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> Proximal gradient methods
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Recall sparse regression in generalized linear models (GLMs)

w

b A 8
Problem (Sparse regression in GLM) .
= - +
Our goal is to estimate x% € RP given {b;}!"_, and {a;}7_,, H o H

knowing that the likelihood function at y; given a; and x s given
by L({a;,x"),b;), and that x! is sparse.

Optimization formulation

XERP

i { =3 log L((ai,x),b0)+ pu [ |
=1

9(x)

F(x)

where p, > 0 is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [13] for details)
Under some technical conditions, there exists {p;};2, such that with high probability, the following holds

1
| x* —x* |3 =0 (w) , suppx* = suppx”.
n

Recall ML: || xpy — x1 ug =0 (%)
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Sparse inverse covariance estimation
Problem (Graphical model selection)

Given a data set D := {x1, - ,Xn}, where x; is a Gaussian random variable. Let 3 be the covariance matrix
corresponding to the graphical model of the Gaussian Markov random field. Our goal is to learn a sparse
precision matrix X (i.e., the inverse covariance matrix >~ ') that captures the Markov random field structure.

a. ap a a3 4y a5
ads5e 4
as X =
a1
az
Optimization formulation [16]
min { tr(XX) — logdet(X) + pn||vec(X)||1 }, (1)
X0
f() 9(x)

where X > 0 means that X is symmetric and positive definite and p, > 0 is a regularization parameter and vec
is the vectorization operator. Let X* be the minimizer of (1), under some technical conditions, there exists a
pn such that || X* — 1|2 = O(min 1 {d?logp, (s + p) log p}) where d is the maximum node degree.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 48



Composite convex minimization

Problem (Composite convex minimization)

F* := min {F(x) := f(x) +g(x)} (2)
xXERP

> f and g are both proper, closed, and convex.
> dom(F) := dom(f) Ndom(g) # @ and —co < F* < +o0.
> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.

Remarks: o Without loss of generality, f is smooth and g is non-smooth in the sequel.
o By Moreau-Rockafellar Theorem, we have OF = O(f + g) = 0f + 09 = V f + 0g.

; i 1
o Subgradient method attains a O ( \/T) rate.

o Without g, accelerated gradient method attains a O (%) rate.
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Composite convex minimization

Problem (Composite convex minimization)

F* = min {(F(x) = /(%) + 900} &)
XERP

> f and g are both proper, closed, and convex.
> dom(F') := dom(f) Ndom(g) # @ and —co < F* < 4o0.
> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.

Remarks: o Without loss of generality, f is smooth and g is non-smooth in the sequel.

o By Moreau-Rockafellar Theorem, we have OF = O(f + g) = 0f + 09 = V f + 0g.

; i 1
o Subgradient method attains a O ( ﬁ) rate.

o Without g, accelerated gradient method attains a O (%) rate.

Can we design algorithms that achieve a faster convergence rate for composite convex minimization?
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Designing algorithms for finding a solution x*

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, Vx,y € RP

£ < )+ V)T G = 3) + £ lx — ¥
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Designing algorithms for finding a solution x*

Quadratic majorizer for f
When f has L-Lipschitz continuous gradient, we have, Vx,y € RP

£ < )+ V)T G = 3) + £ lx — ¥

Quadratic majorizer for f + g
When f has L-Lipschitz continuous gradient, we have, Vx,y € RP

769+ 96) < F) + VI (=) + Ellx — ¥l +900) = Prx,y)
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Designing algorithms for finding a solution x*

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, Vx,y € RP
L
F) S F3) + VI (x=y) + Sl = vli3

Quadratic majorizer for f + g
When f has L-Lipschitz continuous gradient, we have, Vx,y € RP

769+ 96) < F) + VI (=) + Ellx — ¥l +900) = Prx,y)

Majorization-minimization for f + g

k+1

X = arg min Pr(x, xk)
xXERP

= arg min {900 + Zllx - (x* - 2vs6) ) 17}
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Geometric illustration

PO Pulcx) o= F(5) + V70— %) 4 5 x — V3 + 9(x)
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A short detour: Proximal-point operators

Definition (Proximal operator [18])
Let g € F(RP), x € RP and XA > 0. The proximal operator (or prox-operator) of g is defined as:

1
proxs, (v) = arg min {9 + o5 ly —xI3} )
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A short detour: Proximal-point operators

Definition (Proximal operator [18])
Let g € F(RP), x € RP and XA > 0. The proximal operator (or prox-operator) of g is defined as:

— 9 L 2
proxs, (v) = arg min {9 + o5 ly —xI3}

Remarks: o The proximal operator of %g evaluated at (xk - %Vf(xk)) is given by

prox, (x* = £ 970)) = arg min {g60+ Jlx— (x* = L9706 12}

o This prox-operator minimizes the majorizing bound:
L .
F) +9(x) < FOF) + VI T (x = x*) + 5 lx = x*|13 + 9(x)

o Rule of thumb: Replace gradient steps with proximal gradient steps!
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Tractable prox-operators

Processing non-smooth terms in (2)

> We handle the nonsmooth term g in (2) using its proximal operator.

> However, computing proximal operator prox, of a general convex function g
(y) = i { (%) . lly - H2}
rox = arg min x) + X .
prox,(y gxeRl” g 5 S/ 2

can be computationally demanding.

Definition (Tractable proximity)

> Given g € F(RP). We say that g is proximally tractable if prox  defined by (3) can be computed efficiently.

> "efficiently" = {closed form solution, low-cost computation, polynomial time}.
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Tractable prox-operators

Example
> For separable functions, the prox-operator can be efficient. When g(x) := ||x[|1 = ?:1 |x;], we have
Prox (%) = sign(x) ® max{|x| — A, 0}. ‘
> Sometimes, we can compute the prox-operator via basic algebra. When g(x) := %HAx — b||2, we have

prox,,(x) = (]I + )\ATA) -t (x + )\ATb).

