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Outline

This lecture :
> The classical trade-off between model complexity and risk
Generalization bounds via uniform convergence
The generalization mystery in deep learning
Implicit regularization of optimization algorithms
Double descent curves: Generalization bounds via bias-variance decomposition
Scaling laws
*Generalization bounds based on algorithmic stability

*Boosting

*

vV vV VYV vV VY VY VY

Next lecture :

> Optimization in Deep Learning

ILHELI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 41



Understanding the trade-off between model complexity and expected risk

Models

Let [X; : 4 =1,...] be a nested sequence of parameter domain, i.e.,
X; C Xj41. For example, let X; = neural networks with ¢ neurons.

1. Rp(x}) = minkex; Rn(x): ERM solution over X;
2. R(x}): True risk of the ERM solution over X;

3. Supyex, |R(X) — Rn(x)|: Worst-case Generalization error of &;

Practical performance of the ERM estimator
R(x}) < min R, (x)+ sup |R(x) — Rn(x)] (1)
xEX; XEX;
As we increase the index ¢ — ¢ + 1 of the parameter domain, i.e., we choose a larger (more complex) model
1. The minimum empirical risk decreases: minyex; Rn(x) > minyex,; Rn(x).
2. The generalization error increases: supyc x, |R(x) — Rn(x)| < SUDxex; |, |R(x) — Rn(x)].

3. What happens with the true risk R(x})?
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Peeling the onion

Models

Practical performance

d(ht, h°) <
N~

E(t,n)

Let d(-,-) : H°® x H° — RT be a metric in an extended function space
H° that includes H; i.e., H C H°. Let

1.
2. h% € H be the solution under the assumed function class H C H°
3.
4

. ht € H be the numerical approximation of the algorithm at time ¢

h° € H° be the true, expected risk minimizing model

h* € H be the estimator solution

d(h', k%) + d(h*,h%) +d(h%,R°),
SN—— N~

optimization error  statistical error model error

where £(¢,n) denotes the total error of the Learning Machine. We can try to

1. reduce the optimization error with computation

2. reduce the statistical error with more data samples, with better estimators, and with prior information

3. reduce the model error with flexible or universal representations
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The classical trade-off between

model complexity and risk

—-—=- worst case generalization error
minimum empirical risk
—— risk bound

risk

complexity of model class

Figure: Bias-variance trade-off [20].
Occam'’s Razor: Simple is better than complex
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The dangers of complex function classes: sévére (cevher) overfitting

Degree 3 polynomial funtion

— ground-truth

-20
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure: Training over a complex function class can lead to overfitting.
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The dangers of complex function classes: sévére (cevher) overfitting

Noisy samples

— ground-truth
® samples

mingey Rn(x)

supxex [R(¥) = Bn(x)]

-20
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure: Training over a complex function class can lead to overfitting.
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The dangers of complex function classes: sévére (cevher) overfitting

Degree 19 polynomial fit

AT TN

00 / / mingex Rn(x) N\

o3 |R(x) = Rn(x)| 7
4\ / Supy e x [R(x) — Rn(x
-1.0 ]
-1s — ground-truth
model
® samples
-2.0
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure: Training over a complex function class can lead to overfitting.
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Estimation of parameters vs estimation of risk

Nomenclature

Rn ()

R(")

R(x%) — R(x°)

R(x*) — R(x%)

Supyex | R(%) — Rn(x)]
Ry (xt) — Ry (x*)

training error

test error

modeling error
excess risk
generalization error
optimization error
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Recall the general setting

Let R(hx) = EL(hx(a),b) be the risk function and

Rn(hx) = % E?Zl L(hx(a;),b;) be the empirical estimate.
Let X C X° be parameter domains, where X is known. Define

1. x° € argmin, ¢ yo R(hx): true minimum risk model

. xb € argmin, ¢  R(hx): assumed minimum risk model

i

. x": numerical approximation of x* at time ¢

2
3. x* € argmin, ¢y Rn(hx): ERM solution
4

X—=>X° nt pt

Training error N Y

Excess risk S N

Generalization error Ve ¢ Va

Modeling error N\ = “

Time a a v
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What theoretical challenges in Deep Learning will we study?

Models
Let X C X° be parameter domains, where X is known. Define
1. x° € argmin, ¢ yo R(hx): true minimum risk model

. x! € argmin, ¢y R(hx): assumed minimum risk model

1

2
3. x* € argmin, ¢y Rn(hx): ERM solution
4. x":

numerical approximation of x* at time ¢
Practical performance in Deep Learning

R(x') = R(x°) < Rn(x") = Rn(x*) +2 sup |R(x) — Rn(x)| + R(x) — R(x°)
X Y
&(t,n) optimization error EE—V—/ model error
generalization error

where £(¢,n) denotes the total error of the Learning Machine. In Deep Learning applications
1. Optimization error is almost zero, in spite of non-convexity. = lecture 10
2. Generalization error is usually small, but theory is lacking. = lecture 9 (this one)

3. Large architectures + inductive bias might lead to small model error.
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Generalization error bounds and Rademacher Complexity
Goal: Obtain generalization bounds for multi-layer, fully-connected neural networks
o We want to find high-probability upper bounds for the quantity
sup |R(x) — Rn(x)|
xXEX
o Need a notion of complexity to derive generalization bounds for infinite classes of functions

Definition (Rademacher Complexity [10])

Let A={ai,...,an} CRP and let {v; : 4 =1,...,n} be independent Rademacher random variables i.e.,
taking values uniformly in {—1,+1} (coin flip). Let H be a class of functions of the form h : R? — R. The
Rademacher complexity of H with respect to A is defined as:

1 n
Ra(H) =E, sup — Zvih(ai).

heH M £

Remarks: o R 4(H) measures how well we fit random (£1) with the output of an element of H on the set A.

o The derivation of Rademacher Complexity for specific function classes are in the appendix.
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Fundamental theorem about the Rademacher Complexity

Theorem (See Theorem 3.3 and 5.8 in [37])
Suppose that the loss function has the form L(hx(a),b) = ¢(b- hx(a)) for a 1-Lipschitz function ¢ : R — R.

