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Outline

▶ Stochastic optimization
▶ Deficiency of smooth models
▶ Sparsity and compressive sensing
▶ Non-smooth minimization via Subgradient descent
▶ ⋆Atomic norms
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Recall: Gradient descent

Problem (Unconstrained optimization problem)
Consider the following minimization problem:

f⋆ = min
x∈Rp

f(x)

f(x) is proper and closed.

Gradient descent
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x⋆.

f is L-smooth & convex f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)

AGD O(1/k2) (optimal) O(1/k) (optimal) [16]

Why should we study anything else?
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Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h⋆ ∈ H that minimizes the expected risk,

h⋆ ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

Remark: ◦ This algorithm can not be implemented as the distribution of (a, b) is unknown.

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x⋆ := min
x∈X

{
E
[
|b− ⟨x,a⟩|2

]}
▶ hx(·) = ⟨x, ·⟩
▶ b ∈ R is the desired return & a ∈ Rp are the stock returns
▶ X is intersection of the standard simplex and the constraint: ⟨x,E[a]⟩ ≥ ρ.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 46



Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h⋆ ∈ H that minimizes the expected risk,

h⋆ ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

Remark: ◦ This algorithm can not be implemented as the distribution of (a, b) is unknown.

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x⋆ := min
x∈X

{
E
[
|b− ⟨x,a⟩|2

]}
▶ hx(·) = ⟨x, ·⟩
▶ b ∈ R is the desired return & a ∈ Rp are the stock returns
▶ X is intersection of the standard simplex and the constraint: ⟨x,E[a]⟩ ≥ ρ.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 46



Stochastic programming

Problem (Mathematical formulation)
Consider the following convex minimization problem:

f⋆ = min
x∈Rp

{
f(x) := E[f(x, θ)]

}
▶ θ is a random vector whose probability distribution is supported on set Θ.
▶ f(x) := E[f(x, θ)] is proper, closed, and convex.
▶ The solution set S⋆ := {x⋆ ∈ dom (f) : f(x⋆) = f⋆} is nonempty.
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

◦ G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remarks: ◦ The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).

◦ As G(xk, θk) is an unbiased estimate of the full gradient, SGD would perform well.

◦ We assume {θk} are jointly independent.

◦ SGD is not a monotonic descent method.
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Example: Convex optimization with finite sums

Convex optimization with finite sums
The problem

arg min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)

}
,

can be rewritten as

arg min
x∈Rp

{f(x) := Ei[fi(x)]} , i is uniformly distributed over {1, 2, · · · , n}.

A stochastic gradient descent (SGD) variant for finite sums

xk+1 = xk − αk∇fi(xk) i is uniformly distributed over{1, ..., n}

Remarks: ◦ Note: Ei[∇fi(xk)] =
∑n

j=1 ∇fj(xk)/n = ∇f(xk).

◦ The computational cost of SGD per iteration is p.
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Synthetic least-squares problem

min
x

{
f(x) :=

1
2n

∥Ax − b∥2
2 : x ∈ Rp

}
Setup
▶ A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
▶ x♮ is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ∥x♮∥2 = 1.
▶ b := Ax♮ + w, where w is Gaussian white noise with variance 1.
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◦ 1 epoch = 1 pass over the full gradient
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Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [28])
Assume
▶ E[∥xk − x⋆∥2] ≤ D2 for all k,
▶ E[∥G(xk, θk)∥2] ≤ M2 (bounded gradient),
▶ αk = α0/

√
k.

Then

E[f(xk) − f(x⋆)] ≤
(
D2

α0
+ α0M

2
)

2 + log k
√
k

.

Observation: ◦ O(1/
√
k) rate is optimal for SGD if we do not consider the strong convexity.
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Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [4])
Assume
▶ f is µ-strongly convex and L-smooth,
▶ E[∥G(xk, θk)∥2]2 ≤ σ2 +M∥∇f(xk)∥2

2 (bounded variance),
▶ αk = α ≤ 1

LM
.

Then
E[f(xk) − f(x⋆)] ≤

αLσ2

2µ
+ (1 − µα)k−1

(
f(x1) − f⋆

)
.

Observations: ◦ Converge fast (linearly) to a neighborhood around x⋆.
◦ Smaller step-sizes α =⇒ converge to a better point, but with a slower rate.
◦ Zero variance (σ = 0) =⇒ linear convergence.
◦ This is also known as the relative noise model [25] or the strong growth condition [8].
◦ The growth condition is in fact a necessary and sufficient condition for linear convergence [8].
◦ The theory applies to the Kaczmarz algorithm (see advanced material).
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Convergence of SGD for strongly convex problems II

Theorem (strongly convex objective, decaying step-size [4])
Assume
▶ f is µ-strongly convex and L-smooth,
▶ E[∥G(xk, θk)∥2]2 ≤ σ2 +M∥∇f(xk)∥2

2 (bounded variance),
▶ αk = c

k0+k
with some appropriate constants c and k0.

