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Outline

▶ Composite minimization
▶ Proximal gradient methods
▶ Introduction to Frank-Wolfe method

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 48



Recall sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)
Our goal is to estimate x♮ ∈ Rp given {bi}n

i=1 and {ai}n
i=1,

knowing that the likelihood function at yi given ai and x♮ is given
by L(⟨ai, x♮⟩, bi), and that x♮ is sparse.

b A x♮ w

Optimization formulation

min
x∈Rp

{
−

n∑
i=1

log L(⟨ai, x♮⟩, bi)︸                               ︷︷                               ︸
f(x)

+ ρn∥x∥1︸    ︷︷    ︸
g(x)

}

where ρn > 0 is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [13] for details)
Under some technical conditions, there exists {ρi}∞

i=1 such that with high probability, the following holds

∥ x⋆ − x♮ ∥2
2 = O

(
s log p

n

)
, supp x⋆ = supp x♮.

Recall ML: ∥ xML − x♮ ∥2
2 = O

(
p
n

)
.
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Sparse inverse covariance estimation
Problem (Graphical model selection)
Given a data set D := {x1, · · · , xn}, where xi is a Gaussian random variable. Let Σ be the covariance matrix
corresponding to the graphical model of the Gaussian Markov random field. Our goal is to learn a sparse
precision matrix X (i.e., the inverse covariance matrix Σ−1) that captures the Markov random field structure.

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥ 0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

a2

a3

a4a 5

a1

a1

a2

a3

a4

a5

X =

Thursday, June 12, 14

a1 a2 a3 a4 a5

Optimization formulation [16]

min
X≻0

{
tr(ΣX) − log det(X)︸                          ︷︷                          ︸

f(x)

+ ρn∥vec(X)∥1︸              ︷︷              ︸
g(x)

}
, (1)

where X ≻ 0 means that X is symmetric and positive definite and ρn > 0 is a regularization parameter and vec
is the vectorization operator. Let X⋆ be the minimizer of (1), under some technical conditions, there exists a
ρn such that ∥ X⋆ − Σ−1 ∥2

2 = O(min 1
n

{d2 log p, (s + p) log p}) where d is the maximum node degree.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 48



Composite convex minimization

Problem (Composite convex minimization)

F ⋆ := min
x∈Rp

{F (x) := f(x) + g(x)} (2)

▶ f and g are both proper, closed, and convex.
▶ dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ⋆ < +∞.
▶ The solution set S⋆ := {x⋆ ∈ dom(F ) : F (x⋆) = F ⋆} is nonempty.

Remarks: ◦ Without loss of generality, f is smooth and g is non-smooth in the sequel.

◦ By Moreau-Rockafellar Theorem, we have ∂F = ∂(f + g) = ∂f + ∂g = ∇f + ∂g.

◦ Subgradient method attains a O
(

1√
T

)
rate.

◦ Without g, accelerated gradient method attains a O
(

1
T 2

)
rate.

Can we design algorithms that achieve a faster convergence rate for composite convex minimization?
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Designing algorithms for finding a solution x⋆

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, ∀x, y ∈ Rp

f(x) ≤ f(y) + ∇f(y)T (x − y) +
L

2
∥x − y∥2

2

Quadratic majorizer for f + g

When f has L-Lipschitz continuous gradient, we have, ∀x, y ∈ Rp

f(x) + g(x) ≤ f(y) + ∇f(y)T (x − y) +
L

2
∥x − y∥2

2 + g(x) B PL(x, y)

Majorization-minimization for f + g

xk+1 = arg min
x∈Rp

PL(x, xk)

= arg min
x∈Rp

{
g(x) +

L

2
∥ x −

(
xk −

1
L

∇f(xk)
)

∥2
}
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Geometric illustration

xxk+1xk

SL(xk)

x?

xk

PL(x,xk) := f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2 + g(x)F (x)

F (x) = f(x) + g(x)

f(xk) + rf(xk)T (x � xk) + g(x)

Thursday, June 12, 14
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A short detour: Proximal-point operators

Definition (Proximal operator [18])
Let g ∈ F(Rp), x ∈ Rp and λ > 0. The proximal operator (or prox-operator) of g is defined as:

proxλg(y) ≡ arg min
x∈Rp

{
g(x) +

1
2λ

∥y − x∥2
2

}
. (3)

Remarks: ◦ The proximal operator of 1
L

g evaluated at
(

xk − 1
L

∇f(xk)
)

is given by

prox 1
L

g

(
xk −

1
L

∇f(xk)
)

= arg min
x∈Rp

{
g(x) +

L

2
∥ x −

(
xk −

1
L

∇f(xk)
)

∥2
}

.

◦ This prox-operator minimizes the majorizing bound:

f(x) + g(x) ≤ f(xk) + ∇f(xk)T (x − xk) +
L

2
∥x − xk∥2

2 + g(x)

◦ Rule of thumb: Replace gradient steps with proximal gradient steps!
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Tractable prox-operators

Processing non-smooth terms in (2)
▶ We handle the nonsmooth term g in (2) using its proximal operator.
▶ However, computing proximal operator proxg of a general convex function g

proxg(y) ≡ arg min
x∈Rp

{
g(x) +

1
2

∥y − x∥2
2

}
.

can be computationally demanding.

Definition (Tractable proximity)
▶ Given g ∈ F(Rp). We say that g is proximally tractable if proxg defined by (3) can be computed efficiently.
▶ ”efficiently" = {closed form solution, low-cost computation, polynomial time}.
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Tractable prox-operators

Example
▶ For separable functions, the prox-operator can be efficient. When g(x) := ∥x∥1 =

∑p

i=1 |xi|, we have

proxλg(x) = sign(x) ⊗ max{|x| − λ, 0}.