Let Hx := {hx : x € X} be a class of parametric functions hx : RP — R. For any § > 0, with probability at

least 1 — & over the draw of an i.i.d. sample {(a;,b;)}? ,, letting A = (a1, ...,ay), the following holds:
In(2/9
sup |Rp(x) — R(x)| <2EaRA(Hx) + @/ ),
xeX 2n
In(4/6)

sup |Rn(x) — R(x)| < 2Ra(Hx) +3
xEX

Assumption is true for common losses

> L(hx(a),b) = log(1l + exp(—b- hx(a))) = ¢(z) := log(1 + exp(z)) (logistic loss)
> L(hx(a),b) = max(0,1 — b hx(a)) = ¢(z) := max(0,1 — z) (hinge loss)
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The complexity vs risk trade-off in practice (I)

MNIST CIFAR-10
— o : 07 =
0.06 —Training —Training
— Test (at convergence) 06 —Test (at convergence)
0.05
0.5
0.04
‘e— § 0.4
5 0.03 &g
0.02 0.2
0.01 0.1
0
G4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
# Hidden Units # Hidden Units

Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [42].

Empirical error becomes zero for a wide enough network. What should happen for even wider networks?
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The complexity vs risk trade-off in practice (lI)

MNIST CIFAR-10
— 0.7 —
0.06 —Training —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05
0.5
0.04
5 5 0.4/
2 =
5 0.03 H g
0.02 0.2
0.01 01
0
G4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
# Hidden Units # Hidden Units

Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [42].

Test error continues to go down even if we keep incresing the complexity of the model!
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How well do complexity measures correlate with generalization?

name definition correlation!
Frobenius distance to initialization [39] ijl X — X912, —0.263
a A
Spectral complexity? [8] Hizl (1%l <Zi—l X7|§/12) —-0.537
Parameter Frobenius norm Zd [1X(1%. 0.073
Fisher-Rao [33] (a+1)? L (%, Vcl(hx(a7), b)) 0.078
2
Path-norm [43] Em’ i) HJ L (Xiyi0) 0.373

Table: Complexity measures compared in the empirical study [30], and their correlation with generalization

Complexity measures are still far from explaining generalization in Deep Learning!

A more recent evaluation of many complexity measures is available [19].

Kendall's rank correlation coefficient
2The definition in [30] differs slightly
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The benefits of overparametrization

Overparameterization: #model parameters > #training data

Degree 200 polynomial fit

mingex Rn(x) N\

supxe x [R(%) = Rn(X)|

\/
— ground-truth /
‘ model

-~ overparametrized
‘ ® samples

~0.75 -0.50 -0.25 0.00 025 050 0.75 1.00

Figure: Overparametrization leads to benign overfitting.
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The generalization mystery in deep learning

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht! Oriol Vinyals
University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
rer ably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings

with a thanratical canctmietion chawinag that cimnla danth tun nanral natwarle al-
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A gap between theory and practice

o In practice, simple algorithms like SGD can
train neural networks to zero error and
achieve low test error.

o This happens even for large and complex
neural network architectures.

o Complexity measures like the Rademacher
complexity suggest the opposite behaviour
(overfitting)
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Multiple global minimizers of the empirical risk

— empirical risk

risk

=
S %

parameter

o The global minimum is R}
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Multiple global minimizers of the empirical risk

— empirical risk

risk

*

global Pptima

Y Y Y

parameter

o The global minimum is R}, , but many parameters can attain such value
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Multiple global minimizers of the empirical risk

— empirical risk
— true risk

risk

*
n

global Pptima

Y Y N

parameter

o The global minimum is R} , but many parameters can attain such value

o Each minimizer of the empirical risk might have a different true risk.
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Not all global minimizers are the same

o Consider a simple 2D classification task, and train a neural network with fixed step-size SGD.

o The plots below correspond to two different global minimizers:

SGD almost never lands on the global minimum on the right! Why?
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Understanding the implicit bias of optimization algorithms

o SGD seems to be biased towards good global minimizers (low true risk).
o Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.

o Can we characterize this implicit bias?
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Understanding the implicit bias of optimization algorithms

o SGD seems to be biased towards good global minimizers (low true risk).
o Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.

o Can we characterize this implicit bias?

Definition (Algorithm)

We will refer to a function (deterministic or randomized) </ : Z — X, mapping Z — /7 as an algorithm with
input Z € Z and output o/y € X.

Example: Gradient Descent Algorithm
We denote GD(T,a,x",Vf) := T-steps of GD with stepsize «, starting from x°, using gradient V.
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What is implicit regularization?

Definition (Implicit Regularization of a Deterministic Algorithm)

Consider a minimization problem
F* = min F(x) 2)
xeX
and let &/ be a deterministic algorithm with input Z € Z and output &/ € X.
We say that o7 solves problem (2) and has implicit regularization H : X x Z — R if

oz € argmin H(x, Z).
F(x)=F*

Given the input Z € Z, the algorithm outputs a global minimizer of F' that, additionaly, minimizes H(-, Z).
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Implicit bias of gradient descent for linear regression

o Consider for example an underdetermined linear system
Ax=Db, withAcR"™P n<p
o If a solution exists (i.e., b € colspan(A)), then there is an infinite number of solutions to this system.

Finding a solution
To find a valid x, we could apply one of the optimization algorithms seen in class to the convex problem
1 2
argmin — [|[Ax — b||5
xERP 2

Among all the possible solutions, which one will the algorithm converge to ?
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Same problem and same initialization vs different algorithms and different solutions
Consider the following simple 2D example :

“.Ax=b Different Solutions
’ Gradient Descent and AdaGrad converge to different
points on the line.

