$ such that $\max_{i=1,\ldots,n}\|\mathbf{a}_i\|\leq M$. It holds that $\mathcal{R}_A(\mathcal{H}_{\mathcal{X}})\leq\lambda M/\sqrt{n}$.

Proof.

$$\mathcal{R}_{A}(\mathcal{H}_{\mathcal{X}}) = E \sup_{\|\mathbf{x}\|_{2} \leq \lambda} \frac{1}{n} \sum_{i=1}^{n} v_{i} \langle \mathbf{x}, \mathbf{a} \rangle$$

$$= E \sup_{\|\mathbf{x}\|_{2} \leq \lambda} \frac{1}{n} \left\langle \mathbf{x}, \sum_{i=1}^{n} v_{i} \mathbf{a} \right\rangle$$

$$\leq \frac{1}{n} \lambda E \left\| \sum_{i=1}^{n} v_{i} \mathbf{a}_{i} \right\|_{2}^{2}$$

$$(Jensen)$$

$$\leq \frac{1}{n} \lambda \left(\sum_{i=1}^{n} \|\mathbf{a}_{i}\|_{2}^{2} \right)^{1/2}$$

$$\leq \lambda M / \sqrt{n}$$

*Rademacher complexity estimates of fully connected Neural Networks

Notation

For a matrix $\mathbf{X} \in \mathbb{R}^{n,m}$, $\|\mathbf{X}\|$ denotes its spectral norm. Let $\mathbf{X}_{:,k}$ be the k-th column of \mathbf{X} . We define

$$\|\mathbf{X}\|_{2,1} = \|(\|\mathbf{X}_{:,1}\|_{2}, \dots, \|\mathbf{X}_{:,m}\|_{2})\|_{1}.$$
(3)

Theorem (Spectral bound [8])

For positive integers $p_0, p_1, \ldots, p_d = 1$, and positive reals $\lambda_1, \ldots, \lambda_d$ and ν_1, \ldots, ν_d , define the set

$$\mathcal{X} := \{ (\mathbf{X}_1, \dots, \mathbf{X}_d) : \mathbf{X}_i \in \mathbb{R}^{p_i \times p_{i-1}}, ||\mathbf{X}_i|| \le \lambda_i, ||\mathbf{X}_i^T||_{2,1} \le \nu_i \}$$

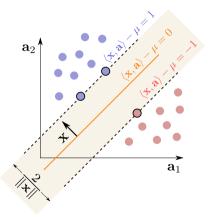
Let $H_{\mathcal{X}}$ be the class of neural networks $h_{\mathbf{x}}: \mathbb{R}^p \to \mathbb{R}$, $h_{\mathbf{x}} = \mathbf{X}_d \circ \sigma \circ \ldots \circ \sigma \circ \mathbf{X}_1$ where $\mathbf{x} = (\mathbf{X}_1, \ldots, \mathbf{X}_d) \in \mathcal{X}$. Suppose that σ is 1-Lipschitz. Let $A = \{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subseteq \mathbb{R}^p$, $M := \max_{i=1,\ldots,n} \|\mathbf{a}_i\|$ and $W := \max\{p_i: i=0,\ldots,d\}$.

The Rademacher complexity of $\mathcal{H}_{\mathcal{X}}$ with respect to A is bounded as

$$\mathcal{R}_A(\mathcal{H}_{\mathcal{X}}) = \mathcal{O}\left(\frac{\log(W)M}{\sqrt{n}} \prod_{i=1}^d \lambda_i \left(\sum_{j=1}^d \frac{\nu_j^{2/3}}{\lambda_j^{2/3}}\right)^{3/2}\right). \tag{4}$$

*Implicit bias for linearly separable datasets

- o For linearly separable datasets, we know of an algorithm capable of finding a separating hyperplane.
- o It maximizes the margin (i.e., distance between the boundary and the nearest training-data point).



Hard-margin Support Vector Machines

The hard margin Support Vector Machine solves the following optimization problem :

$$\underset{\mathbf{x} \in \mathbb{R}^p}{\arg \min} \|\mathbf{x}\|_2 \quad \text{ subject to } y_i \langle \mathbf{x}, \mathbf{a}_i \rangle \ge 1.$$

It finds a hyperplane that maximizes the margin. It does so *by design*.

*Implicit bias for linearly separable datasets

o What happens if we do not explicitly enforce margin maximization?

Theorem (Implicit Bias of Gradient Descent on Separable Data [51, 21])

For the logistic loss (and some other strictly monotonically decreasing losses) and for linearly separable datasets, the direction of the iterates \mathbf{x}^t of Gradient Descent for any initialization converges to the hard-margin SVM direction:

$$\frac{\mathbf{x}^t}{\|\mathbf{x}^t\|_2} \xrightarrow[t \to \infty]{} \frac{\mathbf{x}^\star_{\mathsf{SVM}}}{\|\mathbf{x}^\star_{\mathsf{SVM}}\|_2} \quad \textit{where } \mathbf{x}^\star_{\mathsf{SVM}} = \left\{ \underset{\mathbf{x} \in \mathbb{R}^p}{\arg\min} \|\mathbf{x}\|_2 \quad \textit{subject to } y_i \langle \mathbf{x}, \mathbf{a}_i \rangle \geq 1 \right\}$$

Remarks:

- o Here, without explicit instructions, gradient descent maximizes the margin.
- The rate of this convergence is $O\left(\frac{1}{\log t}\right)$.

*Implicit bias for linearly separable datasets

o A similar result can be established for stochastic gradient descent for the logistic loss on separable datasets.

