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An observation of GD vs. SGD step

xk+1 = xk − γk∇f(xk) (GD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

f(xk+1) − f(xk) ≤
(

γ2
kL

2
− γk

)
∥∇f(xk)∥2.

xk+1 = xk − γkG(xk, θk) (SGD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

E[f(xk+1) − f(xk)] ≤
(

γ2
kL

2
− γk

)
E[∥∇f(xk)∥2] +

Lγ2
k

2
E[∥G(xk, θk) − ∇f(xk)∥2]

Observations: ◦ The variance of gradient estimate dominates as ∇f(xk) → 0.

◦ To ensure convergence we need to control variance.

γk → 0 =⇒ Slow convergence!

Can we decrease the variance while using a constant step-size?
Choose a stochastic gradient, s.t. E

[
∥G(xk; θk)∥2

]
→ 0.
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A simple approach: Mini-batch SGD

◦ More samples imply a better estimate for full gradient.

SGD with mini batches
Let G(x, θ) be an unbiased gradient estimate (E[G(x, θ)] = ∇f(x)) and Bk be the batch size. Then, we have

xk+1 = xk − αk
1

Bk

Bk∑
j=1

G(xk, θk,j).

Theorem
Let Bk > 0 be the batch size and G(x, θ) be an unbiased gradient estimate with bounded variance, i.e.,
E[∥ G(x, θ) − ∇f(x) ∥2 | x] ≤ σ2. Then, the mini-batch estimate has the following properties:

E

[
1

Bk

Bk∑
j=1

G(x, θk,j)

]
= ∇f(x) and E

[
∥

1
Bk

Bk∑
j=1

G(x, θk,j) − ∇f(x) ∥2 | x

]
≤

σ2

Bk
.

Remarks: ◦ We might need to increase the batch size over time to take variance to 0.

◦ We can come up with a “smarter” estimate for ∇f(x).
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How to construct a new estimate G(xk; θk)? [9]
Finite sum structure: SGD update rule:

f⋆ := minx∈Rp

{
f(x) := 1

n

∑n

j=1 fj(x)
}

xk+1 = xk − γk∇fj(xk)

◦ Let X = ∇fj(xk) be a random variable (due to j ∼ Uniform({1, · · · , n})).

◦ Let Y = ∇fj(x̃) be another random variable, and x̃ is a particularly selected point.

Remarks: ◦ We want X and Y to be correlated (we will see why!).
◦ Given Y , we should be able to estimate E[X] with more confidence.

Observations: ◦ Choice of x̃ affects how correlated X and Y are.
◦ We can compute E[Y ] = 1

n

∑n

j=1 ∇fj(x̃) = ∇f(x̃).

Goal: ◦ Find a good estimate of E[X] = 1
n

∑n

j=1 ∇fj(xk) = ∇f(xk).

A generalized estimator: Rα = α(X − Y ) + E[Y ]

▶ E[Rα] = αE[X] + (1 − α)E[Y ]

▶ Var(Rα) = α2(Var(X) + Var(Y ) − 2Cov(X, Y ))

Observations: ◦ When α = 1, Rα becomes unbiased, i.e., E[Rα] = E[X].
◦ If Cov(X, Y ) is large enough (X and Y are correlated enough), Var(Rα) ≤ Var(X).

How could we use this information to construct our estimate?
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Variance reduction techniques: SVRG

◦ Select the stochastic gradient ∇fik
, and compute a gradient estimate

rk = ∇fik
(xk) − ∇fik

(x̃) + ∇f(x̃).

◦ As x̃ → x⋆ and xk → x⋆, we have

∇fik
(xk) − ∇fik

(x̃) + ∇f(x̃) → 0.

◦ As a result, we can ensure the following

E
[
∥∇fik

(xk) − ∇fik
(x̃) + ∇f(x̃)∥2

]
→ 0.

