## Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

### Lecture 6: From stochastic gradient descent to non-smooth optimization

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

















#### License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

#### Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

#### Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

#### Share Alike

The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

► Full Text of the License

#### Outline

- Stochastic optimization
- ► Deficiency of smooth models
- Sparsity and compressive sensing
- Non-smooth minimization via Subgradient descent
- \*Atomic norms

#### Recall: Gradient descent

## Problem (Unconstrained optimization problem)

Consider the following minimization problem:

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

 $f(\mathbf{x})$  is proper and closed.

#### Gradient descent

Choose a starting point  $\mathbf{x}^0$  and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$$

where  $\alpha_k$  is a step-size to be chosen so that  $\mathbf{x}^k$  converges to  $\mathbf{x}^\star$ .

|     | f is L-smooth & convex | f is L-gradient Lipschitz & non-convex |  |
|-----|------------------------|----------------------------------------|--|
| GD  | O(1/k) (fast)          | O(1/k) (optimal)                       |  |
| AGD | $O(1/k^2)$ (optimal)   | O(1/k) (optimal) [16]                  |  |

#### Recall: Gradient descent

## Problem (Unconstrained optimization problem)

Consider the following minimization problem:

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

 $f(\mathbf{x})$  is proper and closed.

#### Gradient descent

Choose a starting point  $\mathbf{x}^0$  and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$$

where  $\alpha_k$  is a step-size to be chosen so that  $\mathbf{x}^k$  converges to  $\mathbf{x}^{\star}$ .

|     | f is L-smooth & convex | f is L-gradient Lipschitz & non-convex |  |
|-----|------------------------|----------------------------------------|--|
| GD  | O(1/k) (fast)          | O(1/k) (optimal)                       |  |
| AGD | $O(1/k^2)$ (optimal)   | O(1/k) (optimal) [16]                  |  |

Why should we study anything else?

# Statistical learning with streaming data

o Recall that statistical learning seeks to find a  $h^{\star} \in \mathcal{H}$  that minimizes the *expected* risk,

$$h^{\star} \in \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \left\{ R(h) := \mathbb{E}_{(\mathbf{a},b)} \left[ \mathcal{L}(h(\mathbf{a}),b) \right] \right\}.$$

### Abstract gradient method

$$h^{k+1} = h^k - \alpha_k \nabla R(h^k) = h^k - \alpha_k \mathbb{E}_{(\mathbf{a},b)}[\nabla \mathcal{L}(h^k(\mathbf{a}),b)].$$

**Remark:**  $\circ$  This algorithm can not be implemented as the distribution of  $(\mathbf{a}, b)$  is unknown.

# Statistical learning with streaming data

o Recall that statistical learning seeks to find a  $h^{\star} \in \mathcal{H}$  that minimizes the expected risk,

$$h^{\star} \in \operatorname*{arg\,min}_{h \in \mathcal{H}} \left\{ R(h) := \mathbb{E}_{(\mathbf{a},b)} \left[ \mathcal{L}(h(\mathbf{a}),b) \right] \right\}.$$

#### Abstract gradient method

$$h^{k+1} = h^k - \alpha_k \nabla R(h^k) = h^k - \alpha_k \mathbb{E}_{(\mathbf{a},b)}[\nabla \mathcal{L}(h^k(\mathbf{a}),b)].$$

**Remark:**  $\circ$  This algorithm can not be implemented as the distribution of  $(\mathbf{a}, b)$  is unknown.

o In practice, data can arrive in a streaming way.

### A parametric example: Markowitz portfolio optimization

$$\mathbf{x}^{\star} := \min_{\mathbf{x} \in \mathcal{X}} \left\{ \mathbb{E} \left[ |b - \langle \mathbf{x}, \mathbf{a} \rangle|^2 
ight] 
ight\}$$

- $h_{\mathbf{x}}(\cdot) = \langle \mathbf{x}, \cdot \rangle$
- $lackbox{b}\in\mathbb{R}$  is the desired return &  $\mathbf{a}\in\mathbb{R}^p$  are the stock returns
- $ightharpoonup \mathcal{X}$  is intersection of the standard simplex and the constraint:  $\langle \mathbf{x}, \mathbb{E}[\mathbf{a}] \rangle \geq \rho$ .

## Stochastic programming

## Problem (Mathematical formulation)

Consider the following convex minimization problem:

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)] \right\}$$

- lacktriangledown is a random vector whose probability distribution is supported on set  $\Theta$ .
- $f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)]$  is proper, closed, and convex.
- ▶ The solution set  $S^* := \{ \mathbf{x}^* \in \text{dom}(f) : f(\mathbf{x}^*) = f^* \}$  is nonempty.

# Stochastic gradient descent (SGD)

#### Stochastic gradient descent (SGD)

- **1.** Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  and  $(\alpha_k)_{k \in \mathbb{N}} \in ]0, +\infty[^{\mathbb{N}}]$ .
- **2.** For k = 0, 1, ... perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k).$$

 $\circ G(\mathbf{x}^k, \theta_k)$  is an unbiased estimate of the full gradient:

$$\mathbb{E}[G(\mathbf{x}^k, \theta_k)] = \nabla f(\mathbf{x}^k).$$

# Stochastic gradient descent (SGD)

#### Stochastic gradient descent (SGD)

- **1.** Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  and  $(\alpha_k)_{k \in \mathbb{N}} \in ]0, +\infty[^{\mathbb{N}}]$ .
- **2.** For k = 0, 1, ... perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k).$$

o  $G(\mathbf{x}^k, \theta_k)$  is an unbiased estimate of the full gradient:

$$\mathbb{E}[G(\mathbf{x}^k, \theta_k)] = \nabla f(\mathbf{x}^k).$$

#### Remarks:

- $\circ$  The cost of computing  $G(\mathbf{x}^k, \theta_k)$  is n times cheaper than that of  $\nabla f(\mathbf{x}^k)$ .
- $\circ$  As  $G(\mathbf{x}^k, heta_k)$  is an unbiased estimate of the full gradient, SGD would perform well.
- $\circ$  We assume  $\{\theta_k\}$  are jointly independent.
- o SGD is not a monotonic descent method.

## Example: Convex optimization with finite sums

### Convex optimization with finite sums

The problem

$$\underset{\mathbf{x} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \right\},\,$$

can be rewritten as

$$\mathop{\arg\min}_{\mathbf{x}\in\mathbb{R}^p}\left\{f(\mathbf{x}):=\mathbb{E}_i[f_i(\mathbf{x})]\right\}, \qquad i \text{ is uniformly distributed over } \{1,2,\cdots,n\}.$$

## A stochastic gradient descent (SGD) variant for finite sums

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f_i(\mathbf{x}^k)$$
 is uniformly distributed over $\{1,...,n\}$ 

#### Remarks:

$$\circ \; \mathsf{Note} \colon \, \mathbb{E}_i[\nabla f_i(\mathbf{x}^k)] = \sum\nolimits_{j=1}^n \nabla f_j(\mathbf{x}^k)/n = \nabla f(\mathbf{x}^k).$$

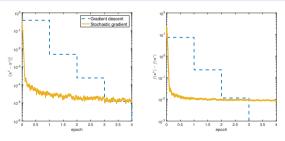
 $\circ$  The computational cost of SGD per iteration is p.

### Synthetic least-squares problem

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) := \frac{1}{2n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} : \mathbf{x} \in \mathbb{R}^{p} \right\}$$

# Setup

- $\mathbf{A} := \operatorname{randn}(n, p)$  standard Gaussian  $\mathcal{N}(0, \mathbb{I})$ , with  $n = 10^4$ ,  $p = 10^2$ .
- $ightharpoonup \mathbf{x}^{\sharp}$  is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to  $\|\mathbf{x}^{\sharp}\|_{2}=1$ .
- $\mathbf{b} := \mathbf{A} \mathbf{x}^{\dagger} + \mathbf{w}$ , where  $\mathbf{w}$  is Gaussian white noise with variance 1.



 $\circ$  1 epoch = 1 pass over the full gradient

# Convergence of SGD when the objective is not strongly convex

# Theorem (decaying step-size [28])

#### **Assume**

- $ightharpoonup \mathbb{E}[\|\mathbf{x}^k \mathbf{x}^\star\|^2] \le D^2 \text{ for all } k,$
- $ightharpoonup \mathbb{E}[\|G(\mathbf{x}^k, \theta_k)\|^2] \leq M^2$  (bounded gradient),

#### Then

$$\mathbb{E}[f(\mathbf{x}^k) - f(\mathbf{x}^*)] \le \left(\frac{D^2}{\alpha_0} + \alpha_0 M^2\right) \frac{2 + \log k}{\sqrt{k}}.$$

**Observation:**  $\circ \mathcal{O}(1/\sqrt{k})$  rate is optimal for SGD if we do not consider the strong convexity.

## Convergence of SGD for strongly convex problems I

### Theorem (strongly convex objective, fixed step-size [4])

#### Assume

- f is  $\mu$ -strongly convex and L-smooth,
- $ightharpoonup \mathbb{E}[\|G(\mathbf{x}^k, \theta_k)\|^2]_2 \le \sigma^2 + M\|\nabla f(\mathbf{x}^k)\|_2^2$  (bounded variance),

#### Then

$$\mathbb{E}[f(\mathbf{x}^k) - f(\mathbf{x}^*)] \le \frac{\alpha L \sigma^2}{2\mu} + (1 - \mu \alpha)^{k-1} \left( f(\mathbf{x}^1) - f^* \right).$$

#### Observations:

- $\circ$  Converge fast (linearly) to a neighborhood around  $\mathbf{x}^*$ .
- $\circ$  Smaller step-sizes  $\alpha \Longrightarrow$  converge to a better point, but with a slower rate.
- $\circ$  Zero variance ( $\sigma = 0$ )  $\Longrightarrow$  linear convergence.
- o This is also known as the relative noise model [25] or the strong growth condition [8].
- o The growth condition is in fact a necessary and sufficient condition for linear convergence [8].
- o The theory applies to the Kaczmarz algorithm (see advanced material).