Theorem (Implicit Bias of Stochastic Gradient Descent on Separable Data [38])

The direction of the iterates \mathbf{x}^t of Stochastic Gradient Descent for any initialization and for a small enough fixed step-size, converges almost surely to the hard-margin SVM direction:

$$\left\| \frac{\mathbf{x}^t}{\|\mathbf{x}^t\|_2} - \frac{\mathbf{x}_{\mathsf{SVM}}^\star}{\|\mathbf{x}_{\mathsf{SVM}}^\star\|_2} \right\|_2 = O\left(\frac{1}{\log t}\right)$$

Remarks:

- o This result is particularly interesting as it establishes convergence of fixed step-size SGD.
- o Both SGD and GD have the same implicit bias towards maximizing margins.

*Implicit bias for non-convex objectives

- o Characterizing implicit bias of stochastic gradient descent for non-convex objectives is an active research area.
- o Some papers study deep matrix factorization as a first step towards getting results for neural networks.

Deep Matrix Factorization

Deep matrix factorization consists of parametrizing a matrix ${f M}$ as a product of N matrices:

$$\mathbf{M} = \mathbf{X}_N \mathbf{X}_{N-1} \dots \mathbf{X}_1$$

which can be understood as parametrizing \mathbf{M} by a depth N "linear neural network," i.e., a neural network with no activations and with weight matrices \mathbf{X} .

*Implicit bias for deep matrix completion

- o The matrix completion problem consists of filling the missing entries of a partially observed matrix.
- o The deep matrix factorization approach consists of solving the following problem with gradient descent:

$$\underset{\mathbf{X}_N,\mathbf{X}_{N-1},\ldots,\mathbf{X}_1}{\arg\min} \sum_{(i,j)\in\Omega} ([\mathbf{X}_N\mathbf{X}_{N-1}\ldots\mathbf{X}_1]_{i,j} - b_{i,j})^2.$$

o It was conjectured in 2017 [22] that gradient descent was biased towards solutions with small nuclear norm.

Theorem (Implicit Regularization May Not Be Explainable by Norms (2020) [48])

For deep matrix completion the implicit bias can not be expressed as a function of a norm or semi-norm.

*Implicit bias for wide two-layer neural networks

- Assume a wide two-layer neural network $h_{\mathbf{x}}(\mathbf{a}) = \frac{1}{m} \sum_{i=1}^{m} \sigma(\langle \mathbf{x}_i, \mathbf{a} \rangle)$, where m is the width
- \circ An integral representation parameterized with a probability measure ν is given by

$$h_{\nu}(\mathbf{a}) = \int_{\mathbb{R}^p} \sigma(\langle \mathbf{x}, \mathbf{a} \rangle) d\nu(\mathbf{x}).$$

Theorem (Implicit bias of gradient flow on two-layer neural networks [16])

Under proper initialization and technical conditions (in particular, of convergence), the output of the gradient flow h_{ν_t} under a proper normalization scheme converges to a certain max-margin classifier.

Remarks: o Gradient flow is the continuous limit of gradient descent [50].

- o Fixing the hidden layer (i.e., random features) leads to a max-margin classifier in RKHS [16].
- o Other extensions of implicit bias of SGD depend on different models or settings:
 - overparameterized least squares [55], diagonal linear networks [46], stochastic differential equations [32].
 - ▶ multi-pass SGD [59], diferent noise types [12, 23], different momentum types [54].

*Implicit bias for wide two-layer neural networks

- o Assume that we have a wide two-layer neural network $h_{\mathbf{x}}(\mathbf{a}) = \frac{1}{m} \sum_{i=1}^m \sigma(\langle \mathbf{x}_i, \mathbf{a} \rangle)$
- o An integral representation parameterized with a probability measure ν

$$h_{\nu}(\mathbf{a}_i) = \int_{\mathbb{R}^p} \sigma(\langle \mathbf{x}, \mathbf{a}_i \rangle) d\nu(\mathbf{x}),$$

- $\circ \
 u \in \mathcal{P}_2(\mathbb{R}^{d+2})$ in the set of probability measures with finite second moment
- $\text{o the variation norm: } \|h\|_{\mathcal{F}_1} = \min_{\nu \in \mathcal{P}_2(\mathbb{R}^{d+2})} \left\{ \frac{1}{2} \int \|\mathbf{x}\|_2^2 \, \mathrm{d}\nu(\mathbf{x}); \quad h_{\nu}(\mathbf{a}_i) = \int \sigma(\langle \mathbf{x}, \mathbf{a}_i \rangle) \mathrm{d}\nu(\mathbf{x}) \right\}$

Theorem (Implicit Bias of wide two-layer Neural Networks [16])

Assume that $\nu_0 = \mathcal{U}_{\mathbb{S}^d} \otimes \mathcal{U}_{\{-1,1\}}$, the training set is consistent $([\mathbf{a}_i = \mathbf{a}_j] \Longrightarrow [b_i = b_j])$ and technical conditions (in particular, of convergence). Then $h_{\nu_t}/\|h_{\nu_t}\|_{\mathcal{F}_1}$ trained by an exponential tail loss converges to the \mathcal{F}_1 -max-margin classifier, i.e. it solves

$$\max_{\|h\|_{\mathcal{F}_1} \le 1} \min_{i \in [n]} b_i h(\mathbf{a}_i),$$

- o Gradient flow is the continuous limit of gradient descent [50].
- o Fixing the hidden layer (i.e., random features) leads to a max-margin classifier in RKHS [16].