> For the indicator functions of simple sets, e.g., g(x) := 0 (x), the prox-operator is the projection operator

’ prox,,(x) = mx(x), ‘

where 7y (x) denotes the projection of x onto X. For instance, when X = {x : ||x[[1 < A}, the projection
can be obtained efficiently.
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Computational efficiency - Example

Proximal operator of quadratic function

The proximal operator of a quadratic function g(x) := %”AX — b||2 is defined as

1 1
= in 3 =||Ay —b||3 + —|ly — 2}. 4
proxy, (x) arg min, {2|| y — bl + 2)\\\3' x||3 (4)

How do we compute prox,(x)?
The derivation: o The optimality condition implies that the solution of (4) should satisfy the following:
AT(Ay —b)+ 2 Y(y—x)=0.
o Setting y = prox,,(x), we obtain
prox, (x) = (]I + /\ATA> ! (x + )\ATb>

Remarks: o The Woodbury matrix identity can be useful: (I+ M ATA)" =1—- AT\ 11+ AAT) 1A,
o When ATA is efficiently diagonalizable, i.e., ATA := UAUT, such that
> U is a unitary matrix, i.e., UUT =UTU =1, and A is a diagonal matrix.
> prox,,(x) = U+ AA) "' UT (x + AAb).
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A non-exhaustive list of proximal tractability functions

Name Function Proximal operator Complexity
£1-norm () =[xl prox s (x) = Sign(x) ® [Ix] — Al O(p)
£2-norm f(x) = ||x]|2 proxy s (x) = [1 — ”tz J4x O(p)
Support function f(x) := maxyec xTy proxy ¢ (x) = x — Amc (x)

Box indicator (%) := 6[a,p] (%) proxy f (x) = 7a,p] (%) O(p)
Positive semidefinite F(X) == 6p (X) proxy ¢ (X) = U[Z]+UT, where X = o(p3)
cone indicator + usuT
Hyperplane indicator f(x) :7 Sx(x), X = profo(x) = 7wx(x) = x + O(p)
{x : aT'x =b} ( )a
Hﬂ||2 ~
Simplex indicator f(x) = 6x(x),X = proxy ¢(x) = (x—v1) forsome v € R, O(p)
L ox > = which can be efficiently calculate:
{x: x>0, 1Tx =1} hich b fFi ly calculated
Convex quadratic f(x) = %xTQfoqTx proxy ¢ (x) = (Al + Q) !x O(p logp) —
) L o®»*)
Square £2-norm f(x) = %HXH2 proxy s (x) = XX O(p)
log-function f(x) := —log(x) proxy¢(z) = %( 22 +4X + x) O(1)
log det-function f(x) := — logdet(X) proxy ¢ (X) is the log-function prox ap- o(p?)
plied to the individual eigenvalues of X
Remarks: o Here: [x]4 := max{0,x} and §x is the indicator function of the convex set X.

o sign is the sign function, S

D

o For more functions, see [5, 15].
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Solution methods

Composite convex minimization

F* = min { PG = 700 + 900} 5)

Choice of numerical solution methods
o Solve (5) = Find x* € RP such that
F(xFy—F*<e¢
for a given tolerance € > 0.
o Oracles: We can use one of the following configurations (oracles):
1. 9f(:) and 9g(-) at any point x € RP.
2. Vf(-) and prox,,(-) at any point x € RP.
3. prox, s and prox,,(-) at any point x € RP.
4. Vf(-), inverse of V2 f(-) and prox,,(-) at any point x € RP.

Remark: Using different oracle leads to different types of algorithms.
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Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)

1. Choose xY € dom (F) arbitrarily as a starting point.
2. For k=0,1,---, generate a sequence {xk}kzo as:

xFtl = ProX,g (xk — an(xk)) ,

— 1
where o := .
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Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose xY € dom (F) arbitrarily as a starting point.
2. For k=0,1,---, generate a sequence {xk}kzo as:

xFtl = ProX,g (xk — an(xk)) ,

— 1
where o := .

Theorem (Convergence of ISTA [2])
Let {x*} be generated by ISTA. Then:

v o Lplx® = x5

k
P - F 2k + 1)

2
The worst-case complexity to reach F(x*) — F* < e of (ISTA) is O <@) where Ry := max [|%° — x*||2.
= x* e *

o Oracles: prox, (-) and Vf(-).
o Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose xV € dom (F) arbitrarily as a starting point.
2.Set y9 :=x% and tp :=1, o := L.

3. Fork=0,1,..., generate two sequences {x*};>0 and {y*}>¢ as:
xFHL = ProXqg (yk - avf(yk)) s
the1 o= S(14 /42 + 1),
t—1
yk+1 - xk+1 + t,;+1 (Xk+1 _ ch)'
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)
1. Choose xU € dom (F) arbitrarily as a starting point.
2.Set y¥ :=x% and tp :=1, a:= L.

3. For k=0,1,..., generate two sequences {xk}kzo and {yk}kzo as:
xFHL = prox,, (vF — aVf(yh)),
teyr = (14 /42 + 1),
t—1
yk+1 = XIc+1 + ti+1 (xk+1 _ xk).

Theorem (Convergence of FISTA [2])
Let {x*} be generated by FISTA. Then:

2L ||x% — x*|3

k *
F(X)—F < (k+1)2

The worst-case complexity to reach F(x*) — F* < ¢ of (FISTA) is O (RU L’) , Ro := max [|x° —x*|2.
xX*eS*
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose xV € dom (F) arbitrarily as a starting point.
2.Set y9 :=x% and tp :=1, o := L.
3. Fork=0,1,..., generate two sequences {x*};>0 and {y*}>¢ as:

xk+1 ‘= Proxgg (yk - avf(yk)) b

the1 o= S(14 /42 + 1),

k4+1 . k1 te—1/ k+1 _ Lk
y =X + fert (x x%).
2 .
Remark: From O (%) to O <R0 [(/> iterations at almost no additional cost!.