## Convergence of SGD for strongly convex problems II

## Theorem (strongly convex objective, decaying step-size [4])

#### Assume

- f is  $\mu$ -strongly convex and L-smooth,
- $\mathbb{E}[\|G(\mathbf{x}^k, \theta_k)\|^2]_2 \le \sigma^2 + M\|\nabla f(\mathbf{x}^k)\|_2^2$  (bounded variance),
- $ightharpoonup lpha_k = rac{c}{k_0 + k}$  with some appropriate constants c and  $k_0$ .

#### Then

$$\mathbb{E}[\|\mathbf{x}^k - \mathbf{x}^\star\|^2] \le \frac{C}{k+1},$$

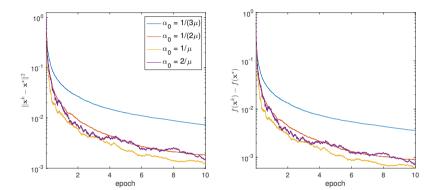
where C is a constant independent of k.

**Observations:**  $\circ$  Using the L-smooth property,

$$\mathbb{E}[f(\mathbf{x}^k) - f(\mathbf{x}^*)] \le L\mathbb{E}[\|\mathbf{x}^k - \mathbf{x}^*\|^2] \le \frac{C}{k+1}.$$

 $\circ$  The rate is optimal if  $\sigma^2>0$  with the assumption of strongly-convexity.

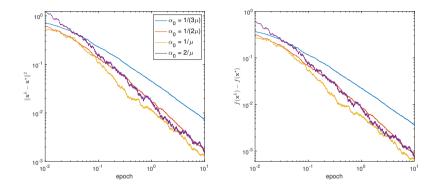
# Example: SGD with different step sizes



# Setup

- o Synthetic least-squares problem as before.
- $\circ$  We use  $\alpha_k = \alpha_0/(k+k_0)$ .

## Example: SGD with different step sizes



# Setup

- o Synthetic least-squares problem as before.
- $\circ \text{ We use } \alpha_k = \alpha_0/(k+k_0).$

Observation:

 $\alpha_0 = 1/\mu$  is the best choice.

### Comparison with GD

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \right\}.$$

 $\circ$  f:  $\mu$ -strongly convex with L-Lipschitz smooth.

|     | rate    | iteration complexity | cost per iteration | total cost          |
|-----|---------|----------------------|--------------------|---------------------|
| GD  | $ ho^k$ | $\log(1/\epsilon)$   | n                  | $n\log(1/\epsilon)$ |
| SGD | 1/k     | $1/\epsilon$         | 1                  | $1/\epsilon$        |

Remark:

 $\circ$  SGD is more favorable when n is large — large-scale optimization problems

# Motivation for SGD with Averaging

- o SGD iterates tend to oscillate around global minimizers
- o Averaging iterates can reduce the oscillation effect
- o Two types of averaging:

$$ar{\mathbf{x}}^k = rac{1}{k} \sum_{j=1}^k lpha_j \mathbf{x}^j$$
 (vanilla averaging)

$$\bar{\mathbf{x}}^k = \frac{\sum_{j=1}^k \alpha_j \mathbf{x}^j}{\sum_{i=1}^k \alpha_j} \quad \text{(weighted averaging)}$$

Remark:

o Do not confuse the averaging above with the ones used in Federated Learning.

## Convergence for SGD-A I: non-strongly convex case

#### Stochastic gradient method with averaging (SGD-A)

- **1.** Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  and  $(\alpha_k)_{k \in \mathbb{N}} \in ]0, +\infty[^{\mathbb{N}}]$ .
- **2a.** For k = 0, 1, ... perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k).$$

**2b.** 
$$\bar{\mathbf{x}}^k = (\sum_{j=0}^k \alpha_j)^{-1} \sum_{j=0}^k \alpha_j \mathbf{x}^j$$
.

### Theorem (Convergence of SGD-A [24])

Let  $D = \|\mathbf{x}^0 - \mathbf{x}^*\|$  and  $\mathbb{E}[\|G(\mathbf{x}^k, \theta_k)\|^2] \leq M^2$ . Then.

$$\mathbb{E}[f(\bar{\mathbf{x}}^{k+1}) - f(\mathbf{x}^{\star})] \le \frac{D^2 + M^2 \sum_{j=0}^k \alpha_j^2}{2 \sum_{i=0}^k \alpha_j}.$$

In addition, choosing  $\alpha_k = D/(M\sqrt{k+1})$ , we get,

$$\mathbb{E}[f(\bar{\mathbf{x}}^k) - f(\mathbf{x}^*)] \le \frac{MD(2 + \log k)}{\sqrt{k}}.$$

**Observation:** • Same convergence rate with vanilla SGD.

# Convergence for SGD-A II: strongly convex case

#### Stochastic gradient method with averaging (SGD-A)

- **1.** Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  and  $(\alpha_k)_{k \in \mathbb{N}} \in ]0, +\infty[^{\mathbb{N}}]$ .
- **2a.** For  $k = 0, 1, \ldots$  perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k).$$

**2b.**  $\bar{\mathbf{x}}^k = \frac{1}{k} \sum_{j=1}^k \mathbf{x}^j$ .

# Theorem (Convergence of SGD-A [27])

#### Assume

- f is  $\mu$ -strongly convex,
- $ightharpoonup \mathbb{E}[\|G(\mathbf{x}^k, \theta_k)\|^2] \le M^2$ ,
- $ightharpoonup \alpha_k = \alpha_0/k$  for some  $\alpha_0 \ge 1/\mu$ .

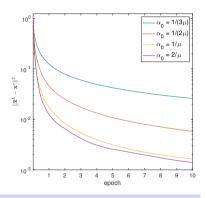
#### Then

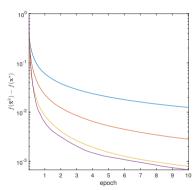
$$\mathbb{E}[f(\bar{\mathbf{x}}^k) - f(\mathbf{x}^*)] \le \frac{\alpha_0 M^2 (1 + \log k)}{2k}.$$

**Observation:** • Same convergence rate with vanilla SGD.

# Example: SGD-A method with different step sizes

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) := \frac{1}{2n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} : \mathbf{x} \in \mathbb{R}^{p} \right\}$$





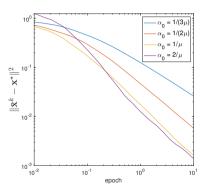
# Setup

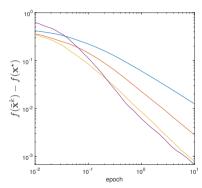
 $\circ$  Synthetic least-squares problem as before

 $\alpha_k = \alpha_0/(k+k_0)$ .

### Example: SGD-A method with different step sizes

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) := \frac{1}{2n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} : \mathbf{x} \in \mathbb{R}^{p} \right\}$$





# Setup

- $\circ$  Synthetic least-squares problem as before
- $\circ \alpha_k = \alpha_0/(k+k_0).$

Observations:

- o SGD-A is more stable than SGD.
- $\circ \alpha_0 = 2/\mu$  is the best choice.

## Least mean squares algorithm

#### Least-square regression problem

Solve

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{2} \mathbb{E}_{(\mathbf{a},b)} (\langle \mathbf{a}, \mathbf{x} \rangle - b)^2 \right\},$$

given i.i.d. samples  $\{(\mathbf{a}_j,b_j)\}_{i=1}^n$  (particularly in a streaming way).