*Example: Benign overfitting of DNNs on binary classification [57]

Problem setting: linear signal with label noise

- clean data distribution $(\tilde{\mathbf{a}}, \tilde{b}) \sim \tilde{\rho}$ $\tilde{b} \sim \{+1, -1\}, \ \tilde{\mathbf{a}} = \mathbf{z} + \tilde{b}\mu$
 - \circ μ -separated, 1-subgaussian, log-concave distributions in \mathbb{R}^d
- under a noise rate η , marginal distribution is the same: $\rho_A = \tilde{\rho}_A$ over A with $d_{\text{TV}}(\rho, \tilde{\rho}) \leq \eta$
- ▶ labels are flipped with probability $\eta(\mathbf{a})$: $\Pr[b(\mathbf{a}) = \tilde{b}] = 1 \eta$ and $\Pr[b(\mathbf{a}) \neq \tilde{b}] = \eta$
- ▶ DNNs with ReLU trained by gradient descent under the logistic loss

Theorem (Binary classification)

Under the above setting and assumptions, after t steps, DNNs can obtain the Bayes-optimal test error

$$\mathbb{P}_{(\mathbf{a},b)\sim\rho}(b\neq \operatorname{sgn}(h(\mathbf{a};\mathbf{X}^{(t)}))) \leq \eta + \exp\left(-\lambda\Theta\left(\frac{t\alpha(1-2\eta)}{\operatorname{Lip}_{h(\mathbf{a};\mathbf{X}^{(t)})}}\right)^{2}\right), w.h.p,$$

where α is the step size and η is the label flip rate.

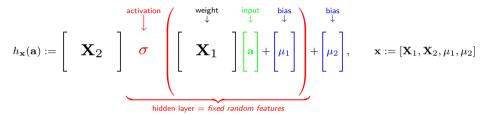
Remarks: o smaller Lipchitz constant, faster convergence rate

- o Lipschitz constant used for generalization
- o NTK initialization: lazy training regime

*From neural networks to random features model [28, 47]

1-hidden-layer neural network with m neurons (fully-connected architecture):

Let $\mathbf{X}_1 \in \mathbb{R}^{m \times p}$, $\mathbf{a} \in \mathbb{R}^p$, $\mathbf{X}_2 \in \mathbb{R}^m$, and $\mu_2 \in \mathbb{R}$



- ▶ X₁: Gaussian initialization and then fixed
- ▶ X₂: to be learned
- ightharpoonup over-parameterized model: #neurons m > #training data n

*Double descent: random features model (I)

o high dimensions: #training data n, #neurons m, feature dimension p are comparably large

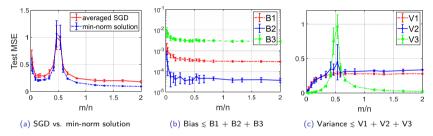


Figure: Test MSE, Bias, and Variance of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for p = 784 and n = 600 across the Gaussian kernel. Source: [35].

- random features regression solved by SGD: interplay between excess risk and optimization
- bias variance decomposition for understanding multiple randomness sources
- ▶ monotonic decreasing bias and unimodal variance ⇒ double descent

*Double descent: random features model (II)

Algorithm	data assumption	solution type	Result on risk curve
[25]	Gaussian	closed-form	variance 🗡 🔪
[36]	i.i.d on sphere	closed-form	variance, bias 거 🔪
[18]	Gaussian	closed-form	refined decomposition on variance
[1]	Gaussian	closed-form	fully decomposition on variance
[34]	general	closed-form	<i>></i> \
[4]	Gaussian	GD	variance 🗡 🔪
[35]	sub-Gaussian	SGD	variance 🥕 📐, bias 📐

Table: Comparison of representative random features on double descent.

- o multiple randomness sources: data sampling, label noise, initialization
- o phase transition due to non-monotonic variance

*From multiple global minimizers to single global minimizer

- o Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].³
- o In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).
- \circ Define feature mapping $\mathbf{a}\mapsto \frac{\partial h}{\partial \mathbf{x}}(\mathbf{a},\mathbf{x}_0)$, the (empirical) neural tangent kernel (NTK) [29] is defined as

$$K(\mathbf{a}_i, \mathbf{a}_j) := \left\langle \nabla_{\mathbf{x}} h(\mathbf{a}_i, \mathbf{x}), \nabla_{\mathbf{x}} h(\mathbf{a}_j, \mathbf{x}) \right\rangle, \forall i, j \in [n].$$

³Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.

Mathematics of Data | Prof. Volkan Cevher. volkan.cevher@epfl.ch

*From multiple global minimizers to single global minimizer

- o Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].³
- o In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).
- \circ Define feature mapping $\mathbf{a}\mapsto \frac{\partial h}{\partial \mathbf{x}}(\mathbf{a},\mathbf{x}_0)$, the (empirical) neural tangent kernel (NTK) [29] is defined as

$$K(\mathbf{a}_i, \mathbf{a}_j) := \langle \nabla_{\mathbf{x}} h(\mathbf{a}_i, \mathbf{x}), \nabla_{\mathbf{x}} h(\mathbf{a}_j, \mathbf{x}) \rangle, \forall i, j \in [n].$$

Training dynamics [29]

Under the squared loss, the dynamics of $h(\mathbf{a},\mathbf{x})$ is equivalent to kernel regression

$$\dot{h}(\mathbf{a}, \mathbf{x}(t)) = \nabla_{\mathbf{x}} h(\mathbf{a}, \mathbf{x}) \dot{\mathbf{x}}(t) = K_{\infty}(\mathbf{a}, \mathbf{a}_i) (h(\mathbf{a}, \mathbf{x}(t)) - b),$$

where, under proper initialization and large enough width, we have

$$K_{\infty} := \lim_{\mathsf{width} \to \infty} K_{\mathbf{x}(0)}(\mathbf{a}_i, \mathbf{a}_j) = \mathbb{E}_{\mathbf{x}}[K_{\mathbf{x}(0)}(\mathbf{a}_i, \mathbf{a}_j)].$$

³Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.