Gradient 102 -
Descent — GD
—-- AdaGrad
10° -
1072
Initialization
an 1074
2
|
5 107
Euclidean norm <
ball - .
1078
1071
10712

60
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Implicit bias of gradient descent for linear regression

o Gradient descent seems to converge to the closest one in terms of £3-norm.

Theorem (Implicit bias of Gradient Descent [21])
For the underdetermined, realizable linear system

1
F* = min F(x) = —||[Ax — b||2
i (%) 2|| x — bll3

the gradient descent algorithm GD(T@’XO,VF), for T = co and for any x° € RP, and valid step-size c, has
implicit bias H(x) = ||x — x°||2, i.e.,

GD(T:oo,a,xO,VF) = argmin ||x — xo||2.
F(x i5

Remark: o The theorem also holds for stochastic gradient descent, see [3].
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Same problem and same initialization vs different algorithms and different solutions

Gradient

Inifialization

Euclidean norm'
ball
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Proof : For simplicity, take x¢9 = 0.
> The gradient of F'is AT (Ax — b).
> This implies that Vx, V f(x) € colspan(AT).

GD iterates stay in the rowspan
Gradient Descent is therefore constrained to the space
colspan(AT) = rowspan(A)

So its limit point at 7' = oo is in rowspan(A).

> Note that because of the preconditionning,
AdaGrad can get out of the rowspan(A).
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Same problem and same initialization vs different algorithms and different solutions

Proof (continued):
» The minimum norm solution
A _ . 2
Xcandidate = arg min ”xHQ
x:Ax=Db
is also in rowspan(A).

> So both Xcandidate and the limit point of GD are
solutions of Ax = b that are in the rowspan(A)

> Since nullA Nrowspan(A) = {0}, there can only
be one solution in the rowspan(A), so

* .
XGD = Xcandidate

x? 4 h, h € null(A)

Slide 25/ 41 EPFL
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Implicit bias for linear models

o We can extend this analysis to linear models:

XERP

arg min F(x) := Z L({x,a;),b;).
i=1

o If the observations are realizable and there are many global minima Glob = {x : F(x) = 0}, then

Theorem (Implicit Bias of Gradient Descent [21])

If the loss L is convex and has a unique (attained) minimum, then the iterates x! of Gradient Descent converge
to the global minimum that is closest to initialization xo in the ¢2-distance :

x! —— argmin ||x — xo||2
t—00 xecGlob

Proof : (Sketch) The assumption on L implies the problem reduces to a linear system: If x is a global
minimum, we must have (x,a;) = b; for all i € {1,..,n}. We can recycle the results we have just seen.

Remarks: o Implicit bias for wide two-layer neural networks [16] can be found in supplementary material.
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The double descent phenomenon

o A failure of conventional wisdom
A

under-fitting . over-fitting

under-parameterized over-parameterized
. Test risk Test risk
= ; = “classical”
.4 i)
~ ~
N

. “modern”
: interpolating regime
N
Training risk
sweet spot T — _

< Training risk:
Capacity of H T

. _interpolation threshold
Figure: The classical U-shaped risk curve vs. double-descent risk curve. source: [11].

> classical large-sample limit setting: n — oo under fixed p

> high dimensional setting: n and p comparably large
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Double descent curve in practice (1)

o Typical examples:
> linear/nonlinear regression [25]

> random features, random forest, and shallow neural networks [11]

88 —

—0— RFF
Min. norm solution hy,
(original kernel)

Test (%)
Squared loss

| | |
100 300 800

w—
=
O
EN
o

0 10 20 30 40 50 60
Number of Random Fourier Features (x103) (N) Number of parameters/weights (x103)
(a) Random features model (b) A fully connected neural network

Figure: Experiments on MNIST. Source: [11].
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Double descent curve in practice (1)

Classical Regime: Modern Regime:

Bias-Variance Tradeoff Larger Model is Better
j ] - 1

0.5 ' __ Critical Test 0.7 ____ Optimal Early
s g " Regime Train Stopping
2
5 0.4 . 06 10
< S 2
703 505 S
& ) - o
= Interpolation 7 100 o
-
= 0.2 Threshold '0_) 0.4 w
o
Fo1 0.3 1000

0074 20 30 40 50 60 027 0 20 30 40 50 60

ResNet18 width parameter ResNet18 Width Parameter

Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise.
Right: Test error, shown for varying train epochs. source: [40].
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Double descent curve in practice (l1)

test error vs. # params norm vs. # params test error vs. norm

1.0 40 1.0 1000
0.8 30 —» 800
= - . "
806 g nee @ [600
2 520 2 E’
go4 2 s 400
3
0.2 10 #* 200
0.0% 250 500 750 1000 0" 200 400 600 800 1000 %0 10 20 30 40 °
# parameters # parameters norm

Figure: Left: The double descent phenomenon, where the number of parameters is used as the model complexity. Middle: The
norm of the learned model is peaked around n = p. Right: The test error against the norm of the learnt model. The color bar
indicate the number of parameters and the arrows indicates the direction of increasing model size. Their relationship are closer
to the convention wisdom than to a double descent. source: [44]. This is the same setting as in Section 5.2 of [41].
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Underparametrized regime

Figure: Low generalization but high empirical error Figure: Sweet spot for the model complexity
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Interpolation threshold

Figure: The unique degree 19 polynomial that can fit 20 samples.
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Benign overfitting in the over-parametrized regime

1; error

Figure: A degree 200 polynomial that can harmlessly fits noisy 20 points.

400 600 800 1000
Degree of polynomial fit

Figure: Double descent for polynomial fits
Benign Overfitting [9]: good prediction with zero training error

> Statistical wisdom: a predictor should not fit too well.

> deep networks fit perfectly on noisy data and generalize well on test data.
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Deep learning is driven by scale

o The trend is to use ever larger models with increasing data sizes, which requires even more computation.