Remarks: ◦ Remember the generalized estimator: Rα = α(X − Y ) + E[Y ].
◦ For SVRG, α = 1, X = ∇fik

(xk) and Y = ∇fik
(x̃).

◦ We will see how x̃ is computed!
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Stochastic gradient algorithm with variance reduction
Stochastic gradient with variance reduction (SVRG) [14, 27]
1. Choose x̃0 ∈ Rp as a starting point and γ > 0 and q ∈ N+.
2. For s = 0, 1, 2 · · · , perform:

2a. x̃ = x̃s, ṽ = ∇f(x̃), x0 = x̃.
2b. For k = 0, 1, · · · q − 1, perform:{

Pick ik ∈ {1, . . . , n} uniformly at random
rk = ∇fik

(xk) − ∇fik
(x̃) + ṽ

xk+1 := xk − γrk,
(1)

2c. Update x̃s+1 = 1
m

∑q−1
j=0 xj .

Features
▶ The SVRG method uses a multistage scheme to reduce the variance of the stochastic gradient rk.

▶ Learning rate γ does not necessarily tend to 0 while xk and x̃s tend to x⋆.

▶ Each stage, SVRG uses n + 2q component gradient evaluations.

▶ n for the full gradient at the beginning of each stage, and 2q for each of the q stochastic gradient steps.
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Convergence analysis

Assumption A5.
(i) f is µ-strongly convex
(ii) The learning rate 0 < γ < 1/(4Lmax), where Lmax = max1≤j≤n Lj .
(iii) q is large enough such that

κ =
1

µγ(1 − 4γLmax)q
+

4γLmax(q + 1)
(1 − 4γLmax)q

< 1.

Theorem
Assumptions:
▶ The sequence {x̃s}k≥0 is generated by SVRG.

▶ Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

Ef(x̃s) − f(x⋆) ≤ κs(f(x̃0) − f(x⋆)).
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Choice of γ and q, and complexity

Chose γ and q such that κ ∈ (0, 1):
For example

γ = 0.1/Lmax, q = 100(Lmax/µ) =⇒ κ ≈ 5/6.

Complexity

Ef(x̃s) − f(x⋆) ≤ ε, when s ≥ log((f(x̃0) − f(x⋆))/ϵ)/ log(κ−1)

▶ Each stage needs n + 2q component gradient evaluations

▶ With q = O(Lmax/µ), we obtain an overall complexity of

O
(

(n + Lmax/µ) log(1/ϵ)
)

.
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Comparison: GD vs. SGD vs. SVRG

◦ GD update: {
xk+1 := xk − γ∇f(xk),

◦ SGD update: {
xk+1 := xk − γ∇fik

(xk),

◦ SVRG update: {
rk = ∇fik

(xk) − ∇fik
(x̃) + ∇f(x̃)

xk+1 := xk − γrk,

SGD SVRG GD
Requires gradient storage? no no no

Epoch-based no yes no
Parameters stepsize stepsize & epoch length stepsize

Gradient evaluations 1 per iteration n + 2q per epoch n per iteration

Table: Comparisons of SGD, SVRG and GD [9]

◦ Recall that q = O(Lmax/µ) is the epoch length for SVRG.
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Example: ℓ2-regularized least squares with synthetic data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
#epochs

10 1

100

101

f(x
k )

f

GD
SGD
SVR
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Taxonomy of algorithms

f⋆ := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}

.

◦ f(x) = 1
n

∑n

j=1 fj(x): µ-strongly convex with L-Lipschitz continuous gradient.

SVRG GD SGD
Linear Linear Sublinear

Table: Rate of convergence.

◦ κ = L/µ.