*From multiple global minimizers to single global minimizer

- o Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].³
- o In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).
- \circ Define feature mapping $\mathbf{a}\mapsto \frac{\partial h}{\partial \mathbf{x}}(\mathbf{a},\mathbf{x}_0)$, the (empirical) neural tangent kernel (NTK) [29] is defined as

$$K(\mathbf{a}_i, \mathbf{a}_j) := \langle \nabla_{\mathbf{x}} h(\mathbf{a}_i, \mathbf{x}), \nabla_{\mathbf{x}} h(\mathbf{a}_j, \mathbf{x}) \rangle, \forall i, j \in [n].$$

Training dynamics [29]

Under the squared loss, the dynamics of $h(\mathbf{a}, \mathbf{x})$ is equivalent to kernel regression

$$\dot{h}(\mathbf{a}, \mathbf{x}(t)) = \nabla_{\mathbf{x}} h(\mathbf{a}, \mathbf{x}) \dot{\mathbf{x}}(t) = K_{\infty}(\mathbf{a}, \mathbf{a}_i) (h(\mathbf{a}, \mathbf{x}(t)) - b),$$

where, under proper initialization and large enough width, we have

$$K_{\infty} := \lim_{\mathsf{width} \to \infty} K_{\mathbf{x}(0)}(\mathbf{a}_i, \mathbf{a}_j) = \mathbb{E}_{\mathbf{x}}[K_{\mathbf{x}(0)}(\mathbf{a}_i, \mathbf{a}_j)].$$

Remarks: o NTK stays unchanged during training

- o General loss functions: equivalence between infinite NNs and kernel methods [15]
 - e.g., NN trained by soft margin loss vs. SVM trained by subgradient descent

³Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.

*Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])

For a DNN with a large enough width trained by (S)GD on $\{(\mathbf{a}_i,b_i)\}_{i=1}^n$, under proper data assumptions and step-size η , we have

global convergence

$$L(\mathbf{x}(t)) \le [1 - \eta \lambda_{\min}(K_{\infty})]^t L(\mathbf{x}(0))$$
 whp,

where $\lambda_{\min}(K_{\infty})$ is the minimum eigenvalue of K_{∞} .

*Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])

For a DNN with a large enough width trained by (S)GD on $\{(\mathbf{a}_i,b_i)\}_{i=1}^n$, under proper data assumptions and step-size η , we have

global convergence

$$L(\mathbf{x}(t)) \le [1 - \eta \lambda_{\min}(K_{\infty})]^t L(\mathbf{x}(0))$$
 whp,

where $\lambda_{\min}(K_{\infty})$ is the minimum eigenvalue of K_{∞} .

generalization guarantee

$$\mathcal{R}(h_{\mathbf{x}(t)}) \lesssim \mathcal{O}\left(\sqrt{\frac{\mathbf{b}^\top K_\infty^{-1} \mathbf{b}}{n}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \textit{whp}.$$

*Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])

For a DNN with a large enough width trained by (S)GD on $\{(\mathbf{a}_i,b_i)\}_{i=1}^n$, under proper data assumptions and step-size η , we have

▶ global convergence

$$L(\mathbf{x}(t)) \le [1 - \eta \lambda_{\min}(K_{\infty})]^t L(\mathbf{x}(0))$$
 whp,

where $\lambda_{\min}(K_{\infty})$ is the minimum eigenvalue of K_{∞} .

► generalization guarantee

$$\mathcal{R}(h_{\mathbf{x}(t)}) \lesssim \mathcal{O}\left(\sqrt{\frac{\mathbf{b}^\top K_\infty^{-1} \mathbf{b}}{n}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \textit{whp}.$$

Remarks: • The minimum eigenvalue of NTK plays an important role!

- robustness: generate adversarial examples [53]
- ▶ image denoising [52]
- ▶ neural architecture search in a "train-free" fashion [58, 14]
- \circ Under proper assumptions, we have $\lambda_{\min}(K_{\infty}) = \Omega(p)$ [45] for the input dimension p

*Peeling the onion (risk minimization setting) - Decomposition details

$$R(\mathbf{x}^{t}) - R(\mathbf{x}^{\natural}) = R(\mathbf{x}^{t}) - R_{n}(\mathbf{x}^{t}) + R_{n}(\mathbf{x}^{t}) - R_{n}(\mathbf{x}^{\star}) + \underbrace{R_{n}(\mathbf{x}^{\star}) - R_{n}(\mathbf{x}^{\natural})}_{\leq 0} + R_{n}(\mathbf{x}^{\natural}) - R(\mathbf{x}^{\natural})$$

$$\leq R_{n}(\mathbf{x}^{t}) - R_{n}(\mathbf{x}^{\star}) + \underbrace{R(\mathbf{x}^{t}) - R_{n}(\mathbf{x}^{t}) + R_{n}(\mathbf{x}^{\natural}) - R(\mathbf{x}^{\natural})}_{2 \sup_{\mathbf{x} \in \mathcal{X}} |R_{n}(\mathbf{x}) - R(\mathbf{x})|}$$

$$R(\mathbf{x}^{t}) - R(\mathbf{x}^{\circ}) = R(\mathbf{x}^{t}) - R(\mathbf{x}^{\natural}) + R(\mathbf{x}^{\natural}) - R(\mathbf{x}^{\circ})$$

$$\leq R_{n}(\mathbf{x}^{t}) - R_{n}(\mathbf{x}^{\star}) + 2 \sup_{\mathbf{x} \in \mathcal{X}} |R_{n}(\mathbf{x}) - R(\mathbf{x})| + R(\mathbf{x}^{\natural}) - R(\mathbf{x}^{\circ})$$