Complexity per iteration

> One gradient V f(y*) and one prox-operator of g;
> 8 arithmetic operations for ¢34 and vg41;
> 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator of g is efficient.
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Example 1: /;-regularized least squares

Problem (¢1-regularized least squares)
Given A € R"*P and b € R", solve:
1
P o= min {PGo = 3 1A% — b3 + Nxls | ©)
XERP 2

where X\ > 0 is a regularization parameter.

Complexity per iterations
> Evaluating Vf(x*) = AT (Ax* — b) requires one Ax and one ATy.
> One soft-thresholding operator prox, ,(x) = sign(x) ® max{|x| — A, 0}.

> Optional: Evaluating L = ||AT A|| (spectral norm) - via power iterations

Synthetic data generation
> A :=randn(n,p) - standard Gaussian N (0, I).

> x* is a k-sparse vector generated randomly.
> b:= Ax* + N (0,1073).
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Example 1: Theoretical bounds vs practical performance

Theoretical bounds
We have the followi for FISTA := 22458 0 for ISTA := 2258 11 the figure below, ISTA'
e have the following guarantees for = 22 and for = 3hr2) n the figure below, S

practical behavior outperforms the theoretical bound for FISTA.

- = =Theoretical bound
+ IST/

A

— F* in log-scale

0 200 400 600 800 1000
Number of iterations
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Example 1: Theoretical bounds vs practical performance

Theoretical bounds
2Ls R} Ly RE

We have the following guarantees for FISTA := 22 and for ISTA := PICES)E In the figure below, ISTA’s
practical behavior outperforms the theoretical bound for FISTA.

= = =Theoretical bound
, + ISTA
10 X FISTA

— F* in log-scale

descent directions restricted descent directions

0 200 400 600 800 1000
Number of iterations
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Example 1: Theoretical bounds vs practical performance

Theoretical bounds
2
We have the following guarantees for FISTA := Zf_iﬁgo and for ISTA := 2(k+2)

practical behavior outperforms the theoretical bound for FISTA.

- = =Theoretical bound
, + ISTA
10 X FISTA

In the figure below, ISTA’s

F(x) — F* in log-scale

0 200 400 600 800 1000
Number of iterations

Remarks: o ¢1-regularized least squares formulation has restricted strong convexity.
o The proximal-gradient method can automatically exploit this structure.
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Example 2: Sparse logistic regression

Problem (Sparse logistic regression)
Given A € R"*P and b € {—1,+1}", solve:

n
F* .— r)r{n/? F(x) := % Z log (1 + exp (fbj (a]Tx + B))) + pllx||1
j=1

Real data

> Real data: w8a with n = 49’749 data points, p = 300 features
> Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
> p=10"%
> Number of iterations 5000, tolerance 10~7.

> Ground truth: Solve problem up to 10~9 accuracy by TFOCS to get a high accuracy approximation of x*
and F*.
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Example 2: Sparse logistic regression - numerical results

10° 10
- - -Theoretical bound of ISTA OO0 ISTA .,
-E-]-;Fl)]gglollml bound of FISTA w0 ¥ 4111\'(;115\&%}\ ISTA
o N Line Search ISTA 6 FISTA with Restart
o % FISE with Restort 107 Fihe SEAreh FISTA with Restart
Sl th Restar o Line Sear Wi estart
2 | =9 Line Search FIST/ < | Ha
2 Line Search FISTA with Restart 2
20107 5 10
A 2 o
& . &
Lo N, T T 1107
O N o
& K 1079

9
0 1000 2000 3000 4000 5000 0 10 20 30 40 50 60 70
Time (s)

Number of iterations

ISTA LS-ISTA | FISTA | FISTA-R | LS-FISTA | LS-FISTA-R
Number of iterations 5000 5000 4046 2423 447 317
CPU time (s) 26.975 61.506 21.859 18.444 10.683 6.228
Solution error (x10~7) | 29370 2,774 1.000 0.998 0.961 0.985
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When f is strongly convex: Algorithms

Proximal-gradient scheme (ISTA,)
1. Given x0 € RP as a starting point.

2. For k=0,1,---, generate a sequence {xk}kzo as:

xk‘H::proxakg(xk —aka(xk)) ,

where ay, := ﬁ is the optimal step-size.

Fast proximal-gradient scheme (FISTA,)

1. Given xU € RP as a starting point. Set y¥ := x0
2. For k=0,1,---

, generate sequences {x*};>¢ and {y*};>0 as:

xFH = prox,, (y’“ - aka(y’“))

1. k+1 N 1 k
g s b (L) (e b

Ly _1. . .
where ¢ 1= 7" and oy = Lf Lis the optimal step-size.
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When f is strongly convex: Convergence

Assumption
f is strongly convex with parameter i > 0, i.e., f € Fiii(Rp).

... IL
Condition number: cy := Tf > 0.

Theorem (ISTA,, [14])

2k
Feh)—Fr < 5 (E57)  Ix0—x 13
= "2 \cp¥1 2

2 2
a g . =1l Lp—
Convergence rate: Linear with contraction factor: w := (cf ) = ( f M)

Theorem (FISTA,, [14])

k
k L ain / 0 2
F(xF) — F* < =2 (1— L”f) [|x0 — x*||3.
. . . VIf—
Convergence rate: Linear with contraction factor: wy = fT\/ﬁ < w.
f
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Summary of the worst-case complexities

Comparison

Complexity

Proximal-gradient scheme

Fast proximal-gradient
scheme

Complexity [u = 0]

Per iteration

o (1y/2)

1-gradient, 1-prox, 1l-sv, 1-
v+

1-gradient, 1-prox, 2-sv, 3-
v+

Complexity [u > 0]

Per iteration

@ (n log(5’1)>

O (Vrlog(c 1))

1-gradient, 1-prox, 1-sv, 1-
v+

1-gradient, 1-prox, 1-sv, 2-
v+

Here: sv = scalar-vector multiplication, v+=vector addition.

