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Recall: Gradient descent

Problem (Unconstrained optimization problem)

Consider the following minimization problem:

= min f(x)

XERP

f(x) is proper and closed.

Gradient descent

Choose a starting point x° and iterate
xFtl = xk aka(xk)

where ay, is a step-size to be chosen so that x* converges to x*.

f is L-smooth & convex | f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)
AGD O(1/k?%) (optimal) O(1/k) (optimal) [16]
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Recall: Gradient descent

Problem (Unconstrained optimization problem)

Consider the following minimization problem:

= min f(x)

XERP

f(x) is proper and closed.

Gradient descent

Choose a starting point x° and iterate
xFtl = xk aka(xk)

where ay, is a step-size to be chosen so that x* converges to x*.

f is L-smooth & convex | f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)
AGD O(1/k?%) (optimal) O(1/k) (optimal) [16]

Why should we study anything else?
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Statistical learning with streaming data

o Recall that statistical learning seeks to find a h* € H that minimizes the expected risk,

h* € argmin { R(h) := E(a ) [L(h(a),b)] } .
heH

Abstract gradient method

RFTL = h¥ — 0, VR(WF) = ¥ — aB(a 1) [VL(RF (a), b)].

Remark: o This algorithm can not be implemented as the distribution of (a,b) is unknown.
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Statistical learning with streaming data

o Recall that statistical learning seeks to find a h* € H that minimizes the expected risk,

h* € argmin { R(h) := E(a ) [L(h(a),b)] } .
heH

Abstract gradient method

RFTL = h¥ — 0, VR(WF) = ¥ — aB(a 1) [VL(RF (a), b)].

Remark: o This algorithm can not be implemented as the distribution of (a,b) is unknown.
o In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x* := min {E[lb— (x,2)/"] }

> hx() = <X7 )
> b € R is the desired return & a € RP are the stock returns

> X is intersection of the standard simplex and the constraint: (x,E[a]) > p.
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Stochastic programming

Problem (Mathematical formulation)

Consider the following convex minimization problem:
* = mi =E ,0
7 = mily {fx) =EB[f(x,0)]}

> 0 is a random vector whose probability distribution is supported on set ©.
> f(x):=E[f(x,0)] is proper, closed, and convex.
> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x° € RP and (ay)ken € |0, +oo[™.
2. For k=0,1,... perform:

xFHl = xk — cukG(xk7 01).

o G(x*,0}) is an unbiased estimate of the full gradient:

B[G(x",0,)] = V£(x*).
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x° € RP and (ay)ken € |0, +oo[™.
2. For k=0,1,... perform:

xFHl = xk — cukG(xk7 01).

o G(x*,0}) is an unbiased estimate of the full gradient:

B[G(x",0,)] = V£(x*).

Remarks: o The cost of computing G(x", 0}) is n times cheaper than that of V f(x*).
o As G(x*,0},) is an unbiased estimate of the full gradient, SGD would perform well.
o We assume {0} are jointly independent.

o SGD is not a monotonic descent method.
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Example: Convex optimization with finite sums

Convex optimization with finite sums

The problem

xERP

n
. 1
argmin ¢ f(x) := - ij(x) ,
j=1
can be rewritten as

arg min { f(x) := E;[fi(x)]}, ¢ is uniformly distributed over {1,2,--- ,n}.
x€ERP

A stochastic gradient descent (SGD) variant for finite sums
XL = 3P 0, V£ (x9) ¢ is uniformly distributed over{1,...,n}
Remarks: o Note: E; [Vf,(xk)] = Z;;l Vfj (xk)/n = Vf(xk).

o The computational cost of SGD per iteration is p.
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Synthetic least-squares problem

1
min {f(x) = %HAX —blZ:x¢c RP}

Setup

> A :=randn(n,p) - standard Gaussian N(0,T), with n = 104, p = 102.
> x! is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ||x%||2 = 1.

> b:= Axl + w, where w is Gaussian white noise with variance 1.

10° 10?
E_l.. — = Gradent desoent
Stochastic gradient

o o5 1 15 2 25 3 35 4 o 05 1 15 2 25
epoch epoch

o 1 epoch = 1 pass over the full gradient
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Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [28])
Assume
> E[||x* — x*||2] < D2 for all k,
> E[|G(x*,0,)||?] < M? (bounded gradient),
> oy = o/ Vk.