Cost (2023 USD, log scale)
B

oom

10M

™ AlphaGo Master

100k

10k

1000

100

10

2016 2017 2018

AlphaGo Zero

~—— Regression mean 95% Cl of mean Using estimated cost of TPU

Gemini 1.0 Ultra
wrae O\

PalLM (540B)
GPT-3175B (davinci) \

\ DALL-E
2.4x/year

Inflection-2

2019 2020 2021 2022 2023 2024
Publication date

Figure: Amortized combined hardware and energy cost to train frontier Al models over time. Source: [17].
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Deep learning is driven by scale (cont.)

o Scaling factors: larger models, more data, more compute.

o Tuning model architecture and dataset size are expensive.

Questions: o If you have a given budget of compute, what model would you train on how much data?
o Can we predict testloss(model size, data, optimization steps, ...) such that
> compute is within budget,

before committing to large-scale experiments?
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Scaling laws

Definition (Neural scaling law [26])

Neural scaling laws describe how neural network performance changes as key factors are scaled up or down.

Remarks: o In general, neural networks (pre)training can be characterized by four factors:?

1. Size of the model (N): number of parameters

2. Size of the training dataset (D): number of samples or tokens
3. Compute (C): measured in FLOPS
4

. Test loss after training (L): generalization performance

?Note the notational change!
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Scale and performance

o Increasing compute, dataset and model size improves performance, particularly in language models.

7 4.2
6 —— L=(D/5.4-1013)-00% | 5.6 —— L=(N/8.8-1013)-0.076
3.9
4.8
P
§ . 3.6 4.0
g 3.3 32
F3
3.0
2.4
L= (Cmin/2.3-108)70050
2 2.7
fo-¢ 107 107° 10-* 107! 10! 108 109 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure: Neural scaling laws for language modelling. Source: [31]

Remarks: o Language modeling performance improves smoothly as we “scale.”
o For optimal performance all three factors must be scaled up in tandem.
o Test performance has a power-law relationship with each individual factor.

o These are empirical curve fits rather than scaling “theory.”
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Do we need larger models?

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget

Line color indicates

TestLoss 10— =% 10 number of parameters

<«~——103 Params

__ Compute-efficient
training stops far
short of convergence

107 100 101 10° 10% 10% 100
Tokens Processed Compute (PF-days)

Figure: A series of language model training runs, with model sizes from 10 to 10° parameters. Source: [31].
Remarks: o Large models are more sample-efficient than small models.
o Larger models reach the same level of performance with fewer optimization steps.
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Scaling laws: power law relationships

o Test loss exhibits a power law relationship with available resources.

Scaling Laws [31]
1. For models with a limited number of parameters, trained to convergence on sufficiently large datasets:

Ne

anN
L(N) = ( N ) , any ~0.076, N.~ 88 x10'3 (parameters)

2. For large models trained with a limited dataset with early stopping:

D,

ap
L(D) = ( 5 ) , ap ~0.095 D.~54x10' (input samples)

3. When training with a limited amount of compute, a sufficiently large model, and a sufficiently small batch
size (making optimal use of compute):

ce. \eer .
L(Cmin) = (%) , QB ~0.050, CS;. ~ 3.1 x 108 (PF-days)
min

Remarks: o [31] estimated the constants through extensive empirical analysis on language models.

o Scaling laws hold in many domains: speech [26], image classification [56], etc.
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Chinchilla Scaling Laws

o Kaplan’s scaling laws [31] used a fixed learning rate schedule.

o [27] suggests to schedule the learning rate such that it decays to ~ 1/10 of the max learning rate.

Chinchilla Scaling Laws [27]

Hoffman et al. [27] propose the following approach combining model size and data size:

A B
L(N$D):E+ﬁ+ﬁ7

where FE is the irrecoverable error and A, B, «, 3 are estimated constants.
Chinchilla states that the model size N and the number of training tokens D should be scaled equally with
compute C, where the optimal scaling is estimated as Nopt o< 00‘49, Dopt co5L,

Remarks: o For a given increase in compute, both the model and dataset should be increased proportionally.

o Models trained with balanced scaling can outperform larger models trained on less data.
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Wrap up!

o The visualizations can be deceiving to understand the high-dimensional behavior

o Are we really in the interpolation regime in machine learning?

Theorem (Probability of interpolation [6])

Given a p-dimensional dataset A, = {ai,...,an} with i.i.d. samples, where a; ~ N'(0,1) foralli=1,...,n,
the probability that a new sample a ~ N(0, I)is in the interpolation regime (i.e., within the convex hull of Ay )
has the following limiting behavior

. 1 if n > 2P/2/p;
plggo p(a € ConvexHull(Ay)) = {O i n < 20/2)p.

o We are most likely in the extrapolation regime [5].
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*Concentration inequality

o Main tool for generalization bound: concentration inequalities!

> Measure of how far is an empirical average from the true mean

Theorem (Hoeffding's Inequality [37])

Let Y1,...,Yy be ii.d. random variables with Y; taking values in the interval [a;,b;] CR foralli=1,...

Let Sy := £ %"" | Y;. It holds that

7L2 2
P(|Sn — E[Sn]| > t) < 2exp ( - ﬁ)
o=1 &3 7
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*Generalization bound for a singleton

Lemma

Fori=1,...,n, let (a;,b;) € RP x {—1,1} be independent random variables and hx : RP — R be a function
parametrized by x € X. Let X = {xo} and L(hx(a),b) = {sign(hx(a)) # b} be the 0-1 loss.
With probability at least 1 — &, we have that

sup |R(x) — Rn(x)| = |R(x0) — Rn(x0)| < hl(;ﬂ
xXEX n
Proof.