▶ Sometimes, we can compute the prox-operator via basic algebra. When g(x) := 1
2 ∥Ax − b∥2

2, we have

proxλg(x) =
(
I+ λAT A

)−1(
x + λAT b

)
.

▶ For the indicator functions of simple sets, e.g., g(x) := δX (x), the prox-operator is the projection operator

proxλg(x) := πX (x),

where πX (x) denotes the projection of x onto X . For instance, when X = {x : ∥x∥1 ≤ λ}, the projection
can be obtained efficiently.
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Computational efficiency - Example

Proximal operator of quadratic function
The proximal operator of a quadratic function g(x) := 1

2 ∥Ax − b∥2
2 is defined as

proxλg(x) := arg min
y∈Rp

{1
2

∥Ay − b∥2
2 +

1
2λ

∥y − x∥2
2

}
. (4)

How do we compute proxλg(x)?

The derivation: ◦ The optimality condition implies that the solution of (4) should satisfy the following:

AT (Ay − b) + λ−1(y − x) = 0.

◦ Setting y = proxλg(x), we obtain

proxλg(x) =
(
I+ λAT A

)−1 (
x + λAT b

)
Remarks: ◦ The Woodbury matrix identity can be useful: (I+ λAT A)−1 = I− AT (λ−1I+ AAT )−1A.

◦ When AT A is efficiently diagonalizable, i.e., AT A := UΛUT , such that
▶ U is a unitary matrix, i.e., UUT = UT U = I, and Λ is a diagonal matrix.
▶ proxλg(x) = U (I+ λΛ)−1 UT (x + λAb).
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A non-exhaustive list of proximal tractability functions

Name Function Proximal operator Complexity
ℓ1-norm f(x) := ∥x∥1 proxλf (x) = sign(x) ⊗ [|x| − λ]+ O(p)
ℓ2-norm f(x) := ∥x∥2 proxλf (x) = [1 − λ

∥x∥2
]+x O(p)

Support function f(x) := maxy∈C xT y proxλf (x) = x − λπC(x)
Box indicator f(x) := δ[a,b](x) proxλf (x) = π[a,b](x) O(p)
Positive semidefinite
cone indicator

f(X) := δ
S
p
+

(X) proxλf (X) = U[Σ]+UT , where X =
UΣUT

O(p3)

Hyperplane indicator f(x) := δX (x), X :=
{x : aT x = b}

proxλf (x) = πX (x) = x +(
b−aT x

∥a∥2

)
a

O(p)

Simplex indicator f(x) = δX (x), X :=
{x : x ≥ 0, 1T x = 1}

proxλf (x) = (x−ν1) for some ν ∈ R,
which can be efficiently calculated

Õ(p)

Convex quadratic f(x) := 1
2 xT Qx+qT x proxλf (x) = (λI + Q)−1x O(p log p) →

O(p3)
Square ℓ2-norm f(x) := 1

2 ∥x∥2
2 proxλf (x) = 1

1+λ
x O(p)

log-function f(x) := − log(x) proxλf (x) = 1
2 (
√

x2 + 4λ + x) O(1)
log det-function f(x) := − log det(X) proxλf (X) is the log-function prox ap-

plied to the individual eigenvalues of X
O(p3)

Remarks: ◦ Here: [x]+ := max{0, x} and δX is the indicator function of the convex set X .

◦ sign is the sign function, Sp
+ is the cone of symmetric positive semidefinite matrices.

◦ For more functions, see [5, 15].
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Solution methods

Composite convex minimization

F ⋆ := min
x∈Rp

{
F (x) := f(x) + g(x)

}
. (5)

Choice of numerical solution methods
◦ Solve (5) = Find xk ∈ Rp such that

F (xk) − F ⋆ ≤ ε

for a given tolerance ε > 0.

◦ Oracles: We can use one of the following configurations (oracles):
1. ∂f(·) and ∂g(·) at any point x ∈ Rp.
2. ∇f(·) and proxλg(·) at any point x ∈ Rp.
3. proxλf and proxλg(·) at any point x ∈ Rp.

4. ∇f(·), inverse of ∇2f(·) and proxλg(·) at any point x ∈ Rp.

Remark: Using different oracle leads to different types of algorithms.
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Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg

(
xk − α∇f(xk)

)
,

where α := 1
L

.

Theorem (Convergence of ISTA [2])
Let {xk} be generated by ISTA. Then:

F (xk) − F ⋆ ≤
Lf ∥x0 − x⋆∥2

2
2(k + 1)

The worst-case complexity to reach F (xk) − F ⋆ ≤ ε of (ISTA) is O
(

Lf R2
0

ε

)
, where R0 := max

x⋆∈S⋆
∥x0 − x⋆∥2.

◦ Oracles: proxαg(·) and ∇f(·).

◦ Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. Set y0 := x0 and t0 := 1, α := L−1.
3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:

xk+1 := proxαg

(
yk − α∇f(yk)

)
,

tk+1 := 1
2 (1 +

√
4t2

k
+ 1),

yk+1 := xk+1 + tk−1
tk+1

(xk+1 − xk).

Remark: From O
(

Lf R2
0

ϵ

)
to O

(
R0

√
Lf

ϵ

)
iterations at almost no additional cost!.