*Generalization bounds based on uniform stability — definitions

Definition (Empirical Risk on a set)

Let $S:=[(\mathbf{a}_1,b_1),\ldots,(\mathbf{a}_n,b_n)]$ be an i.i.d. sample drawn from a distribution on $\mathcal{A}\times\mathcal{B}$. Let $L:\mathcal{B}\times\mathcal{B}\to\mathbb{R}$ be a loss function and \mathcal{H} be a class of functions $h: \mathcal{A} \to \mathcal{B}$. The empirical risk of $h \in \mathcal{H}$ on the set S is defined as:

$$R_S(h) := \frac{1}{n} \sum_{i=1}^n L(h(\mathbf{a}_i), b_i)$$

(Almost) same definition as before. Makes explicit the dependence on the set S.

Definition (Expected Generalization Error)

Let $\mathscr{A}: \mathscr{Z} \to \mathscr{H}$ be a randomized algorithm that takes as input a finite sample S of arbitrary size, and outputs a function $\mathscr{A}_S \in \mathcal{H}$. Suppose that $S = [(\mathbf{a}_1, b_1), \dots, (\mathbf{a}_n, b_n)]$ is an i.i.d. sample form probability distribution on $\mathcal{A} \times \mathcal{B}$. The expected generalization error on a sample of size n is the value

$$\mathbb{E}[R_S(\mathscr{A}_S) - R(\mathscr{A}_S))]$$

the expectation is taken with respect to the draw of the sample S and the randomness of \mathscr{A} .

EPFL

*Generalization bounds based on uniform stability — Fundamental theorem (I)

Theorem (Hardt et al. 2016 [24])

Let A be uniformly stable with stability $(\beta_n)_{n\geq 1}$, then for a random i.i.d. sample S of size n, the expected generalization error is bounded as follows

$$\mathbb{E}[|R_S(\mathscr{A}_S) - R(\mathscr{A}_S))|] \le \beta_n$$

Proof.

Let $S = [(\mathbf{a}_1, b_1), \dots, (\mathbf{a}_n, b_n)]$ and $S' = [(\mathbf{a}_1', b_1'), \dots, (\mathbf{a}_n', b_n)]$ be two i.i.d. samples of size n. Denote

$$S^{(i)} := [(\mathbf{a}_1, b_1), \dots, (\mathbf{a}_{i-1}, b_{i-1}), (\mathbf{a}'_i, b'_i), (\mathbf{a}_{i+1}, b_{i+1}), \dots, (\mathbf{a}_n, b_n)]$$

the sample that results from replacing (\mathbf{a}_i, b_i) by (\mathbf{a}_i', b_i') in S.

$$\begin{split} \mathbb{E}[R_S(\mathscr{A}_S)] &= \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_S(\mathbf{a}_i), b_i)\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_{S^{(i)}}(\mathbf{a}_i'), b_i')\right] \\ &= \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_{S^{(i)}}(\mathbf{a}_i'), b_i') - \frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_S(\mathbf{a}_i'), b_i')\right] + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_S(\mathbf{a}_i'), b_i')\right] \end{split}$$

*Generalization bounds based on uniform stability — Fundamental theorem (II)

Proof. (continued).

We have

$$\mathbb{E}[R_S(\mathscr{A}_S)] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_{S^{(i)}}(\mathbf{a}_i'), b_i') - \frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_S(\mathbf{a}_i'), b_i')\right] + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(\mathscr{A}_S(\mathbf{a}_i'), b_i')\right]$$

Note that S and $S^{(i)}$ only differ in one sample: uniform stability allows bounding the first term as:

$$=\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^nL(\mathscr{A}_{S^{(i)}}(\mathbf{a}_i'),b_i')-\frac{1}{n}\sum_{i=1}^nL(\mathscr{A}_{S}(\mathbf{a}_i'),b_i')\right]=\frac{1}{n}\sum_{i=1}^n\mathbb{E}\left[L(\mathscr{A}_{S^{(i)}}(\mathbf{a}_i'),b_i')-L(\mathscr{A}_{S}(\mathbf{a}_i'),b_i')\right]\leq\beta_n$$

Finally note that because the samples (\mathbf{a}_i, b_i) are independent of S we have:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}L(\mathscr{A}_{S}(\mathbf{a}_{i}^{\prime}),b_{i}^{\prime})\right]=R(\mathscr{A}_{S})$$

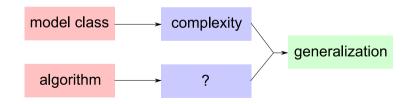
Slide 24 / 47

analogously we can show $\mathbb{E}\left[R(\mathscr{A}_S) - R_S(\mathscr{A}_S)\right] \leq \beta_n$.

*Alternatives to complexity-based generalization bounds

- o So far we have seen that complexity based generalization bounds:
 - characterize worst-case scenario
 - not tight in practice
 - disregard the effect of the optimization algorithm

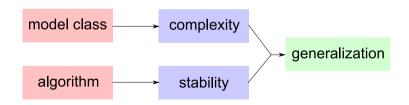
Can we understand generalization as a property of an optimization algorithm?