SVRG GD SGD
O((n + κ) log(1/ε)) O((nκ) log(1/ε)) 1/ε

Table: Complexity to obtain ε-solution.
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The variance reduction zoo: convex

Setting Algorithm Lower bound Complexity bound
Gradient descent nL∆0/ϵ2

SVRG (Bk = 1) [21] nL∆0/ϵ2

SVRG (Bk = Ω(n2/3)) [21] n2/3L∆0/ϵ2

L-smooth fi’s SAGA (Bk = 1) [21] nL∆0/ϵ2

with bounded variance SAGA (Bk = Ω(n2/3)) [21] L∆0 min{σ/ϵ3,
√

n/ϵ2} [13] n2/3L∆0/ϵ2

SpiderBoost [25]
√

nL∆0/ϵ2

SpiderBoost-M [25]
√

nL∆0/ϵ2

Spider [13] L∆0 min{σ/ϵ3,
√

n/ϵ2}
PAGE [19] L∆0 min{σ/ϵ3,

√
n/ϵ2}

f is µ-SCVX and L-smooth
fi’s are average L-smooth KatyushaX [4] (n + n3/4

√
L
µ

) log ∆0
ϵ

[28] (n + n3/4
√

L
µ

) log ∆0
ϵ

f is CVX and L-smooth
fi’s are average L-smooth KatyushaX [4] n + n3/4

√
LD2

0
ϵ

[29] n + n3/4

√
LD2

0
ϵ

Remarks: ◦ Complexity ((S)CVX f): total number of stochastic first-order oracle calls to find x⋆
ϵ with E[f(x⋆

ϵ ) − f(x⋆)] ≤ ϵ.
◦ ∆0 = f(x0) − f⋆, D0 = ∥x0 − x⋆∥.
◦ Bounded variance: Ei[∥∇fi(x) − ∇f(x)∥2] ≤ σ2 ∀x.
◦ Average L-smooth: Ei[∥∇fi(x) − ∇fi(y)∥2] ≤ L2∥x − y∥2 ∀x, y.
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Variance-reduction for non-convex problems

SVRG estimator vs. a recursive estimator
◦ SVRG update:{

r1 = ∇f(x̃)
rk := ∇fik

(xk) − ∇fik
(x̃) + ∇f(x̃)

xk+1 := xk − γrk,

◦ Spider [13] update:{
r1 = ∇f(x̃)
rk := ∇fik

(xk) − ∇fik
(x̃) + rk−1

xk+1 := xk − γrk,

Spider [13]

1. Choose x0 ∈ Rp as a starting point and γ = ϵ/L.
2. For k = 0, 1, 2, . . ., perform:

2a. If k mod n = 0, do:
rk = ∇f(xk)

else:
Pick ik ∈ {1, . . . , n} uniformly at random
rk = ∇fik

(xk) − ∇fik
(xk−1) + rk−1

2b. Update xk+1 := xk − γ
∥ rk ∥ rk

3. Return xk

Remarks:

◦ Sample complexity: O
(

n +
√

n ∆L
ϵ2

)
.

◦ Sets the final accuracy apriori.

◦ Step-size depends on ϵ and L.
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Adaptive variance-reduction for non-convex problems

AdaSpider [16]

1. Choose x0 ∈ Rp as a starting point.
2. For k = 0, 1, 2 · · · , perform:

2a. If k mod n = 0, do:
rk = ∇f(xk)

else:
Pick ik ∈ {1, . . . , n} uniformly at random
rk = ∇fik

(xk) − ∇fik
(xk−1) + rk−1

2b. Compute γk := 1/

(
n1/4

√
n1/2 +

∑k

i=0 ∥ri∥2

)
2c. Update xk+1 := xk − γkrk

3. Return xk

Theorem
Let ∆0 = f(x0) − minx∈Rd f(x). The sequence x0, · · · , xk generated by AdaSpider satisfies:

1
k

k−1∑
i=0

E[∥∇f(xi)∥] ≤ O

(
n1/4 ∆0 + L2

√
k

log(k)
)

, with sample complexity Õ

(
n +

√
n

∆2
0 + L4

ε2

)
.
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Performance of AdaSpider

◦ Image classification with neural networks (spoiler alert!) trained with cross entropy loss.