Complexity per iteration
▶ One gradient ∇f(yk) and one prox-operator of g;
▶ 8 arithmetic operations for tk+1 and γk+1;
▶ 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator of g is efficient.
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Example 1: ℓ1-regularized least squares

Problem (ℓ1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ⋆ := min
x∈Rp

{
F (x) :=

1
2

∥Ax − b∥2
2 + λ∥x∥1

}
, (6)

where λ > 0 is a regularization parameter.

Complexity per iterations
▶ Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one AT y.
▶ One soft-thresholding operator proxλg(x) = sign(x) ⊗ max{|x| − λ, 0}.
▶ Optional: Evaluating L = ∥AT A∥ (spectral norm) - via power iterations

Synthetic data generation
▶ A := randn(n, p) - standard Gaussian N (0, I).
▶ x⋆ is a k-sparse vector generated randomly.
▶ b := Ax⋆ + N (0, 10−3).
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Example 1: Theoretical bounds vs practical performance

Theoretical bounds
We have the following guarantees for FISTA := 2Lf R2

0
(k+2)2 and for ISTA := Lf R2

0
2(k+2) . In the figure below, ISTA’s

practical behavior outperforms the theoretical bound for FISTA.
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Remarks: ◦ ℓ1-regularized least squares formulation has restricted strong convexity.
◦ The proximal-gradient method can automatically exploit this structure.
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practical behavior outperforms the theoretical bound for FISTA.
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Example 2: Sparse logistic regression

Problem (Sparse logistic regression)
Given A ∈ Rn×p and b ∈ {−1, +1}n, solve:

F ⋆ := min
x,β

{
F (x) :=

1
n

n∑
j=1

log
(

1 + exp
(

−bj(aT
j x + β)

))
+ ρ∥x∥1

}
.

Real data
▶ Real data: w8a with n = 49′749 data points, p = 300 features
▶ Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
▶ ρ = 10−4.
▶ Number of iterations 5000, tolerance 10−7.
▶ Ground truth: Solve problem up to 10−9 accuracy by TFOCS to get a high accuracy approximation of x⋆

and F ⋆.
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Example 2: Sparse logistic regression - numerical results
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ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R

Number of iterations 5000 5000 4046 2423 447 317

CPU time (s) 26.975 61.506 21.859 18.444 10.683 6.228

Solution error (×10−7) 29370 2.774 1.000 0.998 0.961 0.985
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When f is strongly convex: Algorithms

Proximal-gradient scheme (ISTAµ)
1. Given x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1:=proxαkg

(
xk −αk∇f(xk)

)
,

where αk := 2
Lf +µ

is the optimal step-size.

Fast proximal-gradient scheme (FISTAµ)
1. Given x0 ∈ Rp as a starting point. Set y0 := x0.
2. For k = 0, 1, · · · , generate sequences {xk}k≥0 and {yk}k≥0 as:xk+1 := proxαkg

(
yk − αk∇f(yk)

)
,

yk+1 := xk+1 +
( √

cf−1
√

cf+1

)
(xk+1 − xk),

where cf := Lf

µ
and αk := L−1

f
is the optimal step-size.
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When f is strongly convex: Convergence

Assumption
f is strongly convex with parameter µ > 0, i.e., f ∈ F1,1

L,µ(Rp).

Condition number: cf := Lf

µ
≥ 0.

Theorem (ISTAµ [14])

F (xk)−F ⋆ ≤ Lf

2

(
cf −1
cf +1

)2k

∥x0−x⋆∥2
2.

Convergence rate: Linear with contraction factor: ω :=
(

cf −1
cf +1

)2
=
(

Lf −µ

Lf +µ

)2
.

Theorem (FISTAµ [14])

F (xk) − F ⋆ ≤ Lf +µ

2

(
1 −

√
µ

Lf

)k

∥x0 − x⋆∥2
2.

Convergence rate: Linear with contraction factor: ωf =
√

Lf − √
µ√

Lf
< ω.
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Summary of the worst-case complexities

Comparison
Complexity Proximal-gradient scheme Fast proximal-gradient

scheme

Complexity [µ = 0] O
(

R2
0

Lf

ε

)
O
(

R0

√
Lf

ε

)
Per iteration 1-gradient, 1-prox, 1-sv, 1-

v+
1-gradient, 1-prox, 2-sv, 3-
v+

Complexity [µ > 0] O
(

κ log(ε−1)
)

O
(√

κ log(ε−1)
)

Per iteration 1-gradient, 1-prox, 1-sv, 1-
v+

1-gradient, 1-prox, 1-sv, 2-
v+

Here: sv = scalar-vector multiplication, v+=vector addition.
R0 := max

x⋆∈S⋆
∥x0 − x⋆∥ and κ = Lf

µf
is the condition number.

Need alternatives when
▶ computing ∇f(x) is much costlier than computing proxg

Software
TFOCS is a good software package to learn about first order methods.

http://cvxr.com/tfocs/
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Composite minimization: Non-convex case

Problem (Unconstrained composite minimization)

F ⋆ := min
x∈Rp

{F (x) := f(x) + g(x)} (CM)

▶ g: Rp → R ∪ {∞} is proper, closed, convex, and (possibly) nonsmooth.
▶ f : Rp → R is proper and closed, dom(f) is convex, and f is Lf −smooth.
▶ dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ⋆ < +∞.
▶ The solution set S⋆ := {x⋆ ∈ dom(F ) : F (x⋆) = F ⋆} is nonempty.
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A different quantification of convergence: Gradient mapping

Definition (Gradient mapping)
Let proxg denote the proximal operator of g and λ > 0 some real constant. Then, the gradient mapping
operator is defined as

Gλ(x) :=
1
λ

(
x − proxλg(x − λ∇f(x))

)
.