#### Stochastic gradient method with averaging

- **1.** Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  and  $\alpha > 0$ .
- **2a.** For  $k = 1, \ldots, n$  perform:

$$\mathbf{x}^k = \mathbf{x}^{k-1} - \alpha \left( \langle \mathbf{a}_k, \mathbf{x}^{k-1} \rangle - b_k \right) \mathbf{a}_k.$$

**2b.** 
$$\bar{\mathbf{x}}^k = \frac{1}{k+1} \sum_{j=0}^k \mathbf{x}^j$$
.

# O(1/k) convergence rate, without strongly convexity [2]

Let  $\|\mathbf{a}_j\|_2 \leq R$  and  $|\langle \mathbf{a}_j, \mathbf{x}^{\star} \rangle - b_j| \leq \sigma$  a.s.. Pick  $\alpha = 1/(4R^2)$ . Then, the average sequence  $\bar{\mathbf{x}}^{k-1}$  satisfies the following

$$\mathbb{E}f(\bar{\mathbf{x}}^{k-1}) - f^* \le \frac{2}{h} \left( \sigma \sqrt{p} + R \|\mathbf{x}^0 - \mathbf{x}^*\|_2 \right)^2.$$

## **Popular SGD Variants**

o Mini-batch SGD: For each iteration,

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \frac{1}{b} \sum_{\theta \in \Gamma} G(\mathbf{x}^k, \theta).$$

- $ightharpoonup \alpha_k$ : step-size
- ▶ b : mini-batch size
- $ightharpoonup \Gamma$ : a set of random variables  $\theta$  of size b
- Accelerated SGD (Nesterov accelerated technique)
- o SGD with Momentum
- o Adaptive stochastic methods: AdaGrad...

### SGD - Non-convex stochastic optimization

- o SGD and several variants are also well-studied for non-convex problems [21].
- o Sometimes, there are gaps between SGD's practical performance and theoretical understanding (more later!).
- o Recall SGD update rule:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta)$$

# Theorem (A well-known result for SGD & Non-convex problems [15])

Let f be a non-convex and L-smooth function. Set  $\alpha_k = \min\left\{\frac{1}{L}, \frac{C}{\sigma\sqrt{T}}\right\}$ ,  $\forall k=1,...,T$ , where  $\sigma^2$  is the variance of the gradients and C>0 is constant. Then, it holds that

$$\mathbb{E}[\|\nabla f(\mathbf{x}^R)\|^2] = O\left(\frac{\sigma}{\sqrt{T}}\right),\,$$

where 
$$\mathbb{P}(R=k) = \frac{2\alpha_k - L\alpha_k^2}{\sum_{k=1}^T (2\alpha_k - L\alpha_k^2)}$$
.

### Lower bounds in non-convex optimization

| Assumptions on $f$                                                                                                                                   | Additional assumptions                                                                                                                                                                         | Sample complexity                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| $L	ext{-smooth}$                                                                                                                                     | Deterministic Oracle $f(\mathbf{x}^0) - \inf_{\mathbf{x}} f(\mathbf{x}) \leq \Delta$                                                                                                           | $\Omega(\Delta L \epsilon^{-2})$ [6]                                |  |
| $L_1	ext{-smooth}$                                                                                                                                   | Deterministic Oracle                                                                                                                                                                           | $\Omega(\Delta L_1^{3/7} L_2^{2/7} \epsilon^{-12/7})$ [6]           |  |
| $L_2$ -Lipschitz Hessian                                                                                                                             | $f(\mathbf{x}^0) - \inf_{\mathbf{x}} f(\mathbf{x}) \le \Delta$                                                                                                                                 | $\mathbb{E}(\Delta E_1 \mid E_2 \mid e)$                            |  |
| $L	ext{-smooth}$                                                                                                                                     | $\mathbb{E}[G(\mathbf{x}, \theta)] = \nabla f(x)$ $\mathbb{E}[\ G(\mathbf{x}, \theta) - \nabla f(\mathbf{x})\ ^2] \le \sigma^2$ $f(\mathbf{x}^0) - \inf_{\mathbf{x}} f(\mathbf{x}) \le \Delta$ | $\Omega(\Delta L \sigma^2 \epsilon^{-4})[1]$                        |  |
| $G(\mathbf{x},\theta)$ has averaged $L\text{-Lipschitz}$ gradient $\implies L\text{-smooth}$                                                         | $\mathbb{E}[G(\mathbf{x}, \theta)] = \nabla f(x)$ $\mathbb{E}[\ G(\mathbf{x}, \theta) - \nabla f(\mathbf{x})\ ^2] \le \sigma^2$ $f(\mathbf{x}^0) - \inf_{\mathbf{x}} f(\mathbf{x}) \le \Delta$ | $\Omega(\Delta L \sigma \epsilon^{-3} + \sigma^2 \epsilon^{-2})[1]$ |  |
| $f(\mathbf{x}) \coloneqq rac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$ $f_i(\mathbf{x})$ has averaged $L$ -Lipschitz gradient $\Longrightarrow L$ -smooth | Access to $\nabla f_i(\mathbf{x})$<br>$f(\mathbf{x}^0) - \inf_{\mathbf{x}} f(\mathbf{x}) \leq \Delta$<br>$n \leq O(\epsilon^{-4})^1$                                                           | $\Omega(\Delta L \sqrt{n}\epsilon^{-2})[12]$                        |  |

- o Measure of stationarity:  $\|\nabla f(\mathbf{x})\| \leq \epsilon$  or  $\mathbb{E}[\|\nabla f(\mathbf{x})\| \leq \epsilon$
- o Sample complexity: # of total oracle calls (deterministic or stochastic gradients)
- $\circ$  Averaged L-Lipschitz gradient:  $\mathbb{E}\left[\|\nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{y})\|^2\right] \leq L^2 \|\mathbf{x} \mathbf{y}\|^2$
- $\circ$   $G(\mathbf{x}, \theta)$  denotes a stochastic gradient estimate for f at  $\mathbf{x}$  with randomness governed by  $\theta$ .

<sup>&</sup>lt;sup>1</sup>We have  $n \leq O(\epsilon^{-4})$  in order to match the respective *upper bound* of  $O(n + \sqrt{n}\epsilon^{-2})$  achieved by [12]



## Non-smooth minimization: A simple example

What if we simultaneously want  $f_1(x), f_2(x), \dots, f_k(x)$  to be small?

A natural approach in some cases: Minimize  $f(x) = \max\{f_1(x), \dots, f_k(x)\}$ 

- ▶ The good news: If each  $f_i(x)$  is convex, then f(x) is convex
- ▶ The bad (!) news: Even if each  $f_i(x)$  is smooth, f(x) may be non-smooth
  - e.g.,  $f(x) = \max\{x, x^2\}$

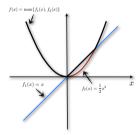


Figure: Maximum of two smooth convex functions.

## A statistical learning motivation for non-smooth optimization

### Linear Regression

Consider the classical linear regression problem:

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$$

with  $\mathbf{b} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{n \times p}$  are known,  $\mathbf{x}^{\natural}$  is unknown, and  $\mathbf{w}$  is noise. Assume for now that  $n \geq p$  (more later).

**EPEL** 

### A statistical learning motivation for non-smooth optimization

#### Linear Regression

Consider the classical linear regression problem:

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$$

with  $\mathbf{b} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{n \times p}$  are known,  $\mathbf{x}^{\natural}$  is unknown, and  $\mathbf{w}$  is noise. Assume for now that  $n \geq p$  (more later).

- o Standard approach: Least squares:  $\mathbf{x}_{1S}^{\star} \in \arg\min_{\mathbf{x}} \|\mathbf{b} \mathbf{A}\mathbf{x}\|_{2}^{2}$ 
  - ightharpoonup Convex, smooth, and an explicit solution:  $\mathbf{x}_{\mathsf{LS}}^{\star} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \mathbf{A}^{\dagger} \mathbf{b}$
- o *Alternative approach:* Least absolute value deviation:  $\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}} \|\mathbf{b} \mathbf{A}\mathbf{x}\|_1$ 
  - The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)
  - ► The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case  $n \ll p$ 

### Deficiency of smooth models

Recall the practical performance of an estimator  $x^*$ .

#### Practical performance

Denote the numerical approximation at time t by  $\mathbf{x}^t$ . The practical performance is determined by

$$\parallel \mathbf{x}^t - \mathbf{x}^{\natural} \parallel_2 \leq \underbrace{\parallel \mathbf{x}^t - \mathbf{x}^{\star} \parallel_2}_{\text{numerical error}} + \underbrace{\parallel \mathbf{x}^{\star} - \mathbf{x}^{\natural} \parallel_2}_{\text{statistical error}} \; .$$

#### Remarks:

- o *Non-smooth* estimators of  $\mathbf{x}^{\natural}$  can help *reduce the statistical error*.
- This improvement may require higher computational costs.

### Example: Least-squares estimation in the linear model

o Recall the linear model and the LS estimator.

#### LS estimation in the linear model

Let  $\mathbf{x}^{\natural} \in \mathbb{R}^p$  and  $\mathbf{A} \in \mathbb{R}^{n \times p}$ . The samples are given by  $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$ , where  $\mathbf{w}$  denotes the unknown noise.