*Alternatives to complexity-based generalization bounds

- o So far we have seen that complexity based generalization bounds:
 - characterize worst-case scenario
 - not tight in practice
 - disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm? YES!



*Formal definition of stability (I)

Definition (Uniform Stability [24])

Let $\mathscr{A}: \mathscr{Z} \to \mathscr{H}$ be a randomized algorithm with input a finite sample S, and output a function $\mathscr{A}_S \in \mathscr{H}$.

The algorithm $\mathscr A$ has uniform stability $(\beta_n)_{n\geq 1}$ with respect to the loss function L if for all subsets $S,S'\subseteq \mathcal A\times\mathcal B$ such that |S|=|S'|=n and S and S' differ in at most one sample:

$$\sup_{(\mathbf{a},b)\in\mathcal{A}\times\mathcal{B}} \mathbb{E}|L(\mathscr{A}_S(\mathbf{a}),b) - L(\mathscr{A}_{S'}(\mathbf{a}),b)| \leq \beta_n$$

The expectation is taken with respect to the randomness in the algorithm \mathscr{A} .

Misnomer: Lower stability (small values of β_n) means the difference in the output of the algorithm is smaller.

*Formal definition of stability (II)

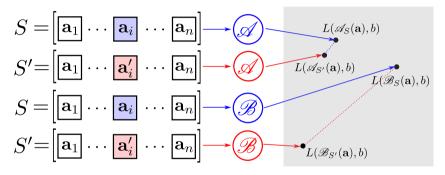


Figure: Algorithm ${\mathscr B}$ is less stable than algorithm ${\mathscr A}$.

*The stability of SGD

 \circ Let $h_{\mathbf{x}} \in \mathcal{H}_{\mathcal{X}}$ be an element of a parametric function class. Consider the ERM optimization objective:

$$f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}), \qquad f_i(\mathbf{x}) := L(h_{\mathbf{x}}(\mathbf{a}_i), b_i).$$

• The SGD iterates for $t=0,\ldots,T$ are $\mathbf{x}_{t+1}=\mathbf{x}_t-\alpha_t\nabla_{\mathbf{x}}f_i(\mathbf{x}_t)$, for $i\sim \mathsf{Unif}[n]$.

Algorithm	Assumptions on f_i	Stability
SGD	convex, $L\text{-smooth},\ \beta\text{-Lipschitz},\ \alpha_t\leq 2/L$	$\frac{\beta^2}{n} \sum_{\substack{t=0\\\beta^2}}^T \alpha_t$
SGD	$\mu\text{-str}$ convex, $L\text{-smooth},\ \beta\text{-Lipschitz},\ \alpha_t \leq 2/L$	'
SGD	$\mu\text{-str}$ convex, $L\text{-smooth},\ \beta\text{-Lipschitz},\ \alpha_t = \frac{1}{\mu t}$	$rac{eta^2 + L ho}{n\mu} \ eta^2 T$
SGD avg. iterate	convex, L -smooth, β -Lipschitz	<u>'</u>
SGD	non-convex, $L\text{-smooth, }\beta\text{-Lipschitz, }\alpha_t=1/t$	$\frac{1+1/\beta}{n} \frac{nL}{\beta^{\frac{2}{L+1}} T^{\frac{L}{L+1}}}$

Table: Summary of stability upper bounds for different assumptions on the objective function [24]

*Effect of the number of iterations on the stability of SGD and the generalization error

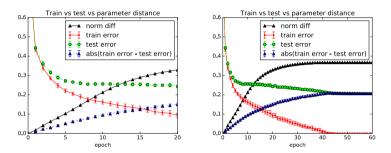


Figure: Normalized parameter distance between two networks trained on two datasets S, S' differing only in one sample, training error, test error and generalization error (0-1 loss) on CIFAR10 [24].

- o Parameter distance is a stronger notion than stability.
- \circ More iterations \Rightarrow Parameter distance increases (we expect stability to increase).
- o Generalization error follows the same behavior as the parameter distance (proxy for stability).

Larger models generalize better

o **Test Loss Results**: Generalization to other data distributions shows smooth improvement with model size across datasets (WebText2, Wikipedia, Books, Common Crawl).

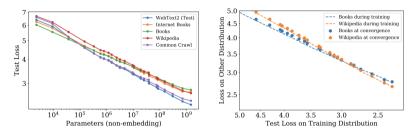


Figure: Left: Larger models improve test loss across different data distributions. Right: Transfer improves with test performance. Source: [31].

Remarks: O Generalization performance to other data distributions improves smoothly with model size.

- o Scaling laws hold even when train ≠ test distribution.
- o Higher generalization on training distribution improves transfer on other distributions.

Double descent in 1998: AdaBoost

Definition (Informal [49])

"Boosting solves hard machine learning problems by forming a very smart committee of grossly incompetent but carefully selected members."

AdaBoost

- 1. Initialize the observation weights $w_i = 1/N$, i = 1, 2, ..., N
- 2. For t = 1 to T:
 - 2.1 Fit a classifier $h_{\mathbf{x},t}(\mathbf{a})$ to the training data using weights w_i .
 - 2.2 Compute

$$\mathsf{err}_t = \frac{\sum_{i=1}^N w_i I(\mathbf{b}_i \neq h_{\mathbf{x},t}(\mathbf{a}_i))}{\sum_{i=1}^N w_i}.$$

- 2.3 Compute $\alpha_t = \log((1 \operatorname{err}_t)/\operatorname{err}_t)$.
- 2.4 Set $w_i \leftarrow w_i \cdot \exp[\alpha_t \cdot I(\mathbf{b}_i \neq h_{\mathbf{x},t}(\mathbf{a}_i))], i = 1, 2, \dots, N.$
- 3. Output $h(\mathbf{a}) = \left[\sum_{t=1}^{T} \alpha_t h_{\mathbf{x},t}(\mathbf{a})\right]$.