Then
E[∥xk − x⋆∥2] ≤

C

k + 1
,

where C is a constant independent of k.

Observations: ◦ Using the L-smooth property,

E[f(xk) − f(x⋆)] ≤ LE[∥xk − x⋆∥2] ≤
C

k + 1
.

◦ The rate is optimal if σ2 > 0 with the assumption of strongly-convexity.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 46



Example: SGD with different step sizes
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Setup
◦ Synthetic least-squares problem as before.

◦ We use αk = α0/(k + k0).

Observation: ◦ α0 = 1/µ is the best choice.
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Comparison with GD

f⋆ := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ f : µ-strongly convex with L-Lipschitz smooth.

rate iteration complexity cost per iteration total cost
GD ρk log(1/ϵ) n n log(1/ϵ)

SGD 1/k 1/ϵ 1 1/ϵ

Remark: ◦ SGD is more favorable when n is large — large-scale optimization problems
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Motivation for SGD with Averaging

◦ SGD iterates tend to oscillate around global minimizers

◦ Averaging iterates can reduce the oscillation effect

◦ Two types of averaging:

x̄k =
1
k

k∑
j=1

αjxj (vanilla averaging)

x̄k =

∑k

j=1 αjxj∑k

j=1 αj

(weighted averaging)

Remark: ◦ Do not confuse the averaging above with the ones used in Federated Learning.
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Convergence for SGD-A I: non-strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = (
∑k

j=0 αj)−1
∑k

j=0 αjxj .

Theorem (Convergence of SGD-A [24])
Let D = ∥x0 − x⋆∥ and E[∥G(xk, θk)∥2] ≤ M2.
Then,

E[f(x̄k+1) − f(x⋆)] ≤
D2 +M2

∑k

j=0 α
2
j

2
∑k

j=0 αj

.

In addition, choosing αk = D/(M
√
k + 1), we get,

E[f(x̄k) − f(x⋆)] ≤
MD(2 + log k)

√
k

.

Observation: ◦ Same convergence rate with vanilla SGD.
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Convergence for SGD-A II: strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = 1
k

∑k

j=1 xj .

Theorem (Convergence of SGD-A [27])
Assume
▶ f is µ-strongly convex,
▶ E[∥G(xk, θk)∥2] ≤ M2,
▶ αk = α0/k for some α0 ≥ 1/µ.

Then
E[f(x̄k) − f(x⋆)] ≤

α0M2(1 + log k)
2k

.

Observation: ◦ Same convergence rate with vanilla SGD.
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Example: SGD-A method with different step sizes
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◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observations: ◦ SGD-A is more stable than SGD.

◦ α0 = 2/µ is the best choice.
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Least mean squares algorithm

Least-square regression problem
Solve

x⋆ ∈ arg min
x∈Rp

{
f(x) :=

1
2
E(a,b)(⟨a,x⟩ − b)2

}
,

given i.i.d. samples {(aj , bj)}n
j=1 (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x0 ∈ Rp and α > 0.
2a. For k = 1, . . . , n perform:

xk = xk−1 − α
(

⟨ak,xk−1⟩ − bk

)
ak.

2b. x̄k = 1
k+1

∑k

j=0 xj .

O(1/k) convergence rate, without strongly convexity [2]
Let ∥aj∥2 ≤ R and |⟨aj ,x⋆⟩ − bj | ≤ σ a.s.. Pick α = 1/(4R2). Then, the average sequence x̄k−1 satisfies the
following

Ef(x̄k−1) − f∗ ≤
2
k

(
σ

√
p+R∥x0 − x⋆∥2

)2
.
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Popular SGD Variants

◦ Mini-batch SGD: For each iteration,

xk+1 = xk − αk
1
b

∑
θ∈Γ

G(xk, θ).

▶ αk: step-size
▶ b : mini-batch size
▶ Γ : a set of random variables θ of size b

◦ Accelerated SGD (Nesterov accelerated technique)

◦ SGD with Momentum

◦ Adaptive stochastic methods: AdaGrad...
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SGD - Non-convex stochastic optimization

◦ SGD and several variants are also well-studied for non-convex problems [21].

◦ Sometimes, there are gaps between SGD’s practical performance and theoretical understanding (more later!).