◦ AdaGrad [11], KatyushaXw [3], AdaSVRG[10], Spider [13], SpiderBoost [26].

0 1000 2000 3000 4000
# stochastic oracle calls

10-4

10-3

10-2

10-1

‖∇
f(
x
k
)‖

2

AdaGrad
SGD
KatyushaXw
AdaSVRG
Spider
AdaSpider
SpiderBoost

0 1000 2000 3000 4000
# stochastic oracle calls

10-3

10-2

10-1

100

‖∇
f(
x
k
)‖

2

AdaGrad
SGD
KatyushaXw
AdaSVRG
Spider
AdaSpider
SpiderBoost

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 57



The variance reduction zoo: non-convex

Setting Algorithm Lower bound Complexity bound
f is α-weakly CVX and L-smooth

fi’s are average L-smooth Spider [13] ∆0
ϵ2 min{n3/4 √

αL,
√

nL} [29] ∆0
ϵ2 min{n3/4 √

αL,
√

nL}

fi’s are α-weakly CVX and L-smooth Natasha [1] ∆0
ϵ2 min{

√
nαL, L} [29] ∆0

ϵ2 min{
√

nαL,
√

nL}

f is non-CVX
fi’s are non-CVX and L-smooth AdaSpider [16] ∆0L

ϵ2
√

n [29, 13] Õ

(
n +

∆2
0+L4

ϵ2
√

n

)
Remarks: ◦ Complexity (nonCVX f): total number of stochastic first-order oracle calls to find x⋆

ϵ with E[∥∇f(x⋆
ϵ )∥2] ≤ ϵ2.

◦ ∆0 = f(x0) − f⋆, D0 = ∥x0 − x⋆∥.
◦ Bounded variance: Ei[∥∇fi(x) − ∇f(x)∥2] ≤ σ2 ∀x.
◦ L-smooth: ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥ ∀x, y.
◦ f(x) is α-weakly convex if f(x) + α

2 ∥x∥2 is convex ∀x.
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Continual learning [24]

◦ How do we incorporate new samples in the model introduced after training?

◦ Challenges:

▶ Catastrophic forgetting [7]: we can forget old data in an attempt to learn new ones.
▶ Stability-plasticity dilemma [17]: Remembering old data can lead to inability to learn new ones.
▶ Minimize memory [6]: There are lower bounds for the required memory.
▶ Minimize overall computation: Most work is empirical or based on heuristics.

◦ Continual finite-sum minimization [20]: A new formal setting to minimize computation with guarantees.
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Continual finite-sum minimization [20]

Finite-sum minimization (reminder)
Given a sequence of functions f1, . . . , fn with fi : X 7→ R and an accuracy ϵ > 0, find x̂ ∈ X such that

1
n

n∑
i=1

fi(x̂) − min
x∈X

1
n

n∑
i=1

fi(x) ≤ ϵ

Continual finite-sum minimization [20]
Given a sequence of functions f1, . . . , fn with fi : X 7→ R and an accuracy ϵ > 0, find a sequence of solutions
x̂1, . . . , x̂n ∈ X such that

1
i

i∑
j=1

fj(x̂j) − min
x∈X

1
i

i∑
j=1

fj(x) ≤ ϵ for each epoch i ∈ [n]

Remarks: ◦ Continual finite-sum minimization solves a finite-sum minimization for every prefix.

◦ The solutions for subsequent prefixes should be close as we only add one function to the sum.
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Continual-SVRG

◦ What is the total cost of SGD?

→ O (n/ϵ)

◦ What is the total cost of SVRG?

→ O
(

n2 log(1/ϵ)
)

◦ CSVRG [20]: Mix of SGD and SVRG

→ O
(

n log(n)/ϵ1/3
)

◦ There is a lower bound

→ Ω
(

min{n/ϵ1/4, n2 log (1/ϵ)}
)
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Continual learning of MNIST

◦ The model only sees samples from the classes “0” and “1” and then a new class at every 300 stages.