Properties [1]
▶ ∥Gλ(x)∥ = 0 ⇐⇒ x is a stationary point.
▶ Lipschitz continuity: ∥ G 1

L
(x) − G 1

L
(y) ∥ ≤ (2L + Lf )∥ x − y ∥

Why do we care about gradient mapping?
▶ It is the generalization of the gradient of f , ∇f(x)
▶ Recall prox-gradient update: xt+1 = proxλg(xt − λ∇f(xt)), which is equivalent to xt+1 = xt − λGλ(xt).
▶ In fact, when proxg = I, then, Gλ(x) = 1

λ
(x − (x − λ∇f(x))) = ∇f(x).
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Sufficient Decrease property for proximal-gradient

Assumption
▶ f is Lf -smooth.
▶ g is proper, closed, convex, and (possibly) nonsmooth. g is proximally tractable.

xk+1 := prox 1
L

g

(
xk −

1
L

∇f(xk)
)

Lemma (Sufficient decrease [1])
For any x ∈ int(dom(f)) and L ∈ ( Lf

2 , ∞), it holds that

F (xk+1) ≤ F (xk)− L−
Lf

2
L2

∥∥∥G 1
L

(xk)
∥∥∥2

2
, (7)

Corollary

F (xk+1) ≤ F (xk)−
1

2Lf

∥∥∥G 1
Lf

(xk)
∥∥∥2

2
, for L = Lf
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Non-convex case: Convergence

Basic proximal-gradient scheme
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg

(
xk − α∇f(xk)

)
,

where α :=
(

0, 2
Lf

)
.

Theorem (Convergence of proximal-gradient method: Non-convex [1])
Let {xk} be generated by proximal-gradient scheme above. Then, we have

min
i=0,1,...,k

∥Gα(xi)∥2
2 ≤

F (x0) − F (x⋆)
M(k + 1)

, where M := α2
( 1

α
−

Lf

2

)
▶ When α = 1

Lf
, M = 1

2Lf
.

▶ The worst-case complexity to reach mini=0,1,··· ,k ∥Gα(xi)∥2
2 ≤ ε is O

(
1
ε

)
.
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Stochastic convex composite minimization

Problem (Mathematical formulation)
Consider the following composite convex minimization problem:

F ⋆ = min
x∈Rp

{
F (x) := Eθ[F (x, θ)] := Eθ[f(x, θ) + g(x, θ)]

}
▶ θ is a random vector whose probability distribution is supported on set Θ.
▶ The solution set S⋆ := {x⋆ ∈ dom (F ) : F (x⋆) = F ⋆} is nonempty.
▶ Oracles: (sub)gradient of f(·, θ), ∇f(x, θ), and stochastic prox operator of g(·, θ), proxg(·,θ)(x).

Remark
◦ In this setting, we replace ∇f(·) with its stochastic estimates.

◦ It is possible to replace proxg(·) with its stochastic estimate (advanced material).
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0, +∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = proxγkg(·,θ)(xk − γkG(xk, θk)).

Definitions:

◦ proxλg(·,θ) := arg miny∈Rp

{
g(y, θ) + 1

2λ
∥ y − x ∥2

}
◦ {θk}k=0,1,···: sequence of independent random variables.

◦ G(xk, θk) ∈ ∂f(xk, θk): an unbiased estimate of the deterministic (sub)gradient:

E[G(xk, θk)] ∈ ∂f(xk).

Remark
Cost of computing G(xk, θk) is usually much cheaper than ∇f(xk).
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Convergence analysis

Assumptions for the problem setting
▶ f(·, θ) and g(·, θ) are convex functions in the first argument, g is proximally-tractable.
▶ (Sub)gradients of F satisfy stochastic bounded gradient condition: ∃C ≥ 0, B ≥ 0 such that

Eθ[∥ ∂F (x, θ) ∥2] ≤ B2 + C(F (x) − F (x⋆)).

▶ E[∥ xt − x⋆ ∥2] ≤ R2 for all t ≥ 0.

Implications of the assumptions
▶ None of the above assumptions enforce that f is smooth.
▶ Stochastic bounded gradient condition holds with C = 0 when both f(·, θ) and g(·, θ) are Lipschitz

continuous.
▶ The same condition holds when f(·, θ) is Lf -smooth and g(·, θ) is Lipschitz continuous.
▶ However, for the upcoming theorem, we will take C > 0, which rules out the case when both functions

are only Lipschitz continuous.
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Convergence analysis

Assumptions for the problem setting
▶ f(·, θ) and g(·, θ) are convex functions in the first argument, g is proximally-tractable.
▶ (Sub)gradients of F satisfy stochastic bounded gradient condition: ∃C ≥ 0, B ≥ 0 such that

Eθ[∥ ∂F (x, θ) ∥2] ≤ B2 + C(F (x) − F (x⋆)).

▶ E[∥ xt − x⋆ ∥2] ≤ R2 for all t ≥ 0.

Theorem (Ergodic convergence [12])
▶ Assume the above assumptions hold with C > 0.
▶ Let the sequence {xk}k≥0 be generated by SPG.
▶ Set γk = 1

C
√

k
.