The LS estimator for  $\mathbf{x}^{\natural}$  given  $\mathbf{A}$  and  $\mathbf{b}$  is defined as

$$\mathbf{x}_{\mathsf{LS}}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \| \mathbf{b} - \mathbf{A} \mathbf{x} \|_2^2 \right\}.$$

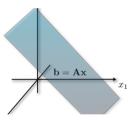
Remarks:

- o If **A** has full column rank,  $\mathbf{x}_{1S}^{\star} = \mathbf{A}^{\dagger}\mathbf{b}$  is uniquely defined.
- $\circ \ \textit{When} \ n < p, \ \mathbf{A} \ \mathsf{cannot} \ \mathsf{have} \ \mathsf{full} \ \mathsf{column} \ \mathsf{rank}, \ \mathsf{and} \ \mathsf{hence} \ \mathbf{x}_\mathsf{LS}^\star \in \left\{ \mathbf{A}^\dagger \mathbf{b} + \mathbf{h} : \mathbf{h} \in \mathrm{null} \left( \mathbf{A} \right) \right\}.$
- **Observation:**  $\circ$  The estimation error  $\|\mathbf{x}_{\mathsf{LS}}^{\star} \mathbf{x}^{\natural}\|_2$  can be *arbitrarily large!*

#### A candidate solution

#### Continuing the LS example:

- ightharpoonup There exist infinitely many x's such that  $\mathbf{b} = \mathbf{A}\mathbf{x}$
- ▶ Suppose that  $\mathbf{w} = 0$  (i.e. no noise). Let us just choose the one  $\hat{\mathbf{x}}_{\mathrm{candidate}}$  with the smallest norm  $\|\mathbf{x}\|_2$ .



**Observation:**  $\circ$  Unfortunately, this still fails when n < p

#### A candidate solution contd.

### Proposition ([17])

Suppose that  $\mathbf{A} \in \mathbb{R}^{n \times p}$  is a matrix of i.i.d. standard Gaussian random variables, and  $\mathbf{w} = \mathbf{0}$ . We have

$$(1 - \epsilon) \left( 1 - \frac{n}{p} \right) \| \mathbf{x}^{\natural} \|_{2}^{2} \leq \| \hat{\mathbf{x}}_{\text{candidate}} - \mathbf{x}^{\natural} \|_{2}^{2} \leq (1 - \epsilon)^{-1} \left( 1 - \frac{n}{p} \right) \| \mathbf{x}^{\natural} \|_{2}^{2}$$

 $\textit{with probability at least } 1 - 2\exp\left[-(1/4)(p-n)\epsilon^2\right] - 2\exp\left[-(1/4)p\epsilon^2\right] \textit{, for all } \epsilon > 0 \textit{ and } \mathbf{x}^{\natural} \in \mathbb{R}^p.$ 

### Summarizing the findings so far

#### The message so far:

- lacktriangle Even in the absence of noise, we cannot recover  $\mathbf{x}^{
  atural}$  from the observations  $\mathbf{b} = \mathbf{A}\mathbf{x}^{
  atural}$  unless  $n \geq p$
- ▶ But in applications, p might be thousands, millions, billions...
- ▶ Can we get away with  $n \ll p$  under some further assumptions on x?

### A natural signal model

# Definition (s-sparse vector)

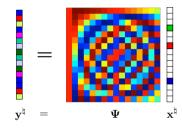
A vector  $\mathbf{x} \in \mathbb{R}^p$  is s-sparse if it has at most s non-zero entries.



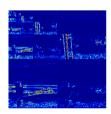
#### Sparse representations

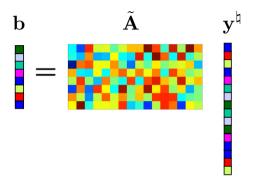
x<sup>‡</sup>: *sparse* transform coefficients

- lacktriangle Basis representations  $\Psi \in \mathbb{R}^{p \times p}$ 
  - ► Wavelets. DCT. ...
- Frame representations  $\Psi \in \mathbb{R}^{m \times p}$ , m > p
  - Gabor, curvelets, shearlets, ...
- Other dictionary representations...

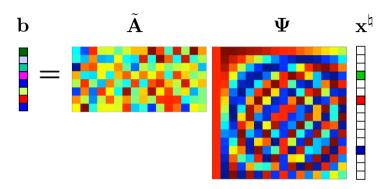




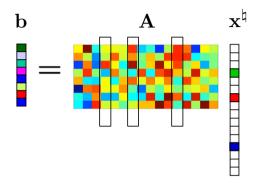




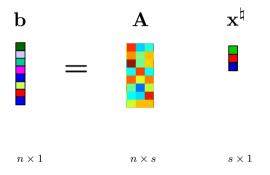
 $\mathbf{b} \in \mathbb{R}^n$ ,  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$ , and n < p



- $\mathbf{b} \in \mathbb{R}^n$ ,  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$ , and n < p
- $\blacktriangleright \ \Psi \in \mathbb{R}^{p \times p} \text{, } \mathbf{x}^{\natural} \in \mathbb{R}^{p} \text{, and } \|\mathbf{x}^{\natural}\|_{0} \leq s < n$



 $\mathbf{b} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{n \times p}$ , and  $\mathbf{x}^{\natural} \in \mathbb{R}^p$ , and  $\|\mathbf{x}^{\natural}\|_0 \le s < n < p$ 



Observations:

- The matrix A effectively becomes *overcomplete*.
- $\circ$  We could solve for  $\mathbf{x}^{\natural}$  if we knew the location of the non-zero entries of  $\mathbf{x}^{\natural}$ .

### Compressible signals

o Real signals may not be exactly sparse, but approximately sparse, or compressible.

## Definition (Compressible signals [7])

Roughly speaking, a vector  $\mathbf{x}:=(x_1,\dots,x_p)^T\in\mathbb{R}^p$  is compressible if the number of its significant components (i.e., entries larger than some  $\epsilon>0$ :  $|\{k:|x_k|\geq\epsilon,1\leq k\leq p\}|$ ) is small.



Cameraman@MIT.



- Solid curve: Sorted wavelet coefficients of the cameraman image.
- Dashed curve: Expected order statistics of generalized Pareto distribution with shape parameter 1.67.

#### A different tale of the linear model b = Ax + w

### A realistic linear model

Let  $\mathbf{b} := \tilde{\mathbf{A}} \mathbf{y}^{\natural} + \tilde{\mathbf{w}} \in \mathbb{R}^n$ .

- Let  $\mathbf{y}^{\natural} := \Psi \mathbf{x}_{\mathsf{real}} \in \mathbb{R}^m$  that admits a *compressible* representation  $\mathbf{x}_{\mathsf{real}}$ .
- Let  $\mathbf{x}_{real} \in \mathbb{R}^p$  that is *compressible* and let  $\mathbf{x}^{\natural}$  be its *best s-term approximation*.
- Let  $ilde{\mathbf{w}} \in \mathbb{R}^n$  denote the possibly nonzero *noise* term.
- Assume that  $\Psi \in \mathbb{R}^{m \times p}$  and  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times m}$  are known.

Then we have

$$\begin{split} \mathbf{b} &= \tilde{\mathbf{A}} \Psi \left( \mathbf{x}^{\natural} + \mathbf{x}_{\text{real}} - \mathbf{x}^{\natural} \right) + \tilde{\mathbf{w}}. \\ &:= \underbrace{\left( \tilde{\mathbf{A}} \Psi \right)}_{\mathbf{A}} \mathbf{x}^{\natural} + \underbrace{\left[ \tilde{\mathbf{w}} + \tilde{\mathbf{A}} \Psi \left( \mathbf{x}_{\text{real}} - \mathbf{x}^{\natural} \right) \right]}_{\mathbf{w}}, \end{split}$$

equivalently,  $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$ .

# Peeling the onion

o The realistic linear model uncovers yet another level of difficulty

### Practical performance

The practical performance at time t is determined by

$$\|\mathbf{x}^t - \mathbf{x}_{\mathsf{real}}\|_2 \leq \underbrace{\|\mathbf{x}^t - \mathbf{x}^\star\|_2}_{\mathsf{numerical error}} + \underbrace{\|\mathbf{x}^\star - \mathbf{x}^\natural\|_2}_{\mathsf{statistical error}} + \underbrace{\|\mathbf{x}_{\mathsf{real}} - \mathbf{x}^\natural\|_2}_{\mathsf{model error}}.$$

# Approach 1: Sparse recovery via exhaustive search

# Approach 1 for estimating $\mathbf{x}^{\natural}$ from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$

We may search over all  $\binom{p}{s}$  subsets  $S \subset \{1,\ldots,p\}$  of cardinality s, solve the restricted least-squares problem  $\min_{\mathbf{x}S} \|\mathbf{b} - \mathbf{A}_S \mathbf{x}_S\|_2^2$ , and return the resulting  $\mathbf{x}$  corresponding to the smallest error, putting zeros in the entries of  $\mathbf{x}$  outside S.

 $\circ$  Stable and robust recovery of any s-sparse signal is possible using just n=2s measurements.

# Approach 1: Sparse recovery via exhaustive search

# Approach 1 for estimating $x^{\natural}$ from $b = Ax^{\natural} + w$

We may search over all  $\binom{p}{s}$  subsets  $S \subset \{1,\ldots,p\}$  of cardinality s, solve the restricted least-squares problem  $\min_{\mathbf{x}_S} \|\mathbf{b} - \mathbf{A}_S \mathbf{x}_S\|_2^2$ , and return the resulting  $\mathbf{x}$  corresponding to the smallest error, putting zeros in the entries of x outside  $\tilde{S}$ .