Ly . o
Ro := max |x° —x*|| and k = =L is the condition number.
x*eS* Hf
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Summary of the worst-case complexities

Comparison
Complexity Proximal-gradient scheme Fast proximal-gradient
scheme
. oLy Ly

Complexity [u = 0] O | Rg—=- O Roy/ ==

Per iteration 1-gradient, 1-prox, 1l-sv, 1- 1-gradient, 1-prox, 2-sv, 3-
v+ v+

Complexity [p > 0] (@) (n‘log(g’l)) (@) ( \/Elog(s’l))

Per iteration 1-gradient, 1-prox, 1-sv, 1- | 1l-gradient, 1-prox, 1-sv, 2-
v+ v+

Here: sv = scalar-vector multiplication, v+=vector addition.
Ly . .
Ro := max |x° —x*|| and k = =L is the condition number.
x*eS* Ky

Need alternatives when
> computing V f(x) is much costlier than computing proxg
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Summary of the worst-case complexities

Comparison
Complexity Proximal-gradient scheme Fast proximal-gradient
scheme

Complexity [u = 0] O (RS%) @ <RU A/ g)

Per iteration 1-gradient, 1-prox, 1l-sv, 1- 1-gradient, 1-prox, 2-sv, 3-
v+ v+

Complexity [p > 0] (@) (n‘log(s’l)> (@) ( \/Elog(a’l))

Per iteration 1-gradient, 1-prox, 1-sv, 1- | 1l-gradient, 1-prox, 1-sv, 2-
v+ v+

Here: sv = scalar-vector multiplication, v+=vector addition.
Ly . .
Ro := max |x° —x*|| and k = =L is the condition number.
x*eS* Ky

Need alternatives when
> computing V f(x) is much costlier than computing proxg

Software

TFOCS is a good software package to learn about first order methods.

http://cvxr.com/tfocs/
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Composite minimization: Non-convex case

Problem (Unconstrained composite minimization)

F* := min {F(x) := f(x) +g(x)} (€M)
XERP

> g: RP — RU {oo} is proper, closed, convex, and (possibly) nonsmooth.

> f: RP = R is proper and closed, dom(f) is convex, and f is L ;—smooth.
> dom(F') := dom(f) Ndom(g) # 0 and —oco < F* < +o0.

> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.
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A different quantification of convergence: Gradient mapping

Definition (Gradient mapping)

Let prox, denote the proximal operator of g and A > 0 some real constant. Then, the gradient mapping
operator is defined as

ga(x) := (x—proxkg(x—)\Vf(x))) .

> =

Properties [1]
> |Ga(x)|| =0 <= x is a stationary point.
> Lipschitz continuity: [|[G1(x) —G1(y)|| < 2L+ Ly)|lx—y]|
L L

Why do we care about gradient mapping?

> |t is the generalization of the gradient of f, V f(x)
> Recall prox-gradient update: x'™* = prox, ,(x! — AV f(x")), which is equivalent to x**1 = x — AG, (x*).

> In fact, when prox, = I, then, G\ (x) = %(x — (x = AV f(x))) = Vf(x).
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Sufficient Decrease property for proximal-gradient

Assumption

> f is Lj-smooth.

> g is proper, closed, convex, and (possibly) nonsmooth. g is proximally tractable.

1
k1 . k_ k
X = proxi, (x LVf(x ))

Lemma (Sufficient decrease [1])
For any x € int(dom(f)) and L € (%, ©0), it holds that

_Lr 2
Fed) < Py = 2 0 6 )
2
Corollary
2
F(xF) < F(x¥)— —Hg% ClE for L =Ly
2
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Non-convex case: Convergence

Basic proximal-gradient scheme
1. Choose xY € dom (F) arbitrarily as a starting point.
2. For k=0,1,---, generate a sequence {xk}kzo as:

xFtl = ProX,g (xk — an(xk)) ,
h = 2.
where o (O7 Lf)

Theorem (Convergence of proximal-gradient method: Non-convex [1])

Let {x*} be generated by proximal-gradient scheme above. Then, we have

1 L
, where M := o? (7 - —f>

0y _ *
min ||ga(xi)||§ < M
a 2

i=0,1,....k M(k+1)
> Whena = -1, M = =+

Ly 2Ly "

> The worst-case complexity to reach min;—g 1,...  [|Ga(x})||2 < e is O (%)
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Stochastic convex composite minimization

Problem (Mathematical formulation)

Consider the following composite convex minimization problem:
F* = min {F(x) := Bg[F(x,0)] = Eg[f(x,0) + g(x,0)]}
> 6 is a random vector whose probability distribution is supported on set ©.

> The solution set S* := {x* € dom (F) : F(x*) = F*} is nonempty.
> Oracles: (sub)gradient of f(-,8), V f(x,6), and stochastic prox operator of g(-,0), proxy(. g)(x).

Remark

o In this setting, we replace V f(:) with its stochastic estimates.

o It is possible to replace prox, () with its stochastic estimate (advanced material).
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose x° € R? and (vi)ken € 0, +oo['.
2. For k=0,1,... perform:

k+

X t= prox'ykg(-ﬁ)(xk - ’YkG(Xk7 ak))

Definitions:

0 Prox (o) i= argmingerr {g(y,0) + 2|y —x 2}

0 {0k}r=0,1,...: sequence of independent random variables.

o G(x*,0;) € f(xF,0;): an unbiased estimate of the deterministic (sub)gradient:

E[G(x",0,)] € of (xF).
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose x° € R? and (vi)ken € 0, +oo['.
2. For k=0,1,... perform:

k+

X t= prox'ykg(-ﬁ)(xk - ’YkG(Xk7 ak))

Definitions:

O Prox, (. g) ‘= arg minyegr {g(y, 0) + %H y—x ||2}

0 {0k}r=0,1,...: sequence of independent random variables.

o G(x*,0;) € f(xF,0;): an unbiased estimate of the deterministic (sub)gradient:
E[G(x*,0;)] € af(xF).