Note that E[% ?:1 L(hxq(a;),b;)] = R(x0), the expected risk of the parameter xo. Moreover
L(hxy(a;),b;) € [0,1]. We can use Hoeffding's inequality and obtain

P(|Rn(x0) — R(x0)| > t) — P %ZLi(hxo(ai),bi) — R(xo)| > ¢ §2exp<72nt2>
o=l

In2/8
2n

Setting 0 := 2 exp (—2nt2) we have that ¢t = , thus obtaining the result.
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*Generalization bound for finite sets

Lemma

Fori=1,...,n, let (a;,b;) € RP x {—1,1} be independent random variables and hx : RP — R be a function
parametrized by x € X. Let X be a finite set and L(hx(a),b) = {sign(hx(a)) # b} be the 0-1 loss.
With probability at least 1 — &, we have that

In || + In(2/3)

sup |R(x) — Rn(x)] <
xeX 2n

Proof.
Let X = {x1,... ,X‘X‘}. We can use a union bound and the analysis of the singleton case to obtain:
| x|
P+ [Ra(o) = RO > ) £ Y B(Ruxy) = Rxy)| > ) =2 exp (= 202
j=1

In |[X|+1n 2
Setting ¢ := 2|X| exp (—2nt2), we have that ¢t = 4/ %::n‘s, thus obtaining the result.
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*Visualizing Rademacher complexity

+1 +1 +1 +1 +1 +1 +1
® &6 0 6 6 o o

Figure: Rademacher complexity measures correlation with random signs
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*Visualizing Rademacher complexity

e ]
+1 +1 +1 +1 +1 +1 +1 _— - Y
o0 000 00 X,
h X o o o
X xl’ \
X \o_ -~ [
XX X X X X X X X = X\
e P e X x
(a) High Rademacher Complexity (b) Large Generalization error
(memorization)
[ e
+1 41 41 41 41 41 +1 -—-._ ©®

XX X X X X X X
-1 -1 -1 -1 -1 -1 -1 -1 Xx“

(c) Low Rademacher Complexity (d) Low Generalization error

Figure: Rademacher complexity and Generalization error
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*Computing the Rademacher complexity of linear functions

Theorem

Let X := {x € RP : ||x||]2 < A} and let Hx be the class of functions of the form hx : RP — R, hx(a) = (x,a),
for some x € X}. Let A={ay,...,an} C RP such that max;—1,. .. n ||a;|| < M. It holds that
Ra(Hx) < AM//n.

Proof.
1 n
Ra(Hx)=E sup an(x,a) . n 1/2
Ixllz<A ™ <= = Ra(Hx) < =X EZ||viai||§ (Jensen)
n
1 n =1
=E sup X,Zvia 1/2
Ixll2<A ™

: 1 [+
O <3 Dl
1 i=1
< —)\E Ix: ¥ C-S
= Zv a (C-S) <AM/+/n

=1 2
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*Rademacher complexity estimates of fully connected Neural Networks

Notation
For a matrix X € R™™, ||X|| denotes its spectral norm. Let X. , be the k-th column of X. We define

1Xll2,0 = I[UX:ll2s -5 (1% mll2) 1 3)

Theorem (Spectral bound [8])

For positive integers po, p1, - -.,pq = 1, and positive reals \1,...,\q and v1,...,v4, define the set
Xo={(X1,. -, Xg) 0 Xy € RPXPi—1 1K || < g, [|XT |21 < v}

Let Hx be the class of neural networks hx : RP — R, hx = Xg000...000X; wherex = (X1,...,Xy4) € X.

Suppose that o is 1-Lipschitz. Let A ={ay,...,an} CRP, M := max;—1,... » |a;|]| and

W = max{p; : i =0,...,d}.

The Rademacher complexity of H x with respect to A is bounded as

3/2

d 2/3
Aty =0 | PEEOE T . Ak @
i=1 j=1 A
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*Implicit bias for linearly separable datasets

o For linearly separable datasets, we know of an algorithm capable of finding a separating hyperplane.

o It maximizes the margin (i.e., distance between the boundary and the nearest training-data point).

N
4
\
o
ag +,‘Z’\/' /\
\Fe 7 . .
5/ W Hard-margin Support Vector Machines
S
‘L"ZJ\,/ The hard margin Support Vector Machine solves the
/O' ' following optimization problem :
',Q argmin |[x||2  subject to y;(x,a;) > 1.
R ‘{w\ o xERP
4 It finds a hyperplane that maximizes the margin. It
a; does so by design.
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*Implicit bias for linearly separable datasets

o What happens if we do not explicitly enforce margin maximization?

Theorem (Implicit Bias of Gradient Descent on Separable Data [51, 21])

For the logistic loss (and some other strictly monotonically decreasing losses) and for linearly separable datasets,
the direction of the iterates xt of Gradient Descent for any initialization converges to the hard-margin SVM

direction:
t *
x x
= *SVM where X3y, = § argmin ||x||2  subject to y;(x,a;) > 1
X2 t=oo  [IxEpll2 xERP
Remarks: o Here, without explicit instructions, gradient descent maximizes the margin.

o The rate of this convergence is O (@)
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*Implicit bias for linearly separable datasets

o A similar result can be established for stochastic gradient descent for the logistic loss on separable datasets.

Theorem (Implicit Bias of Stochastic Gradient Descent on Separable Data [38])

The direction of the iterates xt of Stochastic Gradient Descent for any initialization and for a small enough
fixed step-size, converges almost surely to the hard-margin SVM direction:

t *
X _Xswm -0 ( 1 )
Il [Ixgymll2 ||, log ¢
Remarks: o This result is particularly interesting as it establishes convergence of fixed step-size SGD.

o Both SGD and GD have the same implicit bias towards maximizing margins.
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*Implicit bias for non-convex objectives

o Characterizing implicit bias of stochastic gradient descent for non-convex objectives is an active research area.

o Some papers study deep matrix factorization as a first step towards getting results for neural networks.