Then

o poe < (25 4 aonr? ) 2 108E
E[f(x") — f( )}<<ao+ 0M> -

Observation: o O(1/Vk) rate is optimal for SGD if we do not consider the strong convexity.
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Convergence of SGD for strongly convex problems |

Theorem (strongly convex objective, fixed step-size [4])
Assume

> f is pu-strongly convex and L-smooth,

> E[||G(x*,0:)||2]2 < 0 + M||Vf(x*)||2 (bounded variance),

»> = 1
ap =a < 37

Then
aLo?

E[f(x*) — f(x*)] <

+ (1 pa) ! () = 1)

Observations: o Converge fast (linearly) to a neighborhood around x*.
o Smaller step-sizes & = converge to a better point, but with a slower rate.
o Zero variance (o = 0) = linear convergence.
o This is also known as the relative noise model [25] or the strong growth condition [8].
o The growth condition is in fact a necessary and sufficient condition for linear convergence [8].

o The theory applies to the Kaczmarz algorithm (see advanced material).
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Convergence of SGD for strongly convex problems Il

Theorem (strongly convex objective, decaying step-size [4])
Assume

> f is u-strongly convex and L-smooth,

> E[||G(x*,0:)||%]2 < 0% + M||Vf(x*)||2 (bounded variance),

Lk with some appropriate constants ¢ and ko .

> ok = ko+

Then

E[flx" — x*|”] < —,
k+1

where C' is a constant independent of k.

Observations: o Using the L-smooth property,
C

E[f(x*) = f(x*)] < LE[|Ix* —x*|]?] < P

o The rate is optimal if o2 > 0 with the assumption of strongly-convexity.
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Example: SGD with different step sizes

FF) = £6)

102

Setup

o Synthetic least-squares problem as before.

o We use o, = ag/(k + ko).
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Example: SGD with different step sizes

0
10 ——ay =1/3k)
R ——ag=1/(2p)
S, 0
- a =1/p
%, 0 F
N —a, =2
107"
= X
5 2
| |
= =
=
10
10°
102 107 10° 10’

Setup

o Synthetic least-squares problem as before.

o We use ap = ag/(k + ko).

Observation: o ag = 1/p is the best choice.
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Comparison with GD

7= min { 1) = iifﬂx)}.

o f: p-strongly convex with L-Lipschitz smooth.

rate | iteration complexity | cost per iteration total cost
GD oF log(1/€) n nlog(1/e)
SGD | 1/k 1/e 1 1/e
Remark: o SGD is more favorable when n is large — large-scale optimization problems
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Motivation for SGD with Averaging

o SGD iterates tend to oscillate around global minimizers
o Averaging iterates can reduce the oscillation effect

o Two types of averaging:

k
1 )
xk = x E ax?  (vanilla averaging)

(weighted averaging)

Remark: o Do not confuse the averaging above with the ones used in Federated Learning.
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Convergence for SGD-A I: non-strongly convex case

Stochastic gradient method with averaging (SGD-A)

1. Choose x° € RP and (a,)pen € |0, +oo[™.
2a. For k=0,1,... perform:

xFt = xk — ak(}’(xk7 0k)-

-k k _ k i
2b. xXF = (Z_,':o a;)71 Z_,‘:o ox7.

Theorem (Convergence of SGD-A [24])
Let D = ||x° — x*|| and E[|G(x*,6;)[|%] < M2
Then
’ D2+ M2Y R o2
B - ) < Dt Lm0
223':0 @

In addition, choosing oy, = D /(M 'k + 1), we get,

25 Flxc* MD(2 + logk)
E[f(x") = f( )]Siﬁ :

Observation: o Same convergence rate with vanilla SGD.
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Convergence for SGD-A II: strongly convex case

Stochastic gradient method with averaging (SGD-A)

1. Choose x° € RP and (a,)pen € |0, +oo[™.
2a. For k=0,1,... perform:

xFt = xk — ak(}’(xk7 0k)-

gk =13 i
2. %= Y0 .