Remark
Cost of computing G(x*,0},) is usually much cheaper than V f(x*).
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Convergence analysis

Assumptions for the problem setting
> f(-,0) and g(-,0) are convex functions in the first argument, g is proximally-tractable.

> (Sub)gradients of F' satisfy stochastic bounded gradient condition: 3C' > 0, B > 0 such that
Eo[l| 0F (x,6) ||”] < B® + C(F(x) — F(x")).

> E[||x* — x* ||2] < R? for all t > 0.

Implications of the assumptions

> None of the above assumptions enforce that f is smooth.

> Stochastic bounded gradient condition holds with C' = 0 when both f(-,0) and g(-,0) are Lipschitz
continuous.

> The same condition holds when f(-,0) is L ¢-smooth and g(-, ) is Lipschitz continuous.

> However, for the upcoming theorem, we will take C' > 0, which rules out the case when both functions
are only Lipschitz continuous.
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Convergence analysis

Assumptions for the problem setting
> f(-,0) and g(-,0) are convex functions in the first argument, g is proximally-tractable.

> (Sub)gradients of F' satisfy stochastic bounded gradient condition: 3C' > 0, B > 0 such that
Bo[| 0F (x,0) ||*] < B? + C(F(x) — F(x")).

> E[||x* — x* ||?] < R? for all t > 0.

Theorem (Ergodic convergence [12])
> Assume the above assumptions hold with C' > 0.
> Let the sequence {x*};>0 be generated by SPG.
1

> Set v = =

&

Conclusion:
> Define x* = %Zf;ol x*, then
B2
< ) kL

_ . 1
BIP() — F)) < —= ( B0+
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Revisiting a special composite structure
A basic constrained problem setting

£+ 1= min {16 + 600 } = min {760 :x € 2}, ®)

Assumptions
> X is nonempty, convex and compact (closed and bounded) where x is its indicator function.

> fe fi’l(Rp) (i-e., convex with Lipschitz gradient).

Recall proximal gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose xY € dom (F) arbitrarily as a starting point.
2. Fork=0,1,---, generate a sequence {x*};>¢ as:

xktl .= ProX, (x’C — an(xk))

o AL
where o := =

> Prox-operator of indicator of X is projection onto X == ensures feasibility

How else can we ensure feasibility?
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Frank-Wolfe’s approach - |

7= min {6 s x €

xXERP

Conditional gradient method (CGM, see [10] for review)
A plausible strategy which dates back to 1956 [6]. At iteration k:
1. Consider the linear approximation of f at x*
(%) = F(x*) + V()T (x — x*)
2. Minimize this approximation within constraint set
%F € min ¢y (x) = min Vf(x*)Tx
reEX TeEX
3. Take a step towards % with step-size ~;, € [0,1]

k+1 — xk +’Yk:(§<k _ Xk)

X

> xk11 is feasible since it is convex combination of two other feasible points.
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Frank-Wolfe’s approach - Il

Conditional gradient method (CGM)
1. Choose xV € X.
2. For k=0,1,... perform:

%k 1= arg min Vf(xk)Tx
xEeX

kel (1 — yi)x® + v %%,

X

where v, := %H
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On the linear minimization oracle

7= min {760 i xce ¥}

XERP

Definition (Linear minimization oracle)

Let X be a convex, closed and bounded set. Then, the linear minimization oracle of X (Imox) returns a vector
x such that

Imoy (x) := % € arg min x?y 9)
yeEX

> lmoy returns an extreme point of X.
> Imoy is arguably cheaper than projection.

> Imoy is not single valued, note € in the definition.
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Convergence guarantees of CGM

Problem setting

7= min {769 i x € 2,

xERP
Assumptions
> X is nonempty, convex, closed and bounded.

> fe ]-'III’I(RP) (i.e., convex with Lipschitz gradient).

Theorem
Under assumptions listed above, CGM with step size v, = k%a satisfies
£k — 5y < AP (10)
X — X
T k+1

where Dy := maxx ycx ||x — yl||2 is diameter of constraint set.
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*Convergence guarantees of CGM: A faster rate

Problem setting

7= min {769 i x €

xERP
Assumptions
> X is nonempty, a-strongly convex, closed and bounded.
> fe fi”L(Rp) (i.e., strongly convex with Lipschitz gradient).

Definition (a-strongly convex set) [7]
A convex set X € RPXP is a-strongly convex with respect to || - || if for any x,y € X, any v € [0, 1] and any
vector z € RPXP such that ||z || = 1, it holds that
& 2
X+ A=y +1A -7 llx-ylzeX

That is, for any x,y € X, the ball centered at yx + (1 — )y with radius v(1 —v)§||x —y ||? is contained in X.
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*CGM for strongly convex objective + strongly convex set

Conditional gradient method - CGM2

1. Choose xV € X.
2. For k=0,1,... perform:

%k 1= arg min Vf(xk)Tx
xeX
: ok _ Lk k oLy ok k2
v c=arg min y(%F —xF, Vi) ) + 922 &8 - x|
~v€1[0,1] 2
xFHL = (1= g )xF + b,

Theorem ([7])

Under assumptions listed previously, CGM?2 satisfies

165 = 16 =0 (55 )-
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Example: lmo of nuclear-norm bal

Consider dx, the indicator of nuclear-norm ball X := {X X ERPXP X |4 < a}

Imo of nuclear-norm ball
lmoy (X) := X € arg min (Y,X)
Yex
This can be computed as follows:

> Compute top singular vectors of X —  (u1,01,v1) = svds(X,1).

> Form the rank-1 output — X = —ulavf

We can efficiently approximate top singular vectors by power method!
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Proximal gradient vs. Frank-Wolfe

Definitions:
> Here: sv = scalar-vector multiplication, v+=vector addition.
> Rp := maxy«es+ ||x® — x*|| is the maximum initial distance.