Conclusion:
▶ Define x̄k = 1

k

∑k−1
i=0 xi, then

E[F (x̄k) − F (x⋆)] ≤
1

√
k

(
R2C +

B2

C

)
, ∀k ≥ 1.
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Revisiting a special composite structure

A basic constrained problem setting

f⋆ := min
x∈Rp

{
f(x) + δX (x)

}
:= min

x∈Rp

{
f(x) : x ∈ X

}
, (8)

Assumptions
▶ X is nonempty, convex and compact (closed and bounded) where δX is its indicator function.
▶ f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm
Basic proximal-gradient scheme (ISTA)

1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg

(
xk − α∇f(xk)

)
where α := 1

L
.

▶ Prox-operator of indicator of X is projection onto X =⇒ ensures feasibility

How else can we ensure feasibility?
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Frank-Wolfe’s approach - I

f⋆ := min
x∈Rp

{
f(x) : x ∈ X

}
,

Conditional gradient method (CGM, see [10] for review)
A plausible strategy which dates back to 1956 [6]. At iteration k:

1. Consider the linear approximation of f at xk

ϕk(x) := f(xk) + ∇f(xk)T (x − xk)

2. Minimize this approximation within constraint set

x̂k ∈ min
x∈X

ϕk(x) = min
x∈X

∇f(xk)T x

3. Take a step towards x̂k with step-size γk ∈ [0, 1]

xk+1 = xk + γk(x̂k − xk)

▶ xk+1 is feasible since it is convex combination of two other feasible points.
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Frank-Wolfe’s approach - II

X

{X : f(x) ≤ f(xk)}

−∇f(xk)

xk

x̂k

xk+1

f⋆ := min
x∈Rp

{
f(x) : x ∈ X

}

Conditional gradient method (CGM)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := arg min
x∈X

∇f(xk)T x

xk+1 := (1 − γk)xk + γkx̂k,

where γk := 2
k+2 .
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On the linear minimization oracle

X

{X : f(x) ≤ f(xk)}
−∇f(xk)

xk

x̂k

xk+1

f⋆ := min
x∈Rp

{
f(x) : x ∈ X

}

Definition (Linear minimization oracle)
Let X be a convex, closed and bounded set. Then, the linear minimization oracle of X (lmoX ) returns a vector
x̂ such that

lmoX (x) := x̂ ∈ arg min
y∈X

xT y (9)

▶ lmoX returns an extreme point of X .
▶ lmoX is arguably cheaper than projection.
▶ lmoX is not single valued, note ∈ in the definition.
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Convergence guarantees of CGM

Problem setting

f⋆ := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
▶ X is nonempty, convex, closed and bounded.
▶ f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).

Theorem
Under assumptions listed above, CGM with step size γk = 2

k+2 satisfies

f(xk) − f(x⋆) ≤
4LD2

X
k + 1

(10)

where DX := maxx,y∈X ∥x − y∥2 is diameter of constraint set.
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⋆Convergence guarantees of CGM: A faster rate

Problem setting

f⋆ := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
▶ X is nonempty, α-strongly convex, closed and bounded.
▶ f ∈ F1,1

L,µ(Rp) (i.e., strongly convex with Lipschitz gradient).

Definition (α-strongly convex set) [7]
A convex set X ∈ Rp×p is α-strongly convex with respect to ∥ · ∥ if for any x, y ∈ X , any γ ∈ [0, 1] and any
vector z ∈ Rp×p such that ∥ z ∥ = 1, it holds that

γx + (1 − γ)y + γ(1 − γ)
α

2
∥ x − y ∥2z ∈ X

That is, for any x, y ∈ X , the ball centered at γx + (1 − γ)y with radius γ(1 − γ) α
2 ∥ x − y ∥2 is contained in X .
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⋆CGM for strongly convex objective + strongly convex set

Conditional gradient method - CGM2
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:

x̂k := arg min
x∈X

∇f(xk)T x

γk := arg min
γ∈[0,1]

γ
〈

x̂k − xk, ∇f(xk)
〉

+ γ2 L

2
∥ x̂k − xk ∥2

xk+1 := (1 − γk)xk + γkx̂k,

Theorem ([7])
Under assumptions listed previously, CGM2 satisfies

f(xk) − f(x⋆) = O
( 1

k2

)
. (11)
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Example: lmo of nuclear-norm bal

Consider δX , the indicator of nuclear-norm ball X :=
{

X : X ∈ Rp×p, ∥ X ∥∗ ≤ α
}

lmo of nuclear-norm ball

lmoX (X) := X̂ ∈ arg min
Y∈X

⟨Y, X⟩

This can be computed as follows:
▶ Compute top singular vectors of X =⇒ (u1, σ1, v1) = svds(X, 1).
▶ Form the rank-1 output =⇒ X = −u1αvT

1

We can efficiently approximate top singular vectors by power method!
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Proximal gradient vs. Frank-Wolfe

Definitions:
▶ Here: sv = scalar-vector multiplication, v+=vector addition.
▶ R0 := maxx⋆∈S⋆ ∥x0 − x⋆∥ is the maximum initial distance.
▶ DX := maxx,y∈X ∥x − y∥2 is diameter of constraint set X .