◦ We see the complexity of SVRG grows quadratically with stages, while SGD and CSVRG only grow linearly.

◦ When a new class is introduced, the model’s accuracy drops; however, CSVRG recovers faster than SGD.
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Continual finite-sum zoo

Algorithm Complexity bound
Gradient Descent O

(
L
µ

n2 log(1/ϵ)
)

SVRG [14] O
(

n2 log(1/ϵ) + L
µ

· n log(1/ϵ)
)

Katyusha [2] O
(

n2 log(1/ϵ) +
√

L
µ

· n3/2 log(1/ϵ)
)

Stochastic Gradient Descent (SGD) O
(

1
µ

n/ϵ
)

Sparse-SGD O
(

|D|G3
µ

1/ϵ2
)

CSVRG [20] O
(

L2/3G2/3
µ

· (n log n)/ϵ1/3 + L2G

µ5/2 · log n/
√

ϵ

)
Lower Bound [20] Ω

(
min{n/ϵ1/4, n2 log (1/ϵ)}

)
Remarks: ◦ Strongly-convex f for CFSM: total number of stochastic first-order oracle calls for n stages to find x⋆

i,ϵ

▶ with E[gi(x⋆
i,ϵ) − gi(x⋆

i )] ≤ ϵ.

◦ G-Lipschitz: Ei[∥fi(x) − f(x)∥2] ≤ G∥x − y∥ ∀x.

◦ L-smooth: ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥ ∀x, y.
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Deep learning outline

◦ In the sequel,
▶ Introduction to deep learning
▶ The deep learning paradigm
▶ Challenges in deep learning theory and applications

◦ Next class
▶ Generalization in deep learning
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Remark about notation

The Deep Learning literature might use a different notation:

Our lectures DL literature
data/sample a x

label b y
bias µ b

weight x, X w, W
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Power of linear classifiers–I
Problem (Recall: Logistic regression)
Given a sample vector ai ∈ Rd and a binary class label bi ∈ {−1, +1} (i = 1, . . . , n), we define the conditional
probability of bi given ai as follows:

P(bi|ai, x) ∝ 1/(1 + e−bi⟨x,ai⟩),

where x ∈ Rd is some weight vector.

ax

a y

ax

a y

b = + 1
b = 1

Figure: Linearly separable versus nonlinearly separable dataset
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Power of linear classifiers–II
◦ Lifting dimensions to the rescue
▶ Convex optimization objective
▶ Side effect: The curse-of-dimensionality
▶ Possible to avoid via kernel methods, such as SVMs

ax

a y
b = + 1
b = 1

Figure: Non-linearly separable data (left). Linearly separable in R3 via az =
√

a2
x + a2

y (right).
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An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

◦ Parameters: X1 ∈ Rm×d, X2 ∈ Rc×m (weights), µ1 ∈ Rm, µ2 ∈ Rc (biases)
◦ Activation function: σ : R→ R

hx(a) :=

[
X2

]

activationy
σ



weight
↓[

X1

]

input
↓[
a

]

+

bias
↓[

µ1

]


︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[

µ2

]
, x := [X1, X2, µ1, µ2]

recursively repeat activation + affine transformation to obtain “deeper” networks.
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Why neural networks?: An approximation theoretic motivation

Theorem (Universal approximation [8])
Let σ(·) be a nonconstant, bounded, and increasing
continuous function. Let Id = [0, 1]d. The space of
continuous functions on Id is denoted by C(Id).

Given ϵ > 0 and g ∈ C(Id) there exists a 1-hidden-layer
network h with m neurons such that h is an
ϵ-approximation of g, i.e.,

sup
a∈Id

|g(a) − h(a)| ≤ ϵ

Caveat
The number of neurons m needed to approximate some
function g can be arbitrarily large! Figure: networks of increasing width
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Why were NNs not popular before 2010?