Deep Matrix Factorization

Deep matrix factorization consists of parametrizing a matrix M as a product of N matrices:
M=XnyXn_1...X1

which can be understood as parametrizing M by a depth N “linear neural network,” i.e., a neural network with
no activations and with weight matrices X.
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*Implicit bias for deep matrix completion

o The matrix completion problem consists of filling the missing entries of a partially observed matrix.

o The deep matrix factorization approach consists of solving the following problem with gradient descent:

argmin Z ((XnXn-1.--X1]i; — bij)%
XNXN—1- (Z] )eQ

o It was conjectured in 2017 [22] that gradient descent was biased towards solutions with small nuclear norm.

Theorem (Implicit Regularization May Not Be Explainable by Norms (2020) [48])

For deep matrix completion the implicit bias can not be expressed as a function of a norm or semi-norm.
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*Implicit bias for wide two-layer neural networks

o Assume a wide two-layer neural network hx(a) = = >~

m

i1 9({xs,a)), where m is the width

o An integral representation parameterized with a probability measure v is given by

hy(a) :/ o((x,a))dv(x).
RP

Theorem (Implicit bias of gradient flow on two-layer neural networks [16])

Under proper initialization and technical conditions (in particular, of convergence), the output of the gradient
flow h,, under a proper normalization scheme converges to a certain max-margin classifier.

Remarks: o Gradient flow is the continuous limit of gradient descent [50].
o Fixing the hidden layer (i.e., random features) leads to a max-margin classifier in RKHS [16].

o Other extensions of implicit bias of SGD depend on different models or settings:

> overparameterized least squares [55], diagonal linear networks [46], stochastic differential
equations [32].

> multi-pass SGD [59], diferent noise types [12, 23], different momentum types [54].
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*Implicit bias for wide two-layer neural networks

o Assume that we have a wide two-layer neural network hx(a) = % Z:Zl o((xi,a))

o An integral representation parameterized with a probability measure v

hu(ai):/ o({x,a;))dv(x),
RP

o v € P2(R4t2) in the set of probability measures with finite second moment
o the variation norm: ||k z, = min, cp, rd+2) {% f Ix]12 dv(x);  hu(a;) = fa((x,ai))du(x)}

Theorem (Implicit Bias of wide two-layer Neural Networks [16])

Assume that vo = Uga ® Uy_1 1y, the training set is consistent ([a; = a;] = [b; = b;]) and technical
conditions (in particular, of convergence). Then hy, /||y, |z, trained by an exponential tail loss converges to
the F1-max-margin classifier, i.e. it solves

max min b;h(a;),
IRl 7, <1i€[n]

o Gradient flow is the continuous limit of gradient descent [50].

o Fixing the hidden layer (i.e., random features) leads to a max-margin classifier in RKHS [16].
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*Example: Benign overfitting of DNNs on binary classification [57]

Problem setting: linear signal with label noise

> clean data distribution (é,f)) ~p
ob~{+1,-1}, a=2z+bu
o p-separated, 1-subgaussian, log-concave distributions in R%

> under a noise rate 1, marginal distribution is the same: p4 = pa over A with drv(p,p) <7
> labels are flipped with probability 7(a): Pr[b(a) = b] = 1 —n and Pr[b(a) # b] =7
> DNNs with ReLU trained by gradient descent under the logistic loss

Theorem (Binary classification)
Under the above setting and assumptions, after t steps, DNNs can obtain the Bayes-optimal test error
ta(l —2n) \2
P(a,b)~p (b # sgn(h(a; X(t)))) <mn+exp ( — A@(u) ) ,w.h.p,
Lipp (a;x ()
where « is the step size and n is the label flip rate.

Remarks: o smaller Lipchitz constant, faster convergence rate
o Lipschitz constant used for generalization
o NTK initialization: lazy training regime
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*From neural networks to random features model [28, 47]

1-hidden-layer neural network with m neurons (fully-connected architecture):

Let X; € R™*XP a € RP, Xg € R™, and p2 € R

activation weight bias bias
1
hx(a) := X o X1 + | H1 + k2|,

hidden layer = fixed random features

> X: Gaussian initialization and then fixed
> Xs5: to be learned

> over-parameterized model: #neurons m > #training data n
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*Double descent: random features model (1)

o high dimensions: #training data n, #neurons m, feature dimension p are comparably large

15 107"
i i
-F-min-norm solution 102 -+B2 ] +v2
% 1+ 1 Y4 3ggamua-¢--q-<-|-F B3 i -+v3
=
k7]
o5 B
=+
0 s R
0 05 1 15 2 0 05 1 15 2 15 2
m/n m/n
(a) SGD vs. min-norm solution (b) Bias < B1 + B2 + B3 (c) Variance < V1 + V2 + V3

Figure: Test MSE, Bias, and Variance of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for
p = 784 and n = 600 across the Gaussian kernel. Source: [35].

> random features regression solved by SGD: interplay between excess risk and optimization

bias variance decomposition for understanding multiple randomness sources

monotonic decreasing bias and unimodal variance = double descent

v

v
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*Double descent: random features model (11)

Algorithm  data assumption solution type Result on risk curve
[25] Gaussian closed-form variance ' N\
[36] i.i.d on sphere closed-form variance, bias 7 N\
[18] Gaussian closed-form refined decomposition on variance
[1] Gaussian closed-form fully decomposition on variance
[34] general closed-form SN
[4] Gaussian GD variance '\
[35] sub-Gaussian SGD variance 7\, bias N\,

Table: Comparison of representative random features on double descent.

o multiple randomness sources: data sampling, label noise, initialization

o phase transition due to non-monotonic variance
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*From multiple global minimizers to single global minimizer

o Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].3
o In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).

o Define feature mapping a — %(a,xo), the (empirical) neural tangent kernel (NTK) [29] is defined as

K(a;,a;) := (Vxh(as, x), Vxh(a;,x)),Vi,j € [n].

3Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.
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*From multiple global minimizers to single global minimizer

o Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].3
o In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).
o Define feature mapping a — %(a,xo), the (empirical) neural tangent kernel (NTK) [29] is defined as
l<(ai7 aJ) = <th‘(ai7x)7 th(aj7 X)> 7Vi7j € [TL] .
Training dynamics [29]
Under the squared loss, the dynamics of h(a, x) is equivalent to kernel regression
h(a,x(t)) = Vxh(a,x)%(t) = Koo (a,a;)(h(a,x(t)) = b),
where, under proper initialization and large enough width, we have

Ko :

= lim Ky)(ai,a;) = Ex[Kx(o)(ai,a;)].

width— oo

3Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.
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*From multiple global minimizers to single global minimizer

o Under some settings, the training objective of deep ReLU is almost convex and semi-smooth [2].3

o In such settings, the training behavior of NNs are close to training with kernel methods (see supp. material).

o Define feature mapping a — %(a,xo), the (empirical) neural tangent kernel (NTK) [29] is defined as
K(aj,a;) = (Vxh(a;,x), Vxh(a;,x)),Vi,j € [n].

Training dynamics [29]

Under the squared loss, the dynamics of h(a, x) is equivalent to kernel regression
h(a, x(t)) = Vxh(a,x)x(t) = Kx(a,a;)(h(a,x(t)) — b),
where, under proper initialization and large enough width, we have

Koo := lim  Ky(g)(ai,a;) = Ex[Kx()(ai,a;)]-

width— oo

Remarks: o NTK stays unchanged during training
o General loss functions: equivalence between infinite NNs and kernel methods [15]

> e.g., NN trained by soft margin loss vs. SVM trained by subgradient descent

3Classical smoothness only has a second-order term, but semi-smoothness also has an extra first-order term that is smaller for a larger width.
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*Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])

For a DNN with a large enough width trained by (S)GD on {(a;,b;)}?" |, under proper data assumptions and
step-size 1, we have

> global convergence
L(x()) < [1 = nAmin(Koo)]"L(x(0))  whp,

where Amin (Koo) is the minimum eigenvalue of K.
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*Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])

For a DNN with a large enough width trained by (S)GD on {(a;,b;)}?" |, under proper data assumptions and
step-size 1, we have

> global convergence
L(x()) < [1 = nAmin(Koo)]"L(x(0))  whp,

where Amin (Koo) is the minimum eigenvalue of K.

b’ K3'b 1
R(h SO\ —=— o hp.
(hx(t)) S - 4 (\/ﬁ) whp

> generalization guarantee
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*Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])

For a DNN with a large enough width trained by (S)GD on {(a;,b;)}?" |, under proper data assumptions and
step-size 1, we have

> global convergence
L(x()) < [1 = nAmin(Koo)]"L(x(0))  whp,

where Amin (Koo) is the minimum eigenvalue of K.

b’ K3'b 1
R(h SO\ —=— o hp.
(hx(t)) S - 4 (\/ﬁ) whp

Remarks: o The minimum eigenvalue of NTK plays an important role!

> generalization guarantee

> robustness: generate adversarial examples [53]
> image denoising [52]
> neural architecture search in a “train-free” fashion [58, 14]

o Under proper assumptions, we have Amin(Koo) = Q(p) [45] for the input dimension p
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*Peeling the onion (risk minimization setting) - Decomposition details

R(x') = R(x?) = R(x") = Rn(x") + Ru(x") = Ru(x*)+ Ru(x*) — Ry (x") + Ru(x?) — R(x*)
—
<0
< Rn(x") = Ru(x*) + R(x") — Ru(x') + Ru(x?) — R(x?)

2supyex |Rp (x)—R(x)|

R(x') — R(x°) = R(x") — R(x) + R(x") — R(x°)

< R (x!) = B () 42 sup [ (%) — RG|+ RGE) — RGE)
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*Generalization bounds based on uniform stability — definitions

Definition (Empirical Risk on a set)

Let S := [(a1,b1),...,(an,bn)] be an i.i.d. sample drawn from a distribution on A x B. Let L : B x B — R be
a loss function and H be a class of functions h : A — B. The empirical risk of h € H on the set S is defined as:

R(h) = = 3 Lih(ar), bi)
=1

(Almost) same definition as before. Makes explicit the dependence on the set S.

Definition (Expected Generalization Error)

Let & : Z — H be a randomized algorithm that takes as input a finite sample S of arbitrary size, and outputs a
function /s € H. Suppose that S = [(a1,b1),...,(an,bn)] is an i.i.d. sample form probability distribution on
A X B. The expected generalization error on a sample of size n is the value

E[Rs(#s) — R(s))]

the expectation is taken with respect to the draw of the sample S and the randomness of 7.
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*Generalization bounds based on uniform stability — Fundamental theorem (1)

Theorem (Hardt et al. 2016 [24])

Let A be uniformly stable with stability (8n)n>1, then for a random i.i.d. sample S of size n, the expected
generalization error is bounded as follows

E[|Rs(4s) — R(5))|] < Bn
Proof.
Let S = [(a1,b1),...,(an,bn)] and S’ = [(a],b)),...,(a},,bn)] be two i.i.d. samples of size n. Denote

SO = [(a1,b1), ..., (@i—1,bi—1), (@}, b)), (@i11, bit1), - -, (An, bn)]
the sample that results from replacing (a;, b;) by (af,b}) in S.