Algorithm Proximal-gradient scheme Frank-Wolfe method

Rate O
(

Lf R2
0

k

)
O
(

Lf D2
X

k

)
Complexity O

(
R2

0
Lf

ε

)
O
(

D2
X

Lf

ε

)
Per iteration 1-gradient, 1-prox, 1-sv, 1-

v+
1-gradient, 1-lmo, 2-sv, 1-
v+

How do prox operator and lmo compare in practice?
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An example with matrices

Problem Definition

min
X∈Rp×p

f(X) + g(X)

▶ Define g(X) = δX (X), where X :=
{

X : X ∈ Rp×p, ∥ X ∥∗ ≤ α
}

is nuclear norm ball.
▶ This problem is equivalent to:

min
X∈X

f(X)

Observations
▶ proxg = πX . Projection requires full SVD, O(p3).
▶ lmo computes (approximately) top singular vectors, roughly in ≈ O(p2) with Lanczos algorithm.
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Example: Phase retrieval

Phase retrieval
Aim: Recover signal x♮ ∈ Cp from the measurements b ∈ Rn:

bi =
∣∣⟨ai, x♮⟩

∣∣2 + ωi.

(ai ∈ Cp are known measurement vectors, ωi models noise).
• Non-linear measurements → non-convex maximum likelihood estimators.

PhaseLift [4]
Phase retrieval can be solved as a convex matrix completion problem, following a combination of
▶ semidefinite relaxation (x♮x♮H = X♮)
▶ convex relaxation (rank → ∥ · ∥∗)

albeit in terms of the lifted variable X ∈ Cp×p.
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Example: Phase retrieval - II

Problem formulation
We solve the following PhaseLift variant:

f⋆ := min
X∈Cp×p

{1
2

∥A(X) − b∥2
2 : ∥X∥∗ ≤ κ, X ≥ 0

}
. (12)

Experimental setup [19]
Coded diffraction pattern measurements, b = [b1, . . . , bL] with L = 20 different masks

bℓ = |fft(dH
ℓ ⊙ x♮)|2

→ ⊙ denotes Hadamard product; | · |2 applies element-wise
→ dℓ are randomly generated octonary masks (distributions as proposed in [4])
→ Parametric choices: λ0 = 0n; ϵ = 10−2; κ = mean(b).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 48



Example: Phase retrieval - III

p
23 25 27 29 211 213 215

ti
m
e
(s
)

10−1

100

101

102

103

CGM (lmo)
FISTA (prox)

Test with synthetic data: Prox vs sharp
→ Synthetic data: x♮ = randn(p, 1) + i · randn(p, 1).

→ Stopping criteria: ∥x♮−xk∥2
∥x♮∥2

≤ 10−2.
→ Averaged over 10 Monte-Carlo iterations.

Note that the problem is p × p dimensional!
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A basic constrained non-convex problem

Problem setting

f⋆ := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
▶ X is nonempty, convex, closed and bounded.
▶ f has L-Lipschitz continuous gradients, but it is non-convex.

Stationary point
Due to constraints, ∥ ∇f(x⋆) ∥ = 0 may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of stationary point for
constrained problems:

gF W (x) := max
y∈X

(x − y)T ∇f(x)

▶ gF W (x) ≥ 0 for all x ∈ X .
▶ x ∈ X is a stationary point if and only if gF W (x) = 0.
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CGM for non-convex problems

CGM for non-convex problems
1. Choose x0 ∈ X , K > 0 total number of iterations.
2. For k = 0, 1, . . . , K − 1 perform:{

x̂k := lmoX (∇f(xk))
xk+1 := (1 − γk)xk + γkx̂k,

where γk := 1√
K+1 .

Theorem
Denote x̄ chosen uniformly random from {x1, x2, . . . , xK}. Then, CGM satisfies

min
k=1,2,...,K

gF W (xk) ≤ E[gF W (x̄)] ≤
1

√
K

(
f(x0) − f⋆ +

LD2

2

)
.

⋆ There exist stochastic CGM methods for non-convex problems. See [17] for details.
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A basic constrained stochastic problem

Problem setting (Stochastic)

f⋆ := min
x∈Rp

{
E[f(x, θ)] : x ∈ X

}
, (13)

Assumptions
▶ θ is a random vector whose probability distribution is supported on set Θ
▶ X is nonempty, convex, closed and bounded.
▶ f(·, θ) ∈ F1,1

L (Rp) for all θ (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

E[f(x, θ)] =
1
n

n∑
j=1

fj(x)

▶ j = θ is a drawn uniformly from Θ = {1, 2, . . . , n}
▶ fj ∈ F1,1

L (Rp) for all j (i.e., convex with Lipschitz gradient).
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Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇̃f(xk, θk))
xk+1 := (1 − γk)xk + γkx̂k,

where γk := 2
k+2 , and ∇̃f is an unbiased estimator of ∇f .

Theorem [9]
Assume that the following variance condition holds

E∥ ∇f(xk) − ∇̃f(xk, θk) ∥2 ≤
(

LD

k + 1

)2
. ( ⋆ )

Then, the iterates of SFW satisfies

E[f(xk, θ)] − f⋆ ≤
4LD2

k + 1
.

( ⋆ ) → SFW requires decreasing variance!
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Stochastic conditional gradient method
Stochastic conditional gradient method (SFW)

1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇̃f(xk, θk))
xk+1 := (1 − γk)xk + γkx̂k,

where γk := 2
k+2 , and ∇̃f is an unbiased estimator of ∇f .

Example (Finite-sum model)

E[f(x, θ)] =
1
n

n∑
j=1

fj(x)

Assume fj is G-Lipschitz continuous for all j. Suppose that Sk is a random sampling (with replacement) from
Θ = {1, 2, . . . , n}. Then,

∇̃f(xk, θk) :=
1

|Sk|

∑
j∈Sk

fj(xk) =⇒ E∥ ∇f(x) − ∇̃f(x, θk) ∥2 ≤
G2

|Sk|
.