Theorem (Convergence of SGD-A [27])
Assume
> f is u-strongly convex,
> E[|GG, 00117 < M2,
> ap = ag/k for some ag > 1/p.
Then )
_ . M=(1+logk
Blf(4) - 5] < 22Ot loeh)

Observation: o Same convergence rate with vanilla SGD.
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Example: SGD-A method with different step sizes

1
min{f(x) = —||Ax—b|3:x € RP}
X 2n

o 10°
10 k ——ag=1/3p)
——ag = 1/2n)
ag =1
—ag =2
107
%
I
W
102
10°
10°
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
epoch epoch
Setup
o Synthetic least-squares problem as before
o ag = ap/(k+ ko).
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Example: SGD-A method with different step sizes

1
min{f(x) = —||Ax—b|3:x € RP}
X 2n

0

0 10
10 —ag = 1/3k)
——aqg = 1/(2u)
ag=1/p
—ay=2/n g
a0 %
. =
| |
= & g2
102 ~
10°
102
102 107! 10° 10' 102 107 10° 10
epoch epoch
Setup . .
Observations: o SGD-A is more stable than SGD.

o Synthetic least-squares problem as before

o ap = 2/ is the best choice.
o ag = ap/(k+ ko).
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Least mean squares algorithm

Least-square regression problem

Solve .
x* € argmin {f(x) = =Eap) ((a,x) — b)2} ,
xERP 2

given i.i.d. samples {(a;,b;)}7_; (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x% € R? and a > 0.
2a. For k=1,...,n perform:

xF=xF1_¢q ((ak,xkfl> — bk) ay.

ok — _1 k j
2b. X% = k+1 Z_j:ox

O(1/k) convergence rate, without strongly convexity [2]
Let ||aj||2 < R and |(a;,x*) — bj| < o a.s.. Pick a = 1/(4R?). Then, the average sequence X
following

k=1 satisfies the

BfGE) = 1 < 2 (o v+ BIXO - x'2)
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Popular SGD Variants

o Mini-batch SGD: For each iteration,

o

1
k1 _ kL (o k
X =x"—agy E G(x",0).
oer

> oy step-size

> b : mini-batch size

> T": a set of random variables 0 of size b

o Accelerated SGD (Nesterov accelerated technique)
o SGD with Momentum

o Adaptive stochastic methods: AdaGrad...
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SGD - Non-convex stochastic optimization

o SGD and several variants are also well-studied for non-convex problems [21].

o Sometimes, there are gaps between SGD’s practical performance and theoretical understanding (more later!).

o Recall SGD update rule:
xFH = xk _ 0, G(x,0)

Theorem (A well-known result for SGD & Non-convex problems [15])

Let f be a non-convex and L-smooth function. Set aj, = min %, Lﬁ ,Vk=1,..,T, where 02 is the
o

variance of the gradients and C > 0 is constant. Then, it holds that

BV (xP))2] = O (%) ,

2
20 — Loy,

here P(R=Fk) = —=p—E—.
where P( ) Zzzl@ak*Lai)
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Lower bounds in non-convex optimization

Assumptions on f

Additional assumptions

Sample complexity

L-smooth

Deterministic Oracle
F(x%) — infx f(x) < A

Q(ALe2)[6]

L1-smooth
Lo-Lipschitz Hessian

Deterministic Oracle
F(x0) —infx f(x) < A

Q(AL?/7L§/76712/7)[6]

L-smooth

E[G(, 0)] = V/(2)
E[|G(x,0) — V(2)||?] < o2
F(x°) —infx f(x) < A

Q(ALo2e~*)[1]

G(x, 0) has averaged L-Lipschitz gradient
== L-smooth

E[G(x 0)] =V (z)
E[|G(x, 0) — VF()[?] < o2
F(x%) —infx f(x) < A

Q(ALoe™ 3 + o2 2)1)

k0
Fe0 =LY fi)
fi(x) has averaged L-Lipschitz gradient
—> L-smooth

Access to V f; (x)
F(x%) — infx f(x) < A
n < O(e~H)!

QAL /re ?)[12]

o Measure of stationarity: |V f(x)|| < eor E[||Vf(x)]| <€

o Sample complexity: # of total oracle calls (deterministic or stochastic gradients)

o Averaged L-Lipschitz gradient: E [||Vfi(x) — Vi (y)H2] < L?x—y|?

o G(x,60) denotes a stochastic gradient estimate for f at x with randomness governed by 6.