 $\circ$  Stable and robust recovery of any s-sparse signal is possible using just n=2s measurements.

#### Issues

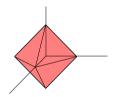
- (p) is a huge number too many to search!
- s is not known in practice

## The $\ell_1$ -norm heuristic

**Heuristic:** The  $\ell_1$ -ball with radius  $c_{\infty}$  is an "approximation" of the set of sparse vectors  $\hat{\mathbf{x}} \in \{\mathbf{x} : \|\mathbf{x}\|_0 \le s, \|\mathbf{x}\|_{\infty} \le c_{\infty}\}$  parameterized by their sparsity s and maximum amplitude  $c_{\infty}$ .

$$\hat{\mathbf{x}} \in {\{\mathbf{x} : ||\mathbf{x}||_1 \le c_\infty\}}$$
 with some  $c_\infty > 0$ .





The set  $\left\{\mathbf{x}: \|\mathbf{x}\|_0 \leq 1, \|\mathbf{x}\|_{\infty} \leq 1, \mathbf{x} \in \mathbb{R}^3 \right\}$ 

The unit 
$$\ell_1$$
-norm ball  $\left\{\mathbf{x}: \|\mathbf{x}\|_1 \leq 1, \mathbf{x} \in \mathbb{R}^3 \right\}$ 

Remark:

 $\circ$  This heuristic leads to the so-called Lasso optimization problem.

# Sparse recovery via the Lasso

# Definition (Least absolute shrinkage and selection operator (Lasso))

$$\mathbf{x}_{Lasso}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_1$$

with some  $\rho \geq 0$ .

- o The second term in the objective function is called the *regularizer*.
- o The parameter  $\rho$  is called the *regularization parameter*. It is used to trade off the objectives:
  - Minimize  $\|\mathbf{b} \mathbf{A}\mathbf{x}\|_2^2$ , so that the solution is consistent with the observations
  - Minimize  $\|\mathbf{x}\|_1$ , so that the solution has the desired sparsity structure

Remark:

o The Lasso has a *convex* but *non-smooth* objective function

#### Performance of the Lasso

# Theorem (Existence of a stable solution in polynomial time [23])

This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms of the inputs n and p. Surprisingly, if the signal  $\mathbf{x}^{\natural}$  is s-sparse and the noise  $\mathbf{w}$  is sub-Gaussian (e.g., Gaussian or bounded) with parameter  $\sigma$ , then choosing  $\rho = \sqrt{\frac{16\sigma^2\log p}{n}}$  yields an error of

$$\|\mathbf{x}_{Lasso}^{\star} - \mathbf{x}^{\natural}\|_{2} \leq \frac{8\sigma}{\kappa(\mathbf{A})} \sqrt{\frac{s \ln p}{n}},$$

with probability at least  $1 - c_1 \exp(-c_2 n \rho^2)$ , where  $c_1$  and  $c_2$  are absolute constants, and  $\kappa(\mathbf{A}) > 0$  encodes the difficulty of the problem.

Remark:

o The number of measurements is  $\mathcal{O}(s \ln p)$  – this may be *much* smaller than p!

#### Non-smooth unconstrained convex minimization

# Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) \tag{1}$$

where f is proper, closed, convex, but not everywhere differentiable.

# Subdifferentials: A generalization of the gradient

#### Definition

Let  $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$  be a convex function. The subdifferential of f at a point  $\mathbf{x}\in\mathcal{Q}$  is defined by the set:

$$\partial f(\mathbf{x}) = \{ \mathbf{v} \in \mathbb{R}^p : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{v}, \ \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathcal{Q} \}.$$

Each element  $\mathbf{v}$  of  $\partial f(\mathbf{x})$  is called *subgradient* of f at  $\mathbf{x}$ .

#### Lemma

Let  $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  be a differentiable convex function. Then, the subdifferential of f at a point  $\mathbf{x} \in \mathcal{Q}$  contains only the gradient, i.e.,  $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$ 

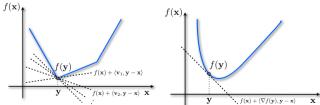


Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.

# (Sub)gradients in convex functions

# Example

$$f(x) = |x| \qquad \qquad \longrightarrow \quad \partial |x| = \left\{ \operatorname{sgn}(x) \right\}, \text{ if } x \neq 0, \text{ but } [-1,1], \text{ if } x = 0.$$

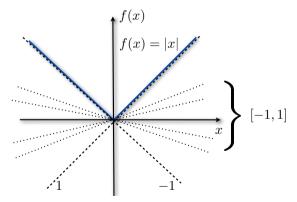


Figure: Subgradients of f(x) = |x| in  $\mathbb{R}$ .

### Subdifferentials: Two basic results

# Lemma (Necessary and sufficient condition)

 $\mathbf{x}^{\star} \in \text{dom}(F)$  is a globally optimal solution to (1) iff  $0 \in \partial F(\mathbf{x}^{\star})$ .

### Sketch of the proof.

•  $\leftarrow$ : For any  $\mathbf{x} \in \mathbb{R}^p$ , by definition of  $\partial F(\mathbf{x}^*)$ :

$$F(\mathbf{x}) - F(\mathbf{x}^*) \ge 0^T (\mathbf{x} - \mathbf{x}^*) = 0,$$

that is,  $x^*$  is a global solution to (1).

•  $\Rightarrow$ : If  $\mathbf{x}^*$  is a global of (1) then for every  $\mathbf{x} \in \text{dom}(F)$ ,  $F(\mathbf{x}) \geq F(\mathbf{x}^*)$  and hence

$$F(\mathbf{x}) - F(\mathbf{x}^*) \ge 0^T (\mathbf{x} - \mathbf{x}^*), \forall \mathbf{x} \in \mathbb{R}^p,$$

which leads to  $0 \in \partial F(\mathbf{x}^*)$ .

## Theorem (Moreau-Rockafellar's theorem [26])

Let  $\partial f$  and  $\partial g$  be the subdiffierential of f and g, respectively. If  $f,g\in\mathcal{F}(\mathbb{R}^p)$  and  $\mathrm{dom}\,(f)\cap\mathrm{dom}\,(g)\neq\emptyset$ , then:

$$\partial(f+g) = \partial f + \partial g.$$

#### Non-smooth unconstrained convex minimization

# Problem (Non-smooth convex minimization)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) \tag{2}$$

### Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can still compute its subgradients, informing of the local descent directions.

#### Subgradient method

- 1. Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  as a starting point.
- **2**. For  $k = 0, 1, \dots$ , perform:

$$\left\{ \begin{array}{ll} \mathbf{x}^{k+1} & = \mathbf{x}^k - \alpha_k \mathbf{d}^k, \end{array} \right. \tag{3}$$

where  $\mathbf{d}^k \in \partial f(\mathbf{x}^k)$  and  $\alpha_k \in (0,1]$  is a given step size.

## Convergence of the subgradient method

#### **Theorem**

Assume that the following conditions are satisfied:

- 1.  $\|\mathbf{g}\|_2 \leq G$  for all  $\mathbf{g} \in \partial f(\mathbf{x})$  for any  $\mathbf{x} \in \mathbb{R}^p$ .
- 2.  $\|\mathbf{x}^0 \mathbf{x}^*\|_2 \le R$

Let the stepsize be chosen as

$$\alpha_k = \frac{R}{G\sqrt{k}}$$

then the iterates generated by the subgradient method satisfy

$$\min_{0 \leq i \leq k} f(\mathbf{x}^i) - f^\star \leq \frac{RG}{\sqrt{k}}.$$

#### Remarks

- ▶ Condition (1) holds, for example, when *f* is *G*-Lipschitz.
- ▶ The convergence rate of  $\mathcal{O}\left(1/\sqrt{k}\right)$  is the slowest we have seen so far!

## Stochastic subgradient methods

o An unbiased stochastic subgradient

$$\mathbb{E}[G(\mathbf{x})|\mathbf{x}] \in \partial f(\mathbf{x}).$$

o Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

### The classic stochastic subgradient methods (SG)

- **1.** Choose  $\mathbf{x}_1 \in \mathbb{R}^p$  and  $(\gamma_k)_{k \in \mathbb{N}} \in (0, +\infty)^{\mathbb{N}}$ .
- **2.** For  $k = 1, \ldots$  perform:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma_k G(\mathbf{x}_k).$$

# Theorem (Convergence in expectation [28])

Suppose that:

- 1.  $\mathbb{E}[\|G(\mathbf{x}^k)\|^2] \leq M^2$ ,
- 2.  $\gamma_k = \gamma_0 / \sqrt{k}$ .

Then.

$$\mathbb{E}[f(\mathbf{x}^k) - f(\mathbf{x}^*)] \le \left(\frac{D^2}{\gamma_0} + \gamma_0 M^2\right) \frac{2 + \log k}{\sqrt{k}}.$$

**Remark:**  $\circ$  The rate is  $\mathcal{O}(\log k/\sqrt{k})$  instead of  $\mathcal{O}(1/\sqrt{k})$  for the deterministic algorithm.