> Dy := maxy ycx [|x — yl||2 is diameter of constraint set X.

Algorithm Proximal-gradient scheme Frank-Wolfe method
LyRj LyD%
Rate O(—%* O —%=*
Complexity @ (RS%) @ (Di L{)
Per iteration 1-gradient, 1l-prox, 1l-sv, 1- 1-gradient, 1-lmo, 2-sv, 1-
v+ v+

How do prox operator and lmo compare in practice?
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An example with matrices

Problem Definition

min  f(X) + g(X)
XERPXP

> Define g(X) = dx(X), where X := {X X eRPXP, || X ||« < a} is nuclear norm ball.

> This problem is equivalent to:

25 IX)

Observations

> prox, = mx. Projection requires full SVD, O(p3).

> lmo computes (approximately) top singular vectors, roughly in ~ O(p?) with Lanczos algorithm.
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Example: Phase retrieval

Phase retrieval

Aim: Recover signal x € CP from the measurements b € R™:
2
bi = |<ai,xh)| + wj.

(a; € CP are known measurement vectors, w; models noise).
e Non-linear measurements — non-convex maximum likelihood estimators.

PhaseLift [4]

Phase retrieval can be solved as a convex matrix completion problem, following a combination of
P . H
> semidefinite relaxation (xfix1" = X¥)
> convex relaxation (rank — || - [|«)

albeit in terms of the lifted variable X € CPXP,
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Example: Phase retrieval - I

Problem formulation
We solve the following PhaseLift variant:

pri= min {21400 - bI3: IXI. <x, X >0}, (12)

Xecpxp

Experimental setup [19]
Coded diffraction pattern measurements, b = [by,...,bp] with L = 20 different masks

b, = |££t(d © x7)|?

— © denotes Hadamard product; | - |2 applies element-wise
— dy are randomly generated octonary masks (distributions as proposed in [4])

— Parametric choices: A\ = 0”; ¢=10"2; &k = mean(b).
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Example: Phase retrieval - 1lI

10% 4
10% 5 3
= ] L
o 10" 4 E
g 3 E
10”5 E
10" T T T T
25 25 27 29 211 213. 215
P

Test with synthetic data: Prox vs sharp

— Synthetic data: x% = randn(p, 1) + 4 - randn(p, 1).
o criteria: IXI=xFll2 o 19—2

— Stopping criteria: e S 10—=.

— Averaged over 10 Monte-Carlo iterations.

Note that the problem is p X p dimensional!
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A basic constrained non-convex problem

Problem setting

7= min {769 i x € 2,

xERP
Assumptions
> X is nonempty, convex, closed and bounded.

> f has L-Lipschitz continuous gradients, but it is non-convex.

Stationary point
Due to constraints, || Vf(x*) || = 0 may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of stationary point for
constrained problems:

grw (X) := max (x — y)TVf(x)
YEX

> grw(x) >0 for all x € X.
> x € X is a stationary point if and only if gy (x) = 0.
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CGM for non-convex problems

CGM for non-convex problems
1. Choose x? € X, K > 0 total number of iterations.
2. Fork=0,1,...,K — 1 perform:

{f(k = Imox (V £(x¥))

XL = (1= ) xF 4 ek,
1
where v, := et
Theorem
Denote X chosen uniformly random from {x',x2, ... ,xK}. Then, CGM satisfies
min _gew (<) < Elgrw(®)] < —= ( £60) - £ + 22
k:l,z,...,KgFW = SRy - VK 2 ’

* There exist stochastic CGM methods for non-convex problems. See [17] for details.
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A basic constrained stochastic problem

Problem setting (Stochastic)

£ = min Bl 0)] s x € v}, (13)

xERP
Assumptions
> 0 is a random vector whose probability distribution is supported on set ©
> X is nonempty, convex, closed and bounded.
> f(-,0) € fi’l(RP) for all 6 (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

BlfGe 0] =+ > ()
j=1

> j =0 is a drawn uniformly from © = {1,2,...,n}

> f; € Fi’l(RP) for all j (i.e., convex with Lipschitz gradient).
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Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)

1. Choose xV € X.
2. For k=0,1,... perform:

%k = Imox (Vf(x*,6;))
xFFL = (1 — ) %P 4y RF,

where v 1=

_2
k42"

and Vf is an unbiased estimator of V.

Theorem [9]
Assume that the following variance condition holds
LD )2

Bl VA(xF) — V", 0) || < (k -

Then, the iterates of SFW satisfies
4LD?

E4+1°

E[f(x*,0)] — f* <

(%) — SFW requires decreasing variance!
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Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)
1. Choose xV € X.
2. For k=0,1,... perform:

Xk i=1Imox (Vf(xF,04))
XL = (1= ) xF 4k,

where v 1= and Vf is an unbiased estimator of V.

_2
kt2’

Example (Finite-sum model)

BIfG, 0] = = > 50
j=1

Assume f; is G-Lipschitz continuous for all j. Suppose that Sy, is a random sampling (with replacement) from
0 ={1,2,...,n}. Then,
2

Vf(x*, 0p) = \871“ D 56N = BV - V0 |1® < |§7|
JESK

Hence, by choosing |Sk| = (%)2 we satisfy the variance condition for SFW.
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Wrap up!

o Monday: Transition from variance reduction to deep learning...
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*Expanding on prox operator and optimality condition

Notes

| 2

>

>

By definition, g(y) + %” y — x||? attains its minimum when y = prox, , (x).
One can see that g(y) + i” y — x||? is convex, and prox operator computes its minimizer over RP.
As a result, subdifferential of g(y) + %H y — x||? at the minimizer (y = prox,,(x)) should include 0.

Hence, 0 € 9g(prox,,(x)) + % (proxkg (x) — x).

> After rearranging the above inclusion we obtain: x € Adg(prox,,(x)) + prox,,(x)

> We can rewrite the RHS as a single function: Adg(prox,,(x)) + prox,,(x) = (Adg + I)(prox,,(x))

> The inclusion becomes: x € (Adg + I)(prox, 4(x)).