IWe have n < O(e~%) in order to match the respective upper bound of O(n + \/ﬁefz) achieved by [12]
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Non-smooth minimization: A simple example

What if we simultaneously want f;(x), fa(z),. .., fx(x) to be small?

A natural approach in some cases: Minimize f(z) = max{fi(z),..., fx(z)}
> The good news: If each f;(x) is convex, then f(x) is convex
> The bad (!) news: Even if each f;(x) is smooth, f(z) may be non-smooth

> eg. f(z) = max{z,2?}

fla) = max{fi(x), fa(x)}

fila) =

Figure: Maximum of two smooth convex functions.
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A statistical learning motivation for non-smooth optimization

Linear Regression

Consider the classical linear regression problem:
b=Ax"+w

with b € R, A € R™X? are known, x is unknown, and w is noise. Assume for now that n > p (more later).
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A statistical learning motivation for non-smooth optimization

Linear Regression
Consider the classical linear regression problem:
b=Ax"+w

with b € R, A € R™X? are known, x is unknown, and w is noise. Assume for now that n > p (more later).

o Standard approach: Least squares: X}'s € argminx ||b — Ax||3
> Convex, smooth, and an explicit solution: XES = (ATA)_lATb =A'b

o Alternative approach: Least absolute value deviation: x* € argminy ||b — Ax||1
> The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)

> The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case n < p
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Deficiency of smooth models

Recall the practical performance of an estimator x*.

Practical performance

Denote the numerical approximation at time ¢ by x*. The practical performance is determined by

2

Ixf = x|l < JIx" =x* |l + |[x" —xF
~——

numerical error statistical error

Remarks: o Non-smooth estimators of x can help reduce the statistical error.

o This improvement may require higher computational costs.
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Example: Least-squares estimation in the linear model

o Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x € R? and A € R"*P. The samples are given by b = Ax% + w, where w denotes the unknown noise.

The LS estimator for x% given A and b is defined as

x’c €arg min {||b— Ax|2}.
{s € arg min {| 13}

Remarks: o If A has full column rank, x}s = A'b is uniquely defined.

o When n < p, A cannot have full column rank, and hence XES c {ATb +h:h € null (A)}

Observation: o The estimation error || x/'q — x! ||2 can be arbitrarily large!
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A candidate solution

Continuing the LS example:
> There exist infinitely many x's such that b = Ax

> Suppose that w = 0 (i.e. no noise). Let us just choose the one Xcandidate With the smallest norm || x||2.

Observation: o Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([17])

Suppose that A € R™"*P s a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have
n N _ n
(1= (1= 2) 14 1B < 1 keantiamte = 1§ < (1= 0 (1= 2) 113

with probability at least 1 — 2 exp [7(1/4)(29 — n)62] — 2exp [7(1/4)pe2], for all e > 0 and x% € RP.
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Summarizing the findings so far

The message so far:
> Even in the absence of noise, we cannot recover x% from the observations b = Ax! unless n > p
> But in applications, p might be thousands, millions, billions...

> Can we get away with n < p under some further assumptions on x?
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A natural signal model

Definition (s-sparse vector)

A vector x € RP is s-sparse if it has at most s
non-zero entries.

]RP

<1

Sparse representations
x: sparse transform coefficients
> Basis representations W € RPXP
> Wavelets, DCT, ...

> Frame representations ¥ € R™>*P, m > p
> Gabor, curvelets, shearlets, ...

> Other dictionary representations...
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Sparse representations strike back!

b A yt

»beR" AcR"P andn<p

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 46

EPFL



Sparse representations strike back!

b A

» beR", AcR" P, andn < p
> U cRPXP, xB € RP, and ||xf|lo < s <n

K
x_ﬂ_

NN EEEEE EENEEE
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Sparse representations strike back!

x_ﬂ_

b A

[HEE EEEEE EESEEE

> becR” AcR"P, and x! €R?, and ||x|p <s<n<p
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Sparse representations strike back!

b A X"
— i -
||
nx1 nxs sx1

Observations: o The matrix A effectively becomes overcomplete.

o We could solve for x% if we knew the location of the non-zero entries of x".
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Compressible signals

o Real signals may not be exactly sparse, but approximately sparse, or compressible.

Definition (Compressible signals [7])
Roughly speaking, a vector x := (z1, ...