### Wrap up!

- o Three supplementary lectures to take a look once the course is over!
  - One on compressive sensing (Math of Data Lecture 4 from 2014): https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf
  - One on source separation (Math of Data Lecture 6 from 2014) https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf
  - ► One on convexification of structured sparsity models (research presentation) https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf

\*Adaptive methods for stochastic optimization

### Remark

Adaptive methods have extensive applications in stochastic optimization.

Slide 1/24

- ▶ We will see another nature of adaptive methods in this lecture.
- ▶ Mild additional assumption: **bounded variance** of gradient estimates.

### \*AdaGrad for stochastic optimization

o Only modification:  $\nabla f(\mathbf{x}) \Rightarrow G(\mathbf{x}, \theta)$ 

# AdaGrad with $\mathbf{H}_k = \lambda_k \mathbf{I}$ [18]

- 1. Set  $Q^0 = 0$ . 2. For k = 0, 1, ..., iterate

$$\begin{cases} Q^k &= Q^{k-1} + \|G(\mathbf{x}^k, \theta)\|^2 \\ \mathbf{H}_k &= \sqrt{Q^k} \mathbf{I} \\ \mathbf{x}^{k+1} &= \mathbf{x}_t - \alpha_k \mathbf{H}_k^{-1} G(\mathbf{x}^k, \theta) \end{cases}$$

## Theorem (Convergence rate: stochastic, convex optimization [18])

Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set K with diameter D. Also consider bounded variance for unbiased gradient estimates, i.e.,  $\mathbb{E}\left[\|G(\mathbf{x},\theta) - \nabla f(\mathbf{x})\|^2|\mathbf{x}\right] \leq \sigma^2$ . Then,

$$\mathbb{E}[f(\mathbf{x}^k)] - \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) = O\left(\frac{\sigma D}{\sqrt{k}}\right)$$

AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.

## \*AcceleGrad for stochastic optimization

o Similar to AdaGrad, replace  $\nabla f(\mathbf{x}) \Rightarrow G(\mathbf{x}, \theta)$ 

#### AcceleGrad (Accelerated Adaptive Gradient Method)

**Input**:  $\mathbf{x}^0 \in \mathcal{K}$ , diameter D, weights  $\{\alpha_k\}_{k \in \mathbb{N}}$ , learning

rate 
$$\{\eta_k\}_{k\in\mathbb{N}}$$
  
1. Set  $\mathbf{v}^0 = \mathbf{z}^0 = \mathbf{x}^0$ 

- **2.** For k = 0, 1, ... iterate

$$\begin{cases} \begin{array}{ll} \tau_k &:= 1/\alpha_k \\ \mathbf{x}^{k+1} &= \tau_t \mathbf{z}^k + (1-\tau_k) \mathbf{y}^k, \text{define } \mathbf{g}_k := \nabla f(\mathbf{x}^{k+1}) \\ \mathbf{z}^{k+1} &= \Pi_{\mathcal{K}} (\mathbf{z}^k - \alpha_k \eta_k \mathbf{g}_k) \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} - \eta_k \mathbf{g}_k \end{array} \end{cases}$$

Output:  $\overline{\mathbf{v}}^k \propto \sum_{i=1}^{k-1} \alpha_i \mathbf{v}^{i+1}$ 

# Theorem (Convergence rate [19])

Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set K with diameter D. Also consider bounded variance for unbiased gradient estimates, i.e.,  $\mathbb{E}\left[\|G(\mathbf{x},\theta) - \nabla f(\mathbf{x})\|^2|\mathbf{x}\right] \le \sigma^2$ . Then,

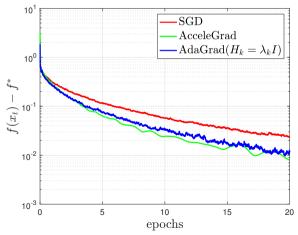
$$\mathbb{E}[f(\overline{\mathbf{y}}^k)] - \min_{\mathbf{x}} f(\mathbf{x}) = O\left(\frac{GD\sqrt{\log k}}{\sqrt{k}}\right).$$

# \*Example: Synthetic least squares

 $\circ \ \mathbf{A} \in \mathbb{R}^{n \times d} \text{, where } n = 200 \text{ and } d = 50.$ 

o Number of epochs: 20.

o Algorithms: SGD, AdaGrad & AcceleGrad.



# \*UniXGrad for stochastic optimization

#### UniXGrad

- 1 Set  $x^0 = z^0 = x^0$
- **2.** For k = 0, 1, ... iterate

$$\begin{cases} \mathbf{x}^{k+1/2} &= \Pi_{\mathcal{X}} \left( \mathbf{x}^k - \alpha_k \eta_k \nabla f(\tilde{\mathbf{x}}^k) \right) \\ \mathbf{x}^{k+1} &= \Pi_{\mathcal{X}} \left( \mathbf{x}^k - \alpha_k \eta_k \nabla f(\tilde{\mathbf{x}}^{k+1/2}) \right) \end{cases}$$

 $\blacksquare \Pi_{\mathcal{X}}(\mathbf{x})$  is Euclidean projection onto  $\mathcal{X}$  and  $\alpha_k = k$ 

$$\qquad \qquad \mathbf{\tilde{x}}^k = \frac{\alpha_k \mathbf{x}^k + \sum_{i=1}^{k-1} \alpha_i \mathbf{x}^{i+1/2}}{\sum_{i=1}^k \alpha_i}, \quad \mathbf{\bar{x}}^{k+1/2} = \frac{\sum_{i=1}^k \alpha_i \mathbf{x}^{i+1/2}}{\sum_{i=1}^k \alpha_i}$$

# Theorem (Convergence rate of UniXGrad)

Let the sequence  $\{\mathbf{x}^{k+1/2}\}\$  be generated by UniXGrad. Under the assumptions

- ▶ f is convex and L-smooth,
- Constraint set  $\mathcal{X}$  has bounded diameter, i.e.,  $D = \max_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \|\mathbf{x} \mathbf{y}\|$ ,
- $\mathbb{E}[\tilde{\nabla} f(\mathbf{x})|\mathbf{x}] = \nabla f(\mathbf{x}) \text{ and } \mathbb{E}[\|\tilde{\nabla} f(\mathbf{x}) \nabla f(\mathbf{x})\|^2|\mathbf{x}] < \sigma^2$

UniXGrad guarantees the following:

$$f(\bar{\mathbf{x}}^{k+1/2}) - \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \le O\left(\frac{LD^2}{k^2} + \frac{\sigma D}{\sqrt{k}}\right).$$

# \*Randomized Kaczmarz algorithm

#### Problem

Given a full-column-rank matrix  $\mathbf{A} \in \mathbb{R}^{n \times p}$  and  $b \in \mathbb{R}^n$ , solve the linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

Notations:  $\mathbf{b} := (b_1, \dots, b_n)^T$  and  $\mathbf{a}_j^T$  is the j-th row of  $\mathbf{A}$ .

### Randomized Kaczmarz algorithm (RKA)

- **1.** Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  .
- **2.** For  $k = 0, 1, \ldots$  perform:
- **2a.** Pick  $j_k \in \{1, \cdots, n\}$  randomly with  $\Pr(j_k = i) = \|\mathbf{a}_i\|_2^2/\|\mathbf{A}\|_F^2$
- **2b.**  $\mathbf{x}^{k+1} = \mathbf{x}^k \left(\langle \mathbf{a}_{j_k}, \mathbf{x}^k \rangle b_{j_k}\right) \mathbf{a}_{j_k} / \|\mathbf{a}_{j_k}\|_2^2$ .

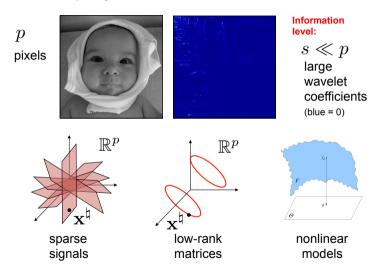
## Linear convergence [29]

Let  $\mathbf{x}^*$  be the solution of  $A\mathbf{x} = \mathbf{b}$  and  $\kappa = \|\mathbf{A}\|_F \|\mathbf{A}^{-1}\|$ . Then

$$\mathbb{E}\|\mathbf{x}^k - \mathbf{x}^*\|_2^2 \le (1 - \kappa^{-2})^k \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2$$

o RKA can be seen as a particular case of SGD [22].

## \*Other models with simplicity



There are many models extending far beyond sparsity, coming with other non-smooth regularizers.

### \*Generalization via simple representations

# Definition (Atomic sets & atoms [9])

An atomic set A is a set of vectors in  $\mathbb{R}^p$ . An atom is an element in an atomic set.

# Terminology (Simple representation [9])

A parameter  $\mathbf{x}^{\natural} \in \mathbb{R}^p$  admits a simple representation with respect to an atomic set  $\mathcal{A} \subseteq \mathbb{R}^p$ , if it can be represented as a non-negative combination of few atoms, i.e.,  $\mathbf{x}^{\natural} = \sum_{i=1}^k c_i \mathbf{a}_i$ ,  $\mathbf{a}_i \in \mathcal{A}, \ c_i \geq 0$ .