Finally, we compute the inverse of (Adg +1I)(-) to conclude: prox,,(x) = (\dg + ! (x).

o In the literature, (A\dg + ]I)_l is called the resolvent of the subdifferential of g with parameter .

o This is just a technical term that stands for proximal operator of \g, as we have defined in this course.
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*A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)

1. prox,(x) is well-defined and single-valued (i.e., the prox-operator (3) has a unique solution since
g(-) + %H - —x||2 is strongly convex).

2. Optimality condition:
X € prox,(x) + 9g(prox,(x)), x € RP.

3. x* is a fixed point of prox,(-):
0€9g(x*) & x*=prox,(x).

4. Nonexpansiveness:
[[prox, (x) — prox, (X)[l2 < [[x — X[l2, Vx,% € RP.

Note: An operator is called non-expansive if it is L-Lipschitz continuous with L = 1.
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*Adaptive Restart

It is possible the preserve O(k%) convergence guarantee !

One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme

1. Choose xY = x~T € dom (F) arbitrarily as a starting point.
2.Setfp=0_1=1,A:=L;"!

yP = x40, 1, — D(xF - xk)

xF+L = proxy, (yF = AVF(yF))
if restart test holds
14
Op—1 =0 =1 (14)
g
xE1 = prox,, (vF = AVF(y*))

3. For k=0,1,..., generate two sequences {xk}kzo and {yk}kzo as:

0}, is chosen so that it satisfies

,M@4%7%< 9
2 k+3

Slide 3/ 25

Oky1 =
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*Adaptive Restart: Guarantee

Theorem (Global complexity [8])
The sequence {x*}, >0 generated by the modified algorithm satisfies

2L _ .
F(x*) - F* < (Hif;)z B3+ ) (I — %k 3 — " —2*1)3) | vk >o. (15)
ki <k

where Ry := mig Ix0 — x*||, z*F = xk—1 4+ 0;711(xk — x*=1) and k;,i = 1... are the iterations for which the
x* E *
restart test holds.

2

Various restarts tests that might coincide with [|x* — x*¢||3 < ||x* — z*||3

> Exact non-monotonicity test: F(x*t1) — F(x*) >0

> Non-monotonicity test: ((Lp(y*~1 —x*),xk+1 — 1(x* 4 y*¥~1)) > 0 (implies exact non-monotonicity
and it is advantageous when function evaluations are expensive)

> Gradient-mapping based test: ((Lf(y* — x*+1), x*+1 —xk) >0
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*Recall: Composite convex minimization

Problem (Unconstrained composite convex minimization)

F* := min {F(x) := f(x) + g(x)}
xERP

> f and g are both proper, closed, and convex.
> dom(F') := dom(f) Ndom(g) # @ and —oco < F* < 4o0.
> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.
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*Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

1 1
f€f£’17 a=7 F(xF) — F(x*) <, 0(7)
Fast proximal gradient method:
1,1 1 k *
fer,, w= - F")-F(xx*)<e O
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*Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

1 1
fefi’:l, a=7 F(xF) — F(x*) <, 0(7)
€
Fast proximal gradient method:
perl m=— F(x) — F(x*) < o(i)
L L ; )

o We require o, to be a function of L.

o It may not be possible to know exactly the Lipschitz constant. Line-search ?

o Adaptation to local geometry — may lead to larger steps.
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*How can we better adapt to the local geometry?
Non-adaptive:

Global quadratic upper bound
Qu(x.x")

Tk o x" ! = arg u;in {f(xk) +(VF(xF),x = x*) + ng - x‘H%}

Vi) = Vil <Lly—=ll

S0 < T05) 4 VI (e %) + 5 x <3
L is a global worst-case constant

@ (<"

(=~
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*How can we better adapt to the local geometry?

Line-search:
(%)
Local quadratic upper bound
Qr, (x.xk)
k o x" = argmin { f(x*) + (Vf(xF),x —x*) + ﬂHx —x||2
7(x") i ; 3 3
Ly ;
IV/ (@) = V@)l < Llly - =] MT 760) < F6) + I6HT 0= + e 1
L is a global worst-case constant . applies only locally
(x*)
—_
Ty
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*How can we better adapt to the local geometry?

Variable metric:

) .
f(x) < F(x*) 4+ VAN (x x) 4 5 lx = x"
—_— -

x

e
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*The idea of the proximal-Newton method

Assumptions A.2
Assume that f € fi’L(RP) and g € Fprox(RP).

*Proximal-Newton update

> Similar to classical newton, proximal-newton suggests the following update scheme using second order
Taylor series expansion near xj.

xM = arg min{ %(x—xk)TVQf(xk)(x—xk)—l—Vf(xk)T(x—xk) +g(x)}. (16)

xERP

2nd-order Taylor expansion near x*
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*The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

1. Given xU € RP as a starting point.
2. Fork=0,1,---, perform the following steps:

2.1. Evaluate an SDP matrix Hy, =~ V2f(x*) and Vf(x*).
2.2. Compute dF := proxH;lg (xk - HEIVf(xk)) —xk,

2.3. Update xF+1 := xb 4 o d*.
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*The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

1. Given xU € RP as a starting point.
2. Fork=0,1,---, perform the following steps:

2.1. Evaluate an SDP matrix Hy, =~ V2f(x*) and Vf(x*).
2.2. Compute dF := proxH;lg (xk - HEIVf(xk)) —xk,

2.3. Update xF+1 := xb 4 o d*.

Remark

> Hj, = V2f(x*) = proximal-Newton algorithm.
> H; ~ V2f(x") = proximal-quasi-Newton algorithm.

> A generalized prox-operator: ProXg—1, (xk + H;lvf(xk)).
k
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*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists p > 0 such that
H;. > pl for all k > 0. Then;

‘ {x*}r>0 globally converges to a solution x* of (2).