,zp)T € RP is compressible if the number of its significant components

i.e., entries larger than some € > 0: |[{k: |zg| > €,1 < k < p}|) is small.
g

> Cameraman@MIT.

ICLIHEEI]  Mathematics of Data | Prof. Volkan Cevher,

volkan.cevher@epfl.ch

amplitude [log]

sorted index [log]

> Solid curve: Sorted wavelet coefficients of the cameraman image.

> Dashed curve: Expected order statistics of generalized Pareto
distribution with shape parameter 1.67.
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A different tale of the linear model b = Ax +w

A realistic linear model
Let b := Ay" + w € R,
> Let yh := WX, € R™ that admits a compressible representation Xie,).
> Let X, € RP that is compressible and let x% be its best s-term approximation.
> Let w € R™ denote the possibly nonzero noise term.
> Assume that U € R™*P and A € R"X™ are known.

Then we have

equivalently, b = Ax + w.
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Peeling the onion

o The realistic linear model uncovers yet another level of difficulty

Practical performance

The practical performance at time t is determined by

15" = Xeem[l2 < || x* =x*ll2 4 [[x" = xF[l2 + || Xeeat =X 2.
~———— ~—  ~—

numerical error statistical error model error
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x? from b = Ax? + w

We may search over all (ZS’) subsets S C {1,...,p} of cardinality s, solve the restricted least-squares problem

minxg |[b — ASXS“§' and return the resulting x corresponding to the smallest error, putting zeros in the
entries of x outside S.

o Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x? from b = Ax? + w

We may search over all (ZS’) subsets S C {1,...,p} of cardinality s, solve the restricted least-squares problem

minxg |[b — ASXS“§' and return the resulting x corresponding to the smallest error, putting zeros in the
entries of x outside S.

o Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.

Issues

> (ZS’) is a huge number - too many to search!

> s is not known in practice

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 46



The /;-norm heuristic

Heuristic: The ¢y -ball with radius c~ is an “approximation” of the set of sparse vectors
xe{x:|[x|lo <s,| %]l < oo} parameterized by their sparsity s and maximum amplitude coo.

xe{x:|x|1 <co} with some coo > 0.

The set The unit £1-norm ball
{x:llxllo <L lx[le <1, x €R?} {x:llxlh <1,x€Rr3}
Remark: o This heuristic leads to the so-called Lasso optimization problem.
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Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

g 2
xZasso = arg;g]lkréﬂ b — AXHQ +,0HXH1

with some p > 0.

o The second term in the objective function is called the regularizer.

o The parameter p is called the regularization parameter. It is used to trade off the objectives:
> Minimize ||b — Ax]|

> Minimize ||x||1, so that the solution has the desired sparsity structure

%, so that the solution is consistent with the observations

Remark: o The Lasso has a convex but non-smooth objective function
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Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [23])

This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms
of the inputs n and p. Surprisingly, if the signal x% is s-sparse and the noise w is sub-Gaussian (e.g., Gaussian

2
or bounded) with parameter o, then choosing p = 4/ w yields an error of

8o slnp
K(A) n

H xZasso - xh ”2 <

)

with probability at least 1 — c1 exp(—canp?), where c1 and ca are absolute constants, and k(A) > 0 encodes
the difficulty of the problem.

Remark: o The number of measurements is O (slnp) — this may be much smaller than p!
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Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

where f is proper, closed, convex, but not everywhere differentiable.
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Subdifferentials: A generalization of the gradient

Definition

Let f: Q@ - RU {400} be a convex function. The subdifferential of f at a point x € Q is defined by the set:
Of(x) ={veER” : f(y) = f(x)+ (v, y—x)forally € Q}.

Each element v of df(x) is called subgradient of f at x.

Lemma

Let f: Q - RU{+oo} be a differentiable convex function. Then, the subdifferential of f at a point x € Q
contains only the gradient, i.e., f(x) = {Vf(x)}.

S f) + vy =)

CFe0+ (vay —x) X

S y - SRV Y -x) X
Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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(Sub)gradients in convex functions

Example

f(z) = |z —  Olz| = {sgn(z)}, if z # 0, but [-1,1], if z = 0.

.