# Example (Sparse parameter)

Let  $\mathbf{x}^{\natural}$  be s-sparse. Then  $\mathbf{x}^{\natural}$  can be represented as the non-negative combination of s elements in  $\mathcal{A}$ , with  $\mathcal{A}:=\{\pm\mathbf{e}_1,\ldots,\pm\mathbf{e}_p\}$ , where  $\mathbf{e}_i:=(\delta_{1,i},\delta_{2,i},\ldots,\delta_{p,i})$  for all i.

# Example (Sparse parameter with a dictionary)

Let  $\Psi \in \mathbb{R}^{m \times p}$ , and let  $\mathbf{y}^{\natural} := \Psi \mathbf{x}^{\natural}$  for some s-sparse  $\mathbf{x}^{\natural}$ . Then  $\mathbf{y}^{\natural}$  can be represented as the non-negative combination of s elements in  $\mathcal{A}$ , with  $\mathcal{A} := \{\pm \psi_1, \dots, \pm \psi_p\}$ , where  $\psi_k$  denotes the kth column of  $\Psi$ .

#### \*Atomic norms

 $\circ$  Recall the Lasso problem

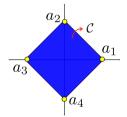
$$\mathbf{x}_{\mathsf{Lasso}}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \| \mathbf{b} - \mathbf{A} \mathbf{x} \|_2^2 + \rho \| \mathbf{x} \|_1$$

**Observations:**  $\circ \ell_1$ -norm is the *atomic norm* associated with the atomic set  $\mathcal{A} := \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p\}$ .

- o The norm is closely tied with the convex hull of the set.
- o We can extend the same principle for a wide range of regularizers

$$\mathcal{A} := \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}.$$

$$\mathcal{C} := \operatorname{conv}(\mathcal{A}).$$



# \*Gauge functions and atomic norms

# Definition (Gauge function)

Let  $\mathcal C$  be a convex set in  $\mathbb R^p$ , the gauge function associated with  $\mathcal C$  is given by

$$g_{\mathcal{C}}(\mathbf{x}) := \inf \{ t > 0 : \mathbf{x} = t\mathbf{c} \text{ for some } \mathbf{c} \in \mathcal{C} \}$$
 .

### Definition (Atomic norm)

Let  $\mathcal{A}$  be a symmetric atomic set in  $\mathbb{R}^p$  such that if  $\mathbf{a} \in \mathcal{A}$  then  $-\mathbf{a} \in \mathcal{A}$  for all  $\mathbf{a} \in \mathcal{A}$ . Then, the atomic norm associated with a symmetric atomic set  $\mathcal{A}$  is given by

$$\|\mathbf{x}\|_{\mathcal{A}} := g_{\text{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^p,$$

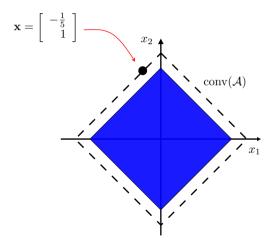
where conv(A) denotes the *convex hull* of A.

## A generalization of the Lasso

Given an atomic set A, solve the following regularized least-squares problem:

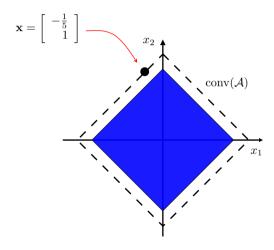
$$\mathbf{x}^{\star} = \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{\mathcal{A}}$$
(4)

Let  $\mathcal{A} := \left\{ (1,0)^T, (0,1)^T, (-1,0)^T, (0,-1)^T \right\}$ , and let  $\mathbf{x} := (-\frac{1}{5},1)^T$ . What is  $\|\mathbf{x}\|_{\mathcal{A}}$ ?

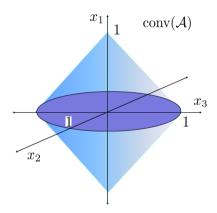


Let  $\mathcal{A} := \left\{ (1,0)^T, (0,1)^T, (-1,0)^T, (0,-1)^T \right\}$ , and let  $\mathbf{x} := (-\frac{1}{5},1)^T$ . What is  $\|\mathbf{x}\|_{\mathcal{A}}$ ?

**ANS:**  $\| \mathbf{x} \|_{\mathcal{A}} = \frac{6}{5}$ .

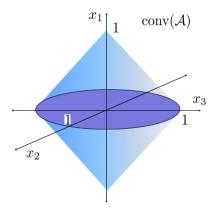


What is the expression of  $\|\mathbf{x}\|_{\mathcal{A}}$  for any  $\mathbf{x} := (x_1, x_2, x_3)^T \in \mathbb{R}^3$ ?



What is the expression of  $\|\mathbf{x}\|_{\mathcal{A}}$  for any  $\mathbf{x} := (x_1, x_2, x_3)^T \in \mathbb{R}^3$ ?

**ANS:**  $\|\mathbf{x}\|_{\mathcal{A}} = |x_1| + \|(x_2, x_3)^T\|_2$ .



# \*Application: Multi-knapsack feasibility problem

# Problem formulation [20]

Let  $\mathbf{x}^{\natural} \in \mathbb{R}^p$  which is a convex combination of k vectors in  $\mathcal{A} := \{-1, +1\}^p$ , and let  $\mathbf{A} \in \mathbb{R}^{n \times p}$ . How can we recover  $\mathbf{x}^{\natural}$  given  $\mathbf{A}$  and  $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$ ?

The answer:  $\circ$  We can use the  $\ell_{\infty}$ -norm,  $\|\cdot\|_{\infty}$  as  $\|\cdot\|_{\mathcal{A}}$ . The regularized estimator is given by  $\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_{\infty}, \rho > 0.$ 

# \*Application: Multi-knapsack feasibility problem

## Problem formulation [20]

Let  $\mathbf{x}^{\natural} \in \mathbb{R}^p$  which is a convex combination of k vectors in  $\mathcal{A} := \{-1, +1\}^p$ , and let  $\mathbf{A} \in \mathbb{R}^{n \times p}$ . How can we recover  $\mathbf{x}^{\natural}$  given  $\mathbf{A}$  and  $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$ ?

**The answer:** o We can use the  $\ell_{\infty}$ -norm,  $\|\cdot\|_{\infty}$  as  $\|\cdot\|_{\mathcal{A}}$ . The regularized estimator is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \| \mathbf{b} - \mathbf{A}\mathbf{x} \|_{2}^{2} + \rho \| \mathbf{x} \|_{\infty}, \rho > 0.$$

**The derivation:**  $\circ$  In this case, we have  $conv(\mathcal{A}) = [-1, 1]^p$  and

$$g_{\mathsf{conv}(\mathcal{A})}(\mathbf{x}) = \inf \{t > 0 : \mathbf{x} = t\mathbf{c} \text{ for some } \mathbf{c} \text{ such that } |c_i| \le 1 \ \forall i \}.$$

 $\circ$  We also have,  $\forall \mathbf{x} \in \mathbb{R}^p, \mathbf{c} \in \text{conv}(\mathcal{A}), t > 0$ ,

$$\mathbf{x} = t\mathbf{c} \Rightarrow \forall i, |x_i| = |tc_i| \le t$$
$$\Rightarrow g_{\mathsf{conv}(\mathcal{A})}(\mathbf{x}) \ge \max_i |x_i|.$$

- $\circ$  Let  $\mathbf{x} \neq 0$ , let  $j \in \arg \max_i |x_i|$  and choose  $t = \max_i |x_i|$ ,  $c_i = x_i/t \in [-1, 1]^p$ .
- Then,  $\mathbf{x} = t\mathbf{c}$ , and so  $g_{\mathsf{conv}(\mathcal{A})}(\mathbf{x}) \leq \max_i |x_i|$ .

# \*Application: Matrix completion

## Problem formulation [5, 13]

Let  $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$  with  $\mathrm{rank}(\mathbf{X}^{\natural}) = r$ , and let  $\mathbf{A}_1, \ldots, \mathbf{A}_n$  be matrices in  $\mathbb{R}^{p \times p}$ . How do we estimate  $\mathbf{X}^{\natural}$  given  $\mathbf{A}_1, \ldots, \mathbf{A}_n$  and  $b_i = \mathrm{Tr}\left(\mathbf{A}_i\mathbf{X}^{\natural}\right) + w_i$ ,  $i = 1, \ldots, n$ , where  $\mathbf{w} := (w_1, \ldots, w_n)^T$  denotes unknown noise?