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 25



*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists p > 0 such that
H;. > pl for all k > 0. Then;

‘ {Xk}kzo globally converges to a solution x* of (2).

Theorem (Local convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm there exists 0 < p < Lo < +00 such
that ul < Hy =< Lol for all sufficiently large k. Then;
> IfH = V2f(x*), then ay, = 1 for k sufficiently large (full-step).

> IfH; = V2f(xF), then {xF} locally converges to x* at a quadratic rate.
> |f Hy, satisfies the Dennis-Moré condition:
o I = V2R R+ — b))
k— 400 |xk+t1 — xk||

=0, (17)

then {x*} locally converges to x* at a super linear rate.
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*How to compute the approximation H;?

How to update H;.?

Matrix Hg can be updated by using low-rank updates.
> BFGS update: maintain the Dennis-Moré condition and Hy, > 0.

yryr  HpspsTHy

Hk+1 = Hy + , Ho:=~1, (’y > 0)
szﬂy;c sszsk

where y;, := Vf(xFt1) — Vf(x*) and s}, := x*+1 — xF.

> Diagonal+Rank-1 [3]: computing PN direction d¥ is in polynomial time, but it does not maintain the
Dennis-Moré condition:

s — H
Hj =Dy + upuy, uy:= k 2bL 5
(st — Hoyr)Tye

where Dy, is a positive diagonal matrix.
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*Pros and cons

Pros
> Fast local convergence rate (super-linear or quadratic)

> Numerical robustness under the inexactness/noise ([11]).

> Well-suited for problems with many data points but few parameters. For example,

n

¥ oo o ol .

F .—irenﬂg) ij(ajx+b])+g(x) ,
j=1

where £; is twice continuously differentiable and convex, g € Fprox, p K n.
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*Pros and cons

Pros
> Fast local convergence rate (super-linear or quadratic)
> Numerical robustness under the inexactness/noise ([11]).

> Well-suited for problems with many data points but few parameters. For example,

n

¥ oo o ol .

F .—irenﬂg) ij(ajx+b])+g(x) ,
j=1

where £; is twice continuously differentiable and convex, g € Fprox, p K n.

Cons
> Expensive iteration compared to proximal-gradient methods.
> Global convergence rate may be worse than accelerated proximal-gradient methods.
> Requires a good initial point to get fast local convergence.

> Requires strict conditions for global/local convergence analysis.
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*Example 1: Sparse logistic regression

Problem (Sparse logistic regression)

Given a sample vector a € RP and a binary class label vector b € {—1,+1}"™. The conditional probability of a

label b given a is defined as:
1

P(b|a, x, =
(bla, x, 1) ey

where x € RP is a weight vector, p is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

1y T
min { 237 LT x + ) +glxl, | (18)
= 9(x)

()

where a; is the i-th row of data matrix A in R®*P, p > 0 is a regularization parameter, and £ is the logistic
loss function £(7) :=log(1 +e 7).
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*Example: Sparse logistic regression

Real data

> Real data: w2a with n = 3470 data points, p = 300 features
> Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters

> Tolerance 10~9.
> L-BFGS memory m = 50.
> Ground truth: Get a high accuracy approximation of x* and f* by TFOCS with tolerance 10—12.
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*Example: Sparse logistic regression-Numerical results

+ Pure Newton + Pure Newton |
10? X Quasi-Newton with BFGS 102 é (QQuas;—Newton w;t}; EF};(%S( s
O Quasi-Newton with L-BFGS ( uasi-Newton with L- B
© Accelerated gradient method ) A'ccel§rated grathent' method
= Line Search AGD with adaptive restart < Line Search AGD with adaptive restart
& # e —
& 10° i &0 10
= =)
x x
Ry
& &
=g i %10
& &
| |
& 10 , & 10
Py -6
10 10
10° 10' 3 10° 10° 107 10° 107! 10° 10'

10
Number of iterations
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*Example 2: /;-regularized least squares
Problem (¢1-regularized least squares)
Given A € R™"*P and b € R", solve:
F* o= min { PG = 3l Ax— bI + plxl1 }
where p > 0 is a regularization parameter.
Complexity per iterations

> Evaluating Vf(x*) = AT (Ax* — b) requires one Ax and one ATy.
> One soft-thresholding operator prox,,(x) = sign(x) ® max{|x| — p, 0}.
> Optional: Evaluating L = || AT A|| (spectral norm) - via power iterations (e.g., 20 iterations, each

iteration requires one Ax and one ATy).

Synthetic data generation

> A :=randn(n,p) - standard Gaussian N/ (0,I).
> x* is a s-sparse vector generated randomly.
> b:= Ax* + N(0,1073).
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*Example 2: /;-regularized least squares - Numerical results - Trial 1

Parameters: n = 750, p = 2000, s = 200,p =1

10* ‘ : :
’ 4+ Quasi-Newton with diagonal+rank1
X Accelerated gradient method
102 AGD with restart
[ Line search AGD with restart

(F(x*) — F*)/F* in log scale

‘ Nnn

-8

10

0 500 1000 1500
Number of iterations
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10°

(F(xF) — F*)/F* in log scale

+ Quasi—Newtofl with diagonal-‘,‘-rankl
X Accelerated gradient method

AGD with restart
Line search AGD with restart
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*Example 2: /;-regularized least squares - Numerical results - Trial 2

Parameters: n = 750, p = 2000, s = 200,p =1

4
10° : : : 10 = —
’ 4 Quasi-Newton with diagonal+rank1 ’ 4+ Quasi-Newton Wllth diagonal+rank1
6 Accelerated gradient method X ﬁg:]e)ler?ttﬁd giadierlt method
ith reste 2| { with restart i
10° [ éﬁ? sﬁ&fﬁfﬁt with restart I , 10 Line search AGD with restart

(F(x*) — F*)/F* in log scale
(F(x¥) — F*)/F* in log scale

5 ‘ Nnn

0 500 1000 1500 2000
Number of iterations
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