E[Rs(#/5)] =E % Z L(e/s(ai),bi)| =E % Z L(eg0) (a7), ;)

n

1
—E fZL /5o (a5),b) — was )| FE| = Ls(a)), b))

=1
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*Generalization bounds based on uniform stability — Fundamental theorem (11)

Proof. (continued).
We have

n

BRs(s)] =B | = 3 Ly (al), ) = = > Ldls(@), b)) | +B | =Y L(ass(al),¥)
=1 =1

=1

Note that S and S() only differ in one sample: uniform stability allows bounding the first term as:
n n n
=B | =3 Dl @6 — = > Lls@), )| = = > B [L(orgeo (@), B) — L(ls(al), )] < B
i=1 i=1 i=1
Finally note that because the samples (a;, b;) are independent of S we have:
n
E % 3 L(ls(al). B) | = R(ats)
i=1

analogously we can show E [R(%s) — Rs(%s)] < Bn.
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*Alternatives to complexity-based generalization bounds

o So far we have seen that complexity based generalization bounds:

> characterize worst-case scenario
> not tight in practice
> disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm?

model class complexity

generalization

algorithm
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*Alternatives to complexity-based generalization bounds

o So far we have seen that complexity based generalization bounds:

> characterize worst-case scenario
> not tight in practice
> disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm? YES!

model class complexity

generalization

algorithm stability
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*Formal definition of stability (1)

Definition (Uniform Stability [24])
Let & : Z — H be a randomized algorithm with input a finite sample S, and output a function /s € H.

The algorithm o7 has uniform stability (8n),>1 with respect to the loss function L if for all subsets
S, 8" C A x B such that |[S| =|S’| =n and S and S’ differ in at most one sample:

sup  E|L(#s(a),b) — L(#s (a),b)| < Bn
(a,b)e AXB

The expectation is taken with respect to the randomness in the algorithm <.

Misnomer: Lower stability (small values of 3,,) means the difference in the output of the algorithm is smaller.
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*Formal definition of stability (I1)

S = al . o a'L oo an —>\L£.M5(a)7b)
pu— al o« .. al o .. aTL —»

. / ma
S'=|a - [ag] - [An . *L(#s (a),b)

Figure: Algorithm 8 is less stable than algorithm 7.

T(As(a),b)
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*The stability of SGD

o Let hx € Hx be an element of a parametric function class. Consider the ERM optimization objective:
1 n
f(x):=— g fi(x), fi(x) := L(hx(ai), b;).
n
i=1

o The SGD iterates for t = 0,...,T are x¢4+1 = x¢ — ot Vx fi(x¢), for i ~ Unif[n].

Algorithm Assumptions on f; Stability
i
SGD convex, L-smooth, B-Lipschitz, a; < 2/L — ZZLO ot
n =
SGD p-str convex, L-smooth, B-Lipschitz, a; < 2/L —
nu
1 2+ L
SGD p-str convex, L-smooth, S-Lipschitz, ay = — u
ut n2,u,
SGD avg. iterate convex, L-smooth, -Lipschitz
1+1 _L_
SGD non-convex, L-smooth, S-Lipschitz, ay = 1/t + /BﬂL T

Table: Summary of stability upper bounds for different assumptions on the objective function [24]
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*Effect of the number of iterations on the stability of SGD and the generalization error

Train vs test vs parameter distance Train vs test vs parameter distance

0.6 0.6
\ A— norm diff \ A— norm diff
05l \ 1 train error 0.5 - train error
| é -6 testerror é ¢ testerror
04l k-1 abs(train error - test error) 0.4 L4 abs(train error - test error)
03} & . {/(-A/"‘A 0.3
000000 20600
0.2} 0.2
aEA
0.1} . a-a-mE 0.1
s
s *
0.0 A" 0.0
0 5 10 15 20 0 10 20 30 40 50 60
epoch epoch

Figure: Normalized parameter distance between two networks trained on two datasets S, S’ differing only in one sample,
training error, test error and generalization error (0-1 loss) on CIFAR10 [24].

o Parameter distance is a stronger notion than stability.
o More iterations = Parameter distance increases (we expect stability to increase).

o Generalization error follows the same behavior as the parameter distance (proxy for stability).
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Larger models generalize better

o Test Loss Results: Generalization to other data distributions shows smooth improvement with model size
across datasets (WebText2, Wikipedia, Books, Common Crawl).

7
—e— WebText2 (Test) = -~ Books during training
6 Internet Books 245 -~ Wikipedia during training
—e— Books ] @ Books at convergence
5 —e— Wikipedia 2 Wikipedia at convergence
» —e— Common Crawl o
2 4
Q /A 35
= =
- o
2 <
& 530
3 5
@
]
225
A
10* 10° 106 107 108 10° 5.0 45 4.0 3.5 3.0 2.5
Parameters (non-embedding) Test Loss on Training Distribution

Figure: Left: Larger models improve test loss across different data distributions. Right: Transfer improves with test
performance. Source: [31].

Remarks: o Generalization performance to other data distributions improves smoothly with model size.
o Scaling laws hold even when train # test distribution.
o Higher generalization on training distribution improves transfer on other distributions.
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Double descent in 1998: AdaBoost

Definition (Informal [49])
“Boosting solves hard machine learning problems by forming a very smart committee of grossly incompetent but
carefully selected members.”

AdaBoost

1. Initialize the observation weights w; = 1/N, i=1,2,..., N

2. Fort=1to T
2.1 Fit a classifier hx,¢(a) to the training data using weights w,.

2.2 Compute
SN wil(bi # hue,e(ai))

erry = a T

D Wi
i=1
2.3 Compute oy = log((1 — erry)/erry).

2.4 Set w; < w; - explay - I(b; # hx¢(a;))], i =1,2,...,N.

3. Output h(a) = [Zle athx,t(a)].

Remarks: o At each round, the weights are updated so the weak learner focuses on the hard examples.

o The more iterations are run, the more complex the output function becomes (e.g., overfitting).
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AdaBoost with large number of rounds

10 100 1000
# rounds

Figure: AdaBoost on letters dataset [7]. Test error keeps
improving even after O training error is reached.

Margin theory [7]

The margin is a measure of confidence in the prediction. Boosting can be shown to increase the margin at each
round.
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