The answer:  $\circ$  We can use the *nuclear norm*,  $\|\cdot\|_*$  as  $\|\cdot\|_{\mathcal{A}}$ . The regularized estimator is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times p}} \sum_{i=1}^{n} (b_i - \operatorname{Tr}(\mathbf{A}_i \mathbf{X}))^2 + \rho \|\mathbf{X}\|_*, \rho > 0.$$

# \*Application: Matrix completion

# Problem formulation [5, 13]

Let  $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$  with  $\mathrm{rank}(\mathbf{X}^{\natural}) = r$ , and let  $\mathbf{A}_1, \ldots, \mathbf{A}_n$  be matrices in  $\mathbb{R}^{p \times p}$ . How do we estimate  $\mathbf{X}^{\natural}$  given  $\mathbf{A}_1, \ldots, \mathbf{A}_n$  and  $b_i = \mathrm{Tr}\left(\mathbf{A}_i\mathbf{X}^{\natural}\right) + w_i$ ,  $i = 1, \ldots, n$ , where  $\mathbf{w} := (w_1, \ldots, w_n)^T$  denotes unknown noise?

**The answer:**  $\circ$  We can use the *nuclear norm*,  $\|\cdot\|_*$  as  $\|\cdot\|_{\mathcal{A}}$ . The regularized estimator is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times p}} \sum_{i=1}^{n} (b_i - \operatorname{Tr}(\mathbf{A}_i \mathbf{X}))^2 + \rho \|\mathbf{X}\|_*, \rho > 0.$$

The derivation:  $\circ$  Let us use the following atomic set  $\mathcal{A} = \left\{ \mathbf{X} : \mathrm{rank} \ (\mathbf{X}) = 1, \| \mathbf{X} \|_F = 1, \mathbf{X} \in \mathbb{R}^{p \times p} \right\}$ .

$$\circ$$
 Let  $\forall \mathbf{X} \in \mathbb{R}^{p \times p}, \mathbf{C} = \sum_i \lambda_i \mathbf{C}_i \in \operatorname{conv}(\mathcal{A}), \sum_i \lambda_i = 1, \mathbf{C}_i \in \mathcal{A}, t > 0$ . Then, we have

$$\mathbf{X} = t \sum_{i} \lambda_{i} \mathbf{C}_{i} \Rightarrow \left\| \mathbf{X} 
ight\|_{*} = t \left\| \sum_{i} \lambda_{i} \mathbf{C}_{i} 
ight\|_{*} \leq t \sum_{i} \lambda_{i} \left\| \mathbf{C}_{i} 
ight\|_{*} \leq t \Rightarrow g_{\mathsf{conv}(\mathcal{A})}(\mathbf{X}) \geq \left\| \mathbf{X} 
ight\|_{*}.$$

- $\circ$  Let  $\mathbf{X} \neq 0$ , let  $\mathbf{X} = \sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}$  be its SVD decomposition, where  $\sigma_{i}$ 's are its singular values.
- $\text{o Let } t = \|\mathbf{X}\|_* = \sum_i |\sigma_i|, \ \mathbf{C}_i = \mathbf{u}_i \mathbf{v}_i^T \in \mathcal{A} \text{, } \forall i. \ \text{Then, } \mathbf{X} = t \sum_i \lambda_i \mathbf{C}_i \text{, } \lambda_i = \frac{|\sigma_i|}{t}.$
- Since t is feasible and  $\sum_{i} \lambda_{i} = 1$ , it follows that  $g_{\mathsf{conv}(\mathcal{A})}(\mathbf{X}) \leq \|\mathbf{X}\|_{*}$ .

### \*Structured Sparsity

There exist many more structures that we have not covered here, each of which is handled using different non-smooth regularizers. Some examples [3, 11]:

- Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to known patterns.
- ► Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form a rooted connected tree.

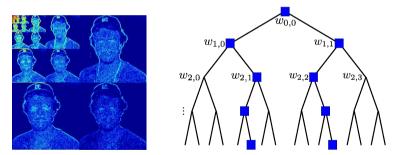


Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant coefficients.

#### \*Selection of the Parameters

In all of these problems, there remain the issues of how to design  ${f A}$  and how to choose ho.

### Design of A:

- ▶ Sometimes A is given "by nature", whereas sometimes it can be designed
- ► For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must resort to structured matrices permitting more efficient storage and computation
- ▶ See [14] for an extensive study in the context of compressive sensing

### Selection of $\rho$ :

- Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
- In practice, a common approach is *cross-validation* [10], which involves searching for a parameter that performs well on a set of known training signals
- ▶ Other approaches include covariance penalty [10] and upper bound heuristic [30]

#### References |

[1] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019. (Cited on page 27.)

[2] Francis Bach and Eric Moulines.

Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n). Advances in neural information processing systems, 26, 2013.

(Cited on page 24.)

[3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010. (Cited on page 75.)

[4] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. Siam Review, 60(2):223-311, 2018.

(Cited on pages 14 and 15.)

#### References II

[5] Emmanuel Candès and Benjamin Recht.

Exact matrix completion via convex optimization.

```
Found. Comp. Math., 9:717–772, 2009. (Cited on pages 73 and 74.)
```

[6] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.

Lower bounds for finding stationary points II: first-order methods.

```
Math. Program., 185(1-2):315-355, 2021.
```

(Cited on page 27.)

#### [7] Volkan Cevher.

Learning with compressible priors.

```
In Adv. Neur. Inf. Proc. Sys. (NIPS), 2009. (Cited on page 41.)
```

[8] Volkan Cevher and Bang Cong Vu.

On the linear convergence of the stochastic gradient method with constant step-size.

```
arXiv:1712.01906 [math], June 2018.
```

```
(Cited on page 14.)
```

### References III

[9] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems.

```
Found. Comp. Math., 12:805-849, 2012. (Cited on page 64.)
```

[10] Bradley Efron.

The estimation of prediction error: Covariance penalities and cross-validation.

```
J. Amer. Math. Soc., 99(467):619–632, September 2004. (Cited on page 76.)
```

[11] Marwa El Halabi and Volkan Cevher.

A totally unimodular view of structured sparsity. *preprint*, 2014.

```
arXiv:1411.1990v1 [cs.LG].
```

(Cited on page 75.)

#### References IV

[12] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang.

SPIDER: near-optimal non-convex optimization via stochastic path-integrated differential estimator. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 687-697, 2018.

(Cited on page 27.)

[13] Steven T. Flammia, David Gross, Yi-Kai Liu, and Jens Eisert.

Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators. New J. Phys., 14, 2012.

(Cited on pages 73 and 74.)

[14] Simon Foucart and Holger Rauhut.

A mathematical introduction to compressive sensing, volume 1.

Birkhäuser Basel. 2013.

(Cited on page 76.)

[15] Saeed Ghadimi and Guanghui Lan.

Stochastic first-and zeroth-order methods for nonconvex stochastic programming.

SIAM Journal on Optimization, 23(4):2341–2368, 2013.

(Cited on page 26.)

#### References V

[16] Saeed Ghadimi and Guanghui Lan.

Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program., 156(1-2):59-99, March 2016.

(Cited on pages 4 and 5.)

[17] Rémi Gribonval, Volkan Cevher, and Mike E. Davies.

Compressible distributions for high-dimensional statistics.

IEEE Trans. Inf. Theory, 58(8):5016-5034, 2012.

(Cited on page 34.)

[18] Kfir Levv.

Online to offline conversions, universality and adaptive minibatch sizes.

In Advances in Neural Information Processing Systems, pages 1613-1622, 2017.

(Cited on page 58.)

[19] Kfir Levy, Alp Yurtsever, and Volkan Cevher.

Online adaptive methods, universality and acceleration.

In Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018.

(Cited on page 59.)

#### References VI

[20] O. L. Mangasarian and Benjamin Recht.

Probability of unique integer solution to a system of linear equations.

Eur. J. Oper. Res., 214:27-30, 2011.

(Cited on pages 71 and 72.)

[21] Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher.

Learning in games from a stochastic approximation viewpoint.

arXiv preprint arXiv:2206.03922, 2022.

(Cited on page 26.)

[22] Deanna Needell, Rachel Ward, and Nati Srebro.

Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm.

Advances in neural information processing systems, 27, 2014.

(Cited on page 62.)

[23] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu.

A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Stat. Sci., 27(4):538–557, 2012.

(6): 1

(Cited on page 48.)

#### References VII

[24] Arkadi Semen Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.
(Cited on page 20.)

[25] Boris T. Polyak.

Introduction to Optimization.

Optimization Softw., Inc., New York, 1987.

(Cited on page 14.)

[26] R. Tyrrell Rockafellar.

Convex Analysis.

Princeton Univ. Press, Princeton, NJ, 1970.

(Cited on page 52.)

[27] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter.

Pegasos: Primal estimated sub-gradient solver for svm.

Mathematical programming, 127(1):3–30, 2011.

(Cited on page 21.)

#### References VIII

[28] Ohad Shamir and Tong Zhang.

Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes.

In *ICML '13: Proceedings of the 30th International Conference on Machine Learning*, 2013. (Cited on pages 13 and 55.)

[29] Thomas Strohmer and Roman Vershynin.

Comments on the randomized kaczmarz method.

J. Fourier Anal. and Apps., 15(4):437–440, 2009. (Cited on page 62.)

[30] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi.

Simple error bounds for regularized noisy linear inverse problems.

2014.

arXiv:1401.6578v1 [math.OC].

(Cited on page 76.)