◦ too big to optimize!
◦ did not have enough data
◦ could not find the optimum via algorithms
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Supervised learning: Multi-class classification

Figure: CIFAR10 dataset: 60000 32x32 color images (3
channels) from 10 classes

Figure: Imagenet dataset: 14 million color images (varying
resolution, 3 channels) from 21K classes

Goal
Image-label pairs (a, b) ⊆ Rd × {1, . . . , c} follow an unknown distibution P. Find h : Rd → {1, . . . , c} with
minimum misclassification probability

min
h∈H

P(h(a) , b)
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2010-today: Deep Learning becomes popular again
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Figure: Error rate on the ImageNet challenge, for different network architectures.
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Figure: Error rate on the ImageNet challenge, for different network architectures [22, 15].
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Convolutional architectures in Computer Vision tasks

Figure: “Locality” structure of a 2D deep convolutional neural network.
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Inductive Bias: Why convolution works so well in Computer Vision tasks?

h◦ true unknown function
H space of all functions

Hp
fc fully-connected networks

with p parameters
Hp

conv convolutional networks
with p parameters
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The era of model scaling

From: https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
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The landscape of ERM with multilayer networks

Recall: Empirical risk minimization (ERM)
Let hx : Rn → R be network and let {(ai, bi)}n

i=1 be a sample with bi ∈ {−1, 1} and ai ∈ Rn. The empirical
risk minimization (ERM) is defined as follows

min
x

{
Rn(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
(2)

where L(hx(ai), bi) is the loss on the sample (ai, bi) and x are the parameters of the network.

Some frequently used loss functions
▶ L(hx(a), b) = log(1 + exp(−b · hx(a))) (logistic loss)
▶ L(hx(a), b) = (b − hx(a))2 (squared error)
▶ L(hx(a), b) = max(0, 1 − b · hx(a)) (hinge loss)
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The landscape of ERM with multilayer networks

1

Figure: convex (left) vs non-convex (right) optimization landscape [18]

Conventional wisdom in ML until 2010:
Simple models + simple errors
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The landscape of ERM with multilayer networks
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The deep learning paradigm

(a) Massive datasets (b) Inductive bias from large and complex
architectures

1

(c) ERM using stochastic non-convex first-order
optimization algorithms (SGD)

Figure: Most common components in a Deep Learning Pipeline
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Challenges in DL/ML applications: Robustness (I)

(a) Turtle classified as rifle [5]. (b) Stop sign classified as 45 mph sign [12].

Figure: Natural or human-crafted modifications that trick neural networks used in computer vision tasks
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Challenges in DL/ML applications: Robustness (II)

(a) Linear classifier on data distributed on a sphere (b) Concentration of measure phenomenon on high
dimensions

Figure: Understanding the robustness of a classifier in high-dimensional spaces [23]
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Challenges in DL/ML applications: Robustness (References I)
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Challenges in DL/ML applications: Robustness (References II)
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Challenges in DL/ML applications: Surveillance/Privacy/Manipulation

Figure: Political and societal concerns about some DL/ML applications
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Challenges in DL/ML applications: Fairness
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(a) Racist classifier
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(b) Effect of unbalanced data

Figure: Unfair classifiers due to biased or unbalanced datasets/algorithms
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Challenges in DL/ML applications: Interpretability
Interpretability

3ML & AI | Volkan Cevher | https://lions.epfl.ch Figure: Performance vs Interpretability trade-offs in DL/ML
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Challenges in DL/ML applications: Energy efficiency and costSustainability:
 

        Dennard scaling & Moore’s law vs Growth of data

6ML & AI | Volkan Cevher | https://lions.epfl.ch 

Andy Burg

Tim Dettmers

DART Consulting

(a) (b)

Figure: Efficiency and Scalability concerns in DL/ML
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Wrap up!

◦ Learning deep continues!
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