Hence, by choosing |Sk| = ( G(k+1)
LD

)2 we satisfy the variance condition for SFW.
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Wrap up!

◦ Monday: Transition from variance reduction to deep learning...
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⋆Expanding on prox operator and optimality condition

Notes
▶ By definition, g(y) + 1

2λ
∥ y − x ∥2 attains its minimum when y = proxλg(x).

▶ One can see that g(y) + 1
2λ

∥ y − x ∥2 is convex, and prox operator computes its minimizer over Rp.
▶ As a result, subdifferential of g(y) + 1

2λ
∥ y − x ∥2 at the minimizer (y = proxλg(x)) should include 0.

▶ Hence, 0 ∈ ∂g(proxλg(x)) + 1
λ

(
proxλg(x) − x

)
.

▶ After rearranging the above inclusion we obtain: x ∈ λ∂g(proxλg(x)) + proxλg(x)
▶ We can rewrite the RHS as a single function: λ∂g(proxλg(x)) + proxλg(x) = (λ∂g + I)(proxλg(x))
▶ The inclusion becomes: x ∈ (λ∂g + I)(proxλg(x)).

▶ Finally, we compute the inverse of (λ∂g + I)(·) to conclude: proxλg(x) = (λ∂g + I)−1 (x).

◦ In the literature, (λ∂g + I)−1 is called the resolvent of the subdifferential of g with parameter λ.
◦ This is just a technical term that stands for proximal operator of λg, as we have defined in this course.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 25



⋆A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)
1. proxg(x) is well-defined and single-valued (i.e., the prox-operator (3) has a unique solution since

g(·) + 1
2 ∥ · −x∥2

2 is strongly convex).
2. Optimality condition:

x ∈ proxg(x) + ∂g(proxg(x)), x ∈ Rp.

3. x⋆ is a fixed point of proxg(·):

0 ∈ ∂g(x⋆) ⇔ x⋆ = proxg(x⋆).

4. Nonexpansiveness:
∥proxg(x) − proxg(x̃)∥2 ≤ ∥x − x̃∥2, ∀x, x̃ ∈ Rp.

Note: An operator is called non-expansive if it is L-Lipschitz continuous with L = 1.
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⋆Adaptive Restart

It is possible the preserve O( 1
k2 ) convergence guarantee !

One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme
1. Choose x0 = x−1 ∈ dom (F ) arbitrarily as a starting point.
2. Set θ0 = θ−1 = 1, λ := L−1

f

3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:
yk := xk + θk(θ−1

k−1 − 1)(xk − xk−1)
xk+1 := proxλg

(
yk − λ∇f(yk)

)
,

if restart test holds
θk−1 = θk = 1
yk = xk

xk+1 := proxλg

(
yk − λ∇f(yk)

) (14)

θk is chosen so that it satisfies

θk+1 =

√
θ4

k
+ 4θ2

k
− θ2

k

2
<

2
k + 3
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⋆Adaptive Restart: Guarantee

Theorem (Global complexity [8])
The sequence {xk}k≥0 generated by the modified algorithm satisfies

F (xk) − F ⋆ ≤
2Lf

(k + 2)2

(
R2

0 +
∑
ki≤k

(
∥x⋆ − xki ∥2

2 − ∥x⋆ − zki ∥2
2
))

∀k ≥ 0. (15)

where R0 := min
x⋆∈S⋆

∥x0 − x⋆∥, zk = xk−1 + θ−1
k−1(xk − xk−1) and ki, i = 1... are the iterations for which the

restart test holds.

Various restarts tests that might coincide with ∥x∗ − xki∥2
2 ≤ ∥x∗ − zki∥2

2

▶ Exact non-monotonicity test: F (xk+1) − F (xk) > 0
▶ Non-monotonicity test: ⟨(LF (yk−1 − xk), xk+1 − 1

2 (xk + yk−1)⟩ > 0 (implies exact non-monotonicity
and it is advantageous when function evaluations are expensive)

▶ Gradient-mapping based test: ⟨(Lf (yk − xk+1), xk+1 − xk⟩ > 0
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⋆Recall: Composite convex minimization

Problem (Unconstrained composite convex minimization)

F ⋆ := min
x∈Rp

{F (x) := f(x) + g(x)}

▶ f and g are both proper, closed, and convex.
▶ dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ⋆ < +∞.
▶ The solution set S⋆ := {x⋆ ∈ dom(F ) : F (x⋆) = F ⋆} is nonempty.
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⋆Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates
Proximal gradient method:

f ∈ F1,1
L , α =

1
L

F (xk) − F (x⋆) ≤ ϵ, O
(1

ϵ

)
.

Fast proximal gradient method:

f ∈ F1,1
L , α =

1
L

F (xk) − F (x⋆) ≤ ϵ, O
( 1

√
ϵ

)
.

◦ We require αk to be a function of L.

◦ It may not be possible to know exactly the Lipschitz constant.

Line-search ?

◦ Adaptation to local geometry → may lead to larger steps.
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⋆How can we better adapt to the local geometry?
Non-adaptive:

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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⋆How can we better adapt to the local geometry?
Line-search:

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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⋆How can we better adapt to the local geometry?
Variable metric:

�f(xk)

x1

x2
f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)
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⋆The idea of the proximal-Newton method

Assumptions A.2
Assume that f ∈ F2,1

L,µ(Rp) and g ∈ Fprox(Rp).