Figure: Subgradients of f(x) = |z| in R.
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Subdifferentials: Two basic results

Lemma (Necessary and sufficient condition)

x* € dom (F) is a globally optimal solution to (1) iff 0 € OF(x*).
Sketch of the proof.
o <= For any x € RP, by definition of OF(x*):
F(x) — F(x*) > 0" (x —x*) =0,
that is, x* is a global solution to (1).
o = If x* is a global of (1) then for every x € dom (F'), F(x) > F(x*) and hence
F(x) = F(x*) > 07 (x — x*), Vx € R,

which leads to 0 € OF (x*). o

Theorem (Moreau-Rockafellar’'s theorem [26])
Let &f and Og be the subdiffierential of f and g, respectively. If f,g € F(RP) and dom (f) Ndom (g) # 0, then:

[0(f +9) = 0f +0g.
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Non-smooth unconstrained convex minimization
Problem (Non-smooth convex minimization)
F* := min f(x) (2)

Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can still compute its
subgradients, informing of the local descent directions.

Subgradient method
1. Choose xV € RP as a starting point.
2. For k=0,1,---, perform:

{ xktl = xk — qpd¥, 3)

where d* € 9f(x*) and ay, € (0,1] is a given step size.
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Convergence of the subgradient method

Theorem

Assume that the following conditions are satisfied:
1. ||gll2 < G for all g € 8f(x) for any x € RP.
2. X0 —x*|l2 <R

Let the stepsize be chosen as
R

TGk

then the iterates generated by the subgradient method satisfy

g

Ogliigkf(xl) - < i

Remarks

> Condition (1) holds, for example, when f is G-Lipschitz.

> The convergence rate of O (1/ \/E) is the slowest we have seen so far!
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Stochastic subgradient methods

o An unbiased stochastic subgradient
E[G(x)[x] € Of(x).
o Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)
1. Choose x;1 € RP and (vx)ren € (0, +o0).
2. For k=1,... perform:

Xp4+1 = X — VG (Xk)-

Theorem (Convergence in expectation [28])
Suppose that:
L. E[IG(")|1?] < M2,

2. & =0/ VE.
Then,
D? 2 +logk
E[f(x") — f(x*)] < | =— +~yoM? | Z—=,
[F(x7) = f(xT)] - T
Remark: o The rate is O(log k/ Vk) instead of O(1/ k) for the deterministic algorithm.
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Wrap up!

o Three supplementary lectures to take a look once the course is over!

> One on compressive sensing (Math of Data Lecture 4 from 2014):
https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf

> One on source separation (Math of Data Lecture 6 from 2014)
https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf

> One on convexification of structured sparsity models (research presentation)
https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf
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*Adaptive methods for stochastic optimization

Remark

> Adaptive methods have extensive applications in stochastic optimization.
> We will see another nature of adaptive methods in this lecture.

> Mild additional assumption: bounded variance of gradient estimates.
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*AdaGrad for stochastic optimization
o Only modification: V f(x) = G(x,0)

AdaGrad with Hy = )\;I [18]
1. Set Q¥ =0.
2. For k=0,1,..., iterate
QF = Q4 Gk, 0)
H, =./Q'
xFHl =5 — anglG(xk, 0)

Theorem (Convergence rate: stochastic, convex optimization [18])
Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E [HG(X, 0) — Vf(x)\|2|x] < o2. Then,

B1764)] = min 79 =0 (%2

o AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.
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*AcceleGrad for stochastic optimization
o Similar to AdaGrad, replace Vf(x) = G(x,0)

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 € K, diameter D, weights {ay }ren, learning

rate {nx }ren
1. Set y¥ =20 = x0
2. For k=0,1,..., iterate

Tk = 1/ay

xFtL = 72k 4 (1 — 7)y", define g, := Vf(xF+1)
zF T =T (2% — apnrgr)

A

Output : §° Zf:_ol oyttt

Theorem (Convergence rate [19])
Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E [HG(X, 0) — Vf(x)\|2|x] < o2. Then,

Bl f (o . @ GD +/logk
[£(F°)] — min f(x) = —
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*Example: Synthetic least squares
o A € R"*4, where n = 200 and d = 50.

o Number of epochs: 20.
o Algorithms: SGD, AdaGrad & AcceleGrad.