Remarks:

- o At each round, the weights are updated so the weak learner focuses on the hard examples.
- o The more iterations are run, the more complex the output function becomes (e.g., overfitting).

AdaBoost with large number of rounds

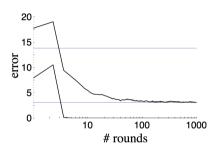
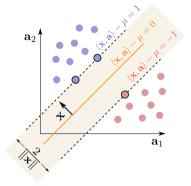


Figure: AdaBoost on letters dataset [7]. Test error keeps improving even after 0 training error is reached.



Margin theory [7]

The *margin* is a measure of confidence in the prediction. Boosting can be shown to increase the margin at each round.

References |

- Ben Adlam and Jeffrey Pennington.
 Understanding double descent requires a fine-grained bias-variance decomposition.
 In Advances in neural information processing systems, 2020.
 (Cited on page 64.)
- [2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-parameterization. In *International Conference on Machine Learning*, pages 242–252. PMLR, 2019. (Cited on pages 65, 66, 67, 68, 69, and 70.)
- [3] Navid Azizan and Babak Hassibi. Stochastic gradient/mirror descent: Minimax optimality and implicit regularization. (Cited on page 28.)
- [4] Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-layer neural networks: an asymptotic viewpoint. In *International Conference on Learning Representations*, pages 1–8, 2020. (Cited on page 64.)

References II

[5] Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts to extrapolation. arXiv preprint arXiv:2110.09485, 2021. (Cited on page 46.)

[6] Imre Bárány and Zoltán Füredi. On the shape of the convex hull of random points. Probability theory and related fields, 77(2):231–240, 1988.

(Cited on page 46.)

- [7] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A new explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686, 1998. (Cited on page 83.)
- [8] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural networks. In Advances in Neural Information Processing Systems 30, pages 6240–6249. Curran Associates, Inc., 2017. (Cited on pages 16 and 53.)

References III

[9] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler.

Benign overfitting in linear regression.

Proceedings of the National Academy of Sciences, 117(48):30063-30070, 2020. (Cited on page 38.)

[10] Peter L Bartlett and Shahar Mendelson.

Rademacher and gaussian complexities: Risk bounds and structural results.

Journal of Machine Learning Research, 3(Nov):463-482, 2002.

(Cited on page 12.)

[11] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.

Reconciling modern machine-learning practice and the classical bias-variance trade-off.

Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.

(Cited on pages 32 and 33.)

[12] Alexander Camuto, Xiaoyu Wang, Lingjiong Zhu, Chris Holmes, Mert Gurbuzbalaban, and Umut Simsekli. Asymmetric heavy tails and implicit bias in gaussian noise injections.

In Proceedings of the 38th International Conference on Machine Learning, 2021.

(Cited on page 59.)

References IV

[13] Yuan Cao and Quanquan Gu.

Generalization bounds of stochastic gradient descent for wide and deep neural networks.

In Advances in neural information processing systems, 2019.

(Cited on pages 68, 69, and 70.)

[14] Wuyang Chen, Xinyu Gong, and Zhangyang Wang.

Neural architecture search on imagenet in four gpu hours: A theoretically inspired perspective.

In International Conference on Learning Representations, 2021.

(Cited on pages 68, 69, and 70.)

[15] Yilan Chen, Wei Huang, Lam Nguyen, and Tsui-Wei Weng.

On the equivalence between neural network and support vector machine.

Advances in Neural Information Processing Systems, 34:23478–23490, 2021.

(Cited on pages 65, 66, and 67.)

[16] Lenaic Chizat and Francis Bach.

Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss.

In Conference on Learning Theory, 2020.

(Cited on pages 31, 59, and 60.)

References V

[17] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, and David Owen. The rising costs of training frontier ai models, 2024.

(Cited on page 39.)

[18] Stéphane d'Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double descent: Bias and variance (s) in the lazy regime. pages 2280–2290, 2020. (Cited on page 64.)

[19] Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M Roy.

In search of robust measures of generalization.

Advances in Neural Information Processing Systems, 33:11723–11733, 2020. (Cited on page 16.)

[20] Stuart Geman, Elie Bienenstock, and René Doursat.

Neural networks and the bias/variance dilemma.

Neural computation, 4(1):1–58, 1992.

(Cited on page 6.)

References VI

[21] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization geometry. (Cited on pages 28, 31, and 55.)

[22] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit regularization in matrix factorization.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems 30*, pages 6151–6159. Curran Associates, Inc. (Cited on page 58.)

[23] Jeff Z. HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit bias of the noise covariance. In *Proceedings of Thirty Fourth Conference on Learning Theory*, 2021. (Cited on page 59.)

[24] Moritz Hardt, Ben Recht, and Yoram Singer.

Train faster, generalize better: Stability of stochastic gradient descent.

In International Conference on Machine Learning, pages 1225–1234. PMLR, 2016.

(Cited on pages 73, 77, 79, and 80.)

References VII

[25] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

(Cited on pages 33 and 64.)

[26] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou.

Deep learning scaling is predictable, empirically.

arXiv preprint arXiv:1712.00409, 2017.

(Cited on pages 41 and 44.)

[27] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training assessment and Lagrangian Lagrangian and Lagrangian Lagrangian.

Training compute-optimal large language models.

In NeurIPS, 2022.

(Cited on page 45.)

[28] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew.