⋆Proximal-Newton update
▶ Similar to classical newton, proximal-newton suggests the following update scheme using second order

Taylor series expansion near xk.

xk+1 := arg min
x∈Rp

{ 1
2

(x−xk)T ∇2f(xk)(x−xk)+∇f(xk)T (x−xk)︸                                                                      ︷︷                                                                      ︸
2nd-order Taylor expansion near xk

+g(x)
}

. (16)
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⋆The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)
1. Given x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform the following steps:
2.1. Evaluate an SDP matrix Hk ≈ ∇2f(xk) and ∇f(xk).

2.2. Compute dk := proxH−1
k

g

(
xk − H−1

k
∇f(xk)

)
− xk.

2.3. Update xk+1 := xk + αkdk.

Remark
▶ Hk ≡ ∇2f(xk) =⇒ proximal-Newton algorithm.
▶ Hk ≈ ∇2f(xk) =⇒ proximal-quasi-Newton algorithm.

▶ A generalized prox-operator: proxH−1
k

g

(
xk + H−1

k
∇f(xk)

)
.
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⋆Convergence analysis

Theorem (Global convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm and there exists µ > 0 such that
Hk ⪰ µI for all k ≥ 0. Then;

{xk}k≥0 globally converges to a solution x⋆ of (2).

Theorem (Local convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm there exists 0 < µ ≤ L2 < +∞ such
that µI ⪯ Hk ⪯ L2I for all sufficiently large k. Then;
▶ If Hk ≡ ∇2f(xk), then αk = 1 for k sufficiently large (full-step).
▶ If Hk ≡ ∇2f(xk), then {xk} locally converges to x⋆ at a quadratic rate.
▶ If Hk satisfies the Dennis-Moré condition:

lim
k→+∞

∥(Hk − ∇2f(x⋆))(xk+1 − xk)∥
∥xk+1 − xk∥

= 0, (17)

then {xk} locally converges to x⋆ at a super linear rate.
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⋆How to compute the approximation Hk?

How to update Hk?
Matrix Hk can be updated by using low-rank updates.
▶ BFGS update: maintain the Dennis-Moré condition and Hk ≻ 0.

Hk+1 := Hk +
ykyT

k

sT
k

yk

−
HksksT

k Hk

sT
k

Hksk

, H0 := γI, (γ > 0).

where yk := ∇f(xk+1) − ∇f(xk) and sk := xk+1 − xk.
▶ Diagonal+Rank-1 [3]: computing PN direction dk is in polynomial time, but it does not maintain the

Dennis-Moré condition:
Hk := Dk + ukuT

k , uk :=
sk − H0yk√

(sk − H0yk)T yk

,

where Dk is a positive diagonal matrix.
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⋆Pros and cons

Pros
▶ Fast local convergence rate (super-linear or quadratic)
▶ Numerical robustness under the inexactness/noise ([11]).
▶ Well-suited for problems with many data points but few parameters. For example,

F ∗ := min
x∈Rp

{
n∑

j=1

ℓj(aT
j x + bj) + g(x)

}
,

where ℓj is twice continuously differentiable and convex, g ∈ Fprox, p ≪ n.

Cons
▶ Expensive iteration compared to proximal-gradient methods.
▶ Global convergence rate may be worse than accelerated proximal-gradient methods.
▶ Requires a good initial point to get fast local convergence.
▶ Requires strict conditions for global/local convergence analysis.
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⋆Example 1: Sparse logistic regression

Problem (Sparse logistic regression)
Given a sample vector a ∈ Rp and a binary class label vector b ∈ {−1, +1}n. The conditional probability of a
label b given a is defined as:

P(b|a, x, µ) =
1

1 + e−b(xT a+µ)
,

where x ∈ Rp is a weight vector, µ is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

min
x∈Rp

{ 1
n

n∑
i=1

L(bi(aT
i x + µ))︸                             ︷︷                             ︸

f(x)

+ ρ∥x∥1︸  ︷︷  ︸
g(x)

}
, (18)

where ai is the i-th row of data matrix A in Rn×p, ρ > 0 is a regularization parameter, and ℓ is the logistic
loss function ℓ(τ) := log(1 + e−τ ).
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⋆Example: Sparse logistic regression

Real data
▶ Real data: w2a with n = 3470 data points, p = 300 features
▶ Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
▶ Tolerance 10−6.
▶ L-BFGS memory m = 50.
▶ Ground truth: Get a high accuracy approximation of x⋆ and f⋆ by TFOCS with tolerance 10−12.
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⋆Example: Sparse logistic regression-Numerical results
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⋆Example 2: ℓ1-regularized least squares

Problem (ℓ1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ⋆ := min
x∈Rp

{
F (x) :=

1
2

∥Ax − b∥2
2 + ρ∥x∥1

}
,

where ρ > 0 is a regularization parameter.

Complexity per iterations
▶ Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one AT y.
▶ One soft-thresholding operator proxλg(x) = sign(x) ⊗ max{|x| − ρ, 0}.
▶ Optional: Evaluating L = ∥AT A∥ (spectral norm) - via power iterations (e.g., 20 iterations, each

iteration requires one Ax and one AT y).

Synthetic data generation
▶ A := randn(n, p) - standard Gaussian N (0, I).
▶ x⋆ is a s-sparse vector generated randomly.
▶ b := Ax⋆ + N (0, 10−3).
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⋆Example 2: ℓ1-regularized least squares - Numerical results - Trial 1

Parameters: n = 750, p = 2000, s = 200, ρ = 1
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⋆Example 2: ℓ1-regularized least squares - Numerical results - Trial 2

Parameters: n = 750, p = 2000, s = 200, ρ = 1
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