10° ‘ ‘ ‘
—SGD
AcceleGrad
o — AdaGrad(Hy, = A1)

10 i

&
|

- 10 1
)
g

102

10—3 L L 1

0 5 10 15 20
epochs
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+*UniXGrad for stochastic optimization

UniXGrad

1. Set x0 =29 =x0
2. For k=0,1,..., iterate

{ xEH/2 =Ty (x% — apme V(X))

kAL =TIy (xF - akﬁkvf(ik+l/2))
Theorem (Convergence rate of UniXGrad)

X

> IIx(x) is Euclidean projection onto X’ and ay = k
akkarZ:c;ll ayxiTL/2 apxit1/2
k

Zi:l i
2D

\/1+Zf:1<ak)2\\Vf<>z'v+1/2>fo<s<k>n2

xk+1/2 — Zf:l

>
o
i=1 "

;ik_

> ng

Let the sequence {x*t1/2} be generated by UniXGrad. Under the assumptions

> f is convex and L-smooth,

» Constraint set X has bounded diameter, i.e.,

D = maxxyex [x =¥,

> E[Vf(x)x] = Vf(x) and E[|V f(x) — Vf(x)[|?[x] < o2

UniXGrad guarantees the following:

JREH2) -
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*Randomized Kaczmarz algorithm

Problem

Given a full-column-rank matrix A € R?XP and b € R", solve the linear system
Ax =b.

Notations: b := (b1,...,b,)T and a]T is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x° € RP .

2. For k=0,1,... perform:
2a. Pick j, € {1,---,n} randomly with Pr(j, = i) = |la;||3/||A[|%
2b. xF T = xk — (<a.ika> - bjk) aj, /llaj, ”%

Linear convergence [29]
Let x* be the solution of Ax = b and k = ||A||z||A~!|. Then

E|lx* —x*[I3 < (1 - s7%)P|Ix" —x*|3

o RKA can be seen as a particular case of SGD [22].
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*Other models with simplicity

Information
level:

s p
large
wavelet
coefficients
(blue = 0)

X" X!
sparse low-rank nonlinear
signals matrices models
There are many models extending far beyond sparsity, coming with other non-smooth regularizers.
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*Generalization via simple representations

Definition (Atomic sets & atoms [9])

An atomic set A is a set of vectors in RP. An atom is an element in an atomic set.

Terminology (Simple representation [9])
A parameter x € RP admits a simple representation with respect to an atomic set A C RP, if it can be

represented as a non-negative combination of few atoms, i.e., x = Z ca;, a; €A ¢;>0.

i=1

Example (Sparse parameter)

Let x be s-sparse. Then x! can be represented as the non-negative combination of s elements in A, with
A :={+£e1,...,*+ep}, where e; := (01,;,02,4,...,0p,) for all 7.

Example (Sparse parameter with a dictionary)

Let ¥ € R™*P, and let y% := Ux! for some s-sparse x%. Then y% can be represented as the non-negative
combination of s elements in A, with A := {£4¢1,...,+¢p}, where ¢, denotes the kth column of .
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*Atomic norms

o Recall the Lasso problem
xfasso ‘= arg min ” b — Ax H% + pH X Hl
xERP

Observations: o £1-norm is the atomic norm associated with the atomic set A := {+e1,...,tep}.
o The norm is closely tied with the convex hull of the set.

o We can extend the same principle for a wide range of regularizers

?z:{[é}v[?]v[‘éH?H-

conv (A).
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*Gauge functions and atomic norms
Definition (Gauge function)
Let C be a convex set in RP, the gauge function associated with C is given by

gc(x) :=inf {t > 0 : x = tc for some c € C}.

Definition (Atomic norm)

Let A be a symmetric atomic set in RP such that if a € A then —a € A for all a € A. Then, the atomic norm
associated with a symmetric atomic set A is given by

”x”A *= Gconv(A) (X), Vx € va
where conv(.A) denotes the convex hull of A.
A generalization of the Lasso

Given an atomic set A, solve the following regularized least-squares problem:

*

x* = arg min || b — Ax 13 + pll x L4 *
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*Pop quiz
Let A:={(1,0)7,(0,)7,(=1,0)7,(0,—1)T }, and let x := (=%, 1)7. What is || x || 47
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*Pop quiz
Let A:={(1,0)7,(0,)7,(=1,0)7,(0,—1)T }, and let x := (=%, 1)7. What is || x || 47

ANS: |x|4=$.
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*Pop quiz 2

What is the expression of || x || 4 for any x := (21, 2, x3)T € R3?