Extreme learning machine: theory and applications.

Neurocomputing, 70(1-3):489-501, 2006.

(Cited on page 62.)

References VIII

[29] Arthur Jacot, Franck Gabriel, and Clément Hongler.

Neural tangent kernel: Convergence and generalization in neural networks.

In Advances in neural information processing systems, pages 8571–8580, 2018.

(Cited on pages 65, 66, and 67.)

[30] Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.

Fantastic generalization measures and where to find them.

In International Conference on Learning Representations, 2020.

(Cited on page 16.)

[31] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.

Scaling laws for neural language models.

arXiv preprint arXiv:2001.08361, 2020.

(Cited on pages 42, 43, 44, 45, and 81.)

[32] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora.

What happens after SGD reaches zero loss? —a mathematical framework.

In International Conference on Learning Representations, 2022.

(Cited on page 59.)

References IX

[33] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes.

Fisher-rao metric, geometry, and complexity of neural networks.

volume 89 of *Proceedings of Machine Learning Research*, pages 888–896. PMLR, 16–18 Apr 2019.

(Cited on page 16.)

[34] Zhenyu Liao, Romain Couillet, and Michael Mahoney.

A random matrix analysis of random fourier features: beyond the gaussian kernel, a precise phase transition, and the corresponding double descent.

In Neural Information Processing Systems, 2020.

(Cited on page 64.)

[35] Fanghui Liu, Johan A.K. Suykens, and Volkan Cevher.

On the double descent of random features models trained with sgd.

arXiv preprint arXiv:2110.06910, 2021.

(Cited on pages 63 and 64.)

[36] Song Mei and Andrea Montanari.

The generalization error of random features regression: Precise asymptotics and double descent curve.

arXiv preprint arXiv:1908.05355, 2019.

(Cited on page 64.)

References X

[37] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.

Foundations of Machine Learning.

The MIT Press, 2nd edition, 2018.

(Cited on pages 13 and 47.)

[38] Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry.

Stochastic gradient descent on separable data: Exact convergence with a fixed learning rate.

(Cited on page 56.)

[39] Vaishnavh Nagarajan and J. Zico Kolter.

Generalization in Deep Networks: The Role of Distance from Initialization.

arXiv e-prints, page arXiv:1901.01672, January 2019.

(Cited on page 16.)

[40] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt.

(Cited on page 34.)

[41] Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma.

Optimal regularization can mitigate double descent.

In International Conference on Learning Representations, 2021.

(Cited on page 35.)

References XI

[42] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role of over-parametrization in generalization of neural networks. In International Conference on Learning Representations, 2019. (Cited on pages 14 and 15.)

[43] Behnam Nevshabur, Rvota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks.

In Conference on Learning Theory, pages 1376–1401, 2015.

(Cited on page 16.)

[44] Andrew Ng. Cs229 lecture notes, 2022.

(Cited on page 35.)

[45] Quynh Nguyen, Marco Mondelli, and Guido F Montufar.

Tight bounds on the smallest eigenvalue of the neural tangent kernel for deep relu networks.

In International Conference on Machine Learning, pages 8119–8129, PMLR, 2021.

(Cited on pages 68, 69, and 70.)

References XII

[46] Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal linear networks: a provable benefit of stochasticity. In Advances in Neural Information Processing Systems, 2021. (Cited on page 59.)

[47] Ali Rahimi and Benjamin Recht.

Random features for large-scale kernel machines.

In Advances in Neural Information Processing Systems, pages 1177–1184, 2007. (Cited on page 62.)

[48] Noam Razin and Nadav Cohen.

Implicit regularization in deep learning may not be explainable by norms.

(Cited on page 58.)

[49] Robert E Schapire and Yoav Freund.

 $Boosting:\ Foundations\ and\ algorithms.$

Kybernetes, 2013.

(Cited on page 82.)

References XIII

[50] Damien Scieur, Vincent Roulet, Francis Bach, and Alexandre d Aspremont. Integration methods and optimization algorithms.

In Advances in Neural Information Processing Systems, 2017.

(Cited on pages 59 and 60.)

[51] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data.

(Cited on page 55.)

[52] Julián Tachella, Jungi Tang, and Mike Davies.

The neural tangent link between cnn denoisers and non-local filters.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8618–8627, 2021.

(Cited on pages 68, 69, and 70.)

[53] Nikolaos Tsilivis and Julia Kempe.

What can the neural tangent kernel tell us about adversarial robustness?

In Advances in Neural Information Processing Systems, 2022.

(Cited on pages 68, 69, and 70.)

References XIV

[54] Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. Does momentum change the implicit regularization on separable data? In Advances in Neural Information Processing Systems, 2022. (Cited on page 59.)

[55] Jingfeng Wu, Difan Zou, Vladimir Braverman, and Quanquan Gu. Direction matters: On the implicit bias of stochastic gradient descent with moderate learning rate. In *International Conference on Learning Representations*, 2021. (Cited on page 59.)

[56] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12104–12113, 2022.

(Cited on page 44.)

[57] Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Francesco Locatello, and Volkan Cevher. Benign overfitting in deep neural networks under lazy training. In *International Conference on Machine Learning*, pages 43105–43128. PMLR, 2023. (Cited on page 61.)

References XV

- [58] Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, and Volkan Cevher. Generalization properties of nas under activation and skip connection search. Advances in Neural Information Processing Systems, 35:23551–23565, 2022. (Cited on pages 68, 69, and 70.)
- [59] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Risk bounds of multi-pass sgd for least squares in the interpolation regime. In Advances in Neural Information Processing Systems, 2022. (Cited on page 59.)