1 conv(A)
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*Pop quiz 2

What is the expression of || x || 4 for any x := (21, 2, x3)T € R3?

ANS: x4 = [z1] + || (z2,23)T [|2.

1 conv(A)
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*Application: Multi-knapsack feasibility problem

Problem formulation [20]

Let x¥ € RP which is a convex combination of k vectors in A := {—1,+1}?, and let A € R**P. How can we
recover x! given A and b = AxH?

The answer: o We can use the {o.-norm, || - ||cc as || - ||.4. The regularized estimator is given by

x* € arg min || b — Ax |3 + pl| x |oc p > 0.
xXERP

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 24



*Application: Multi-knapsack feasibility problem

Problem formulation [20]
Let x¥ € RP which is a convex combination of k vectors in A := {—1,+1}?, and let A € R**P. How can we
recover x! given A and b = AxH?

The answer: o We can use the {o.-norm, || - ||cc as || - ||.4. The regularized estimator is given by
x* € arg min || b — Ax |13 + pl| x [loc, p > 0.
xXERP
The derivation: o In this case, we have conv(A) = [—1,1]? and
Geonv(A) (X) = inf {t > 0 : x = tc for some c such that |c;| < 1 Vi}.
o We also have, Vx € RP,c € conv(A),t > 0,
x =tc = Vi, |(EZ| = ‘tCi‘ <t
= YGeonv(A) (X) > m?X |£E1|
o Let x #0, let j € argmax; |x;| and choose ¢ = max; |z;|, ¢; = z;/t € [-1,1]P.

o Then, x = tc, and S0 geony(4) (%) < max; |z;].
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*Application: Matrix completion

Problem formulation [5, 13]
Let X € RPXP with rank(X!) = r, and let A1,..., A, be matrices in RP*P. How do we estimate X! given
Ai,...,A, and b; = Tr (AZ'Xh) +w;, i =1,...,n, where w:= (wq,..., wn)T denotes unknown noise?

The answer: o We can use the nuclear norm, || - ||« as || - ||.4. The regularized estimator is given by
n
x* € arg min Z (b; — Tr (A;X))2 + p|| X ||+, p > 0.
XERPXP
i=1
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*Application: Matrix completion

Problem formulation [5, 13]
Let X € RPXP with rank(X!) = r, and let A1,..., A, be matrices in RP*P. How do we estimate X! given
Ai,...,A, and b; = Tr (AZ'Xh) +w;, i =1,...,n, where w:= (wq,..., wn)T denotes unknown noise?

The answer: o We can use the nuclear norm,

||« as || - |l.4. The regularized estimator is given by

n

x* € arg min E (b; — Tr (A;X))2 + p|| X ||+, p > 0.
XERPXP
i=1

The derivation: o Let us use the following atomic set A = {X :rank (X)) =1,||X|[[rp=1,X € RPXP}.
o Let VX € RPXP C = ZZ AiC; € conv(A), ZZ Ai=1,C; € At > 0. Then, we have

X =t NCi= XL =t D NG| <D ANCHL St = Geona)(X) 2 X, -

* 2
olLet X#0, let X = ZZ aiuivﬁ be its SVD decomposition, where o;'s are its singular values.
olett=|X|, =3, loil, C; = uivl € A Vi. Then, X =13, \iCy, A = 1%L
o Since t is feasible and Zl Ai = 1, it follows that geony(.a)(X) < [IX]],-
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*Structured Sparsity

There exist many more structures that we have not covered here, each of which is handled using different
non-smooth regularizers. Some examples [3, 11]:

> Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to
known patterns.

> Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form
a rooted connected tree.

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant
coefficients.
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*Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose p.
Design of A:
> Sometimes A is given “by nature”, whereas sometimes it can be designed

> For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must
resort to structured matrices permitting more efficient storage and computation

> See [14] for an extensive study in the context of compressive sensing

Selection of p:
> Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice

> In practice, a common approach is cross-validation [10], which involves searching for a parameter that
performs well on a set of known training signals

> Other approaches include covariance penalty [10] and upper bound heuristic [30]
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