◦ Recall SGD update rule:

xk+1 = xk − αkG(xk, θ)

Theorem (A well-known result for SGD & Non-convex problems [15])
Let f be a non-convex and L-smooth function. Set αk = min

{
1
L
, C

σ
√

T

}
, ∀k = 1, ..., T , where σ2 is the

variance of the gradients and C > 0 is constant. Then, it holds that

E[∥∇f(xR)∥2] = O

(
σ

√
T

)
,

where P(R = k) = 2αk−Lα2
k∑T

k=1
(2αk−Lα2

k
)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 46



Lower bounds in non-convex optimization

Assumptions on f Additional assumptions Sample complexity

L-smooth Deterministic Oracle
f(x0) − infx f(x) ≤ ∆ Ω(∆Lϵ−2)[6]

L1-smooth
L2-Lipschitz Hessian

Deterministic Oracle
f(x0) − infx f(x) ≤ ∆ Ω(∆L

3/7
1 L

2/7
2 ϵ−12/7)[6]

L-smooth
E[G(x, θ)] = ∇f(x)

E[∥G(x, θ) − ∇f(x)∥2] ≤ σ2

f(x0) − infx f(x) ≤ ∆
Ω(∆Lσ2ϵ−4)[1]

G(x, θ) has averaged L-Lipschitz gradient
=⇒ L-smooth

E[G(x, θ)] = ∇f(x)
E[∥G(x, θ) − ∇f(x)∥2] ≤ σ2

f(x0) − infx f(x) ≤ ∆
Ω(∆Lσϵ−3 + σ2ϵ−2)[1]

f(x) := 1
n

∑n

i=1
fi(x)

fi(x) has averaged L-Lipschitz gradient
=⇒ L-smooth

Access to ∇fi(x)
f(x0) − infx f(x) ≤ ∆

n ≤ O(ϵ−4)1
Ω(∆L

√
nϵ−2)[12]

◦ Measure of stationarity: ∥∇f(x)∥ ≤ ϵ or E[∥∇f(x)∥ ≤ ϵ

◦ Sample complexity: # of total oracle calls (deterministic or stochastic gradients)

◦ Averaged L-Lipschitz gradient: E
[
∥∇fi(x) − ∇fi(y)∥2

]
≤ L2∥x − y∥2

◦ G(x, θ) denotes a stochastic gradient estimate for f at x with randomness governed by θ.

1We have n ≤ O(ϵ−4) in order to match the respective upper bound of O(n +
√

nϵ−2) achieved by [12]
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Non-smooth minimization: A simple example

What if we simultaneously want f1(x), f2(x), . . . , fk(x) to be small?
A natural approach in some cases: Minimize f(x) = max{f1(x), . . . , fk(x)}
▶ The good news: If each fi(x) is convex, then f(x) is convex
▶ The bad (!) news: Even if each fi(x) is smooth, f(x) may be non-smooth

▶ e.g., f(x) = max{x, x2}

x

f(x) = max{f1(x), f2(x)}

f2(x) =
1

2
x2

f1(x) = x

Figure: Maximum of two smooth convex functions.
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A statistical learning motivation for non-smooth optimization

Linear Regression
Consider the classical linear regression problem:

b = Ax♮ + w

with b ∈ Rn, A ∈ Rn×p are known, x♮ is unknown, and w is noise. Assume for now that n ≥ p (more later).

◦ Standard approach: Least squares: x⋆
LS ∈ arg minx ∥b − Ax∥2

2
▶ Convex, smooth, and an explicit solution: x⋆

LS = (AT A)−1AT b = A†b

◦ Alternative approach: Least absolute value deviation: x⋆ ∈ arg minx ∥b − Ax∥1
▶ The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)
▶ The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case n ≪ p
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Deficiency of smooth models

Recall the practical performance of an estimator x⋆.

Practical performance
Denote the numerical approximation at time t by xt. The practical performance is determined by

∥ xt − x♮ ∥2 ≤ ∥ xt − x⋆ ∥2︸            ︷︷            ︸
numerical error

+ ∥ x⋆ − x♮ ∥2︸            ︷︷            ︸
statistical error

.

Remarks: ◦ Non-smooth estimators of x♮ can help reduce the statistical error.
◦ This improvement may require higher computational costs.
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Example: Least-squares estimation in the linear model

◦ Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x♮ ∈ Rp and A ∈ Rn×p. The samples are given by b = Ax♮ + w, where w denotes the unknown noise.
The LS estimator for x♮ given A and b is defined as

x⋆
LS ∈ arg min

x∈Rp

{
∥ b − Ax ∥2

2
}
.

Remarks: ◦ If A has full column rank, x⋆
LS = A†b is uniquely defined.

◦ When n < p, A cannot have full column rank, and hence x⋆
LS ∈

{
A†b + h : h ∈ null (A)

}
.

Observation: ◦ The estimation error ∥ x⋆
LS − x♮ ∥2 can be arbitrarily large!
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A candidate solution

Continuing the LS example:
▶ There exist infinitely many x’s such that b = Ax
▶ Suppose that w = 0 (i.e. no noise). Let us just choose the one x̂candidate with the smallest norm ∥ x ∥2.

b = Ax
x1

x2

x3

Thursday, June 19, 14

Observation: ◦ Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([17])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

(1 − ϵ)
(

1 −
n

p

)
∥ x♮ ∥2

2 ≤ ∥ x̂candidate − x♮ ∥2
2 ≤ (1 − ϵ)−1

(
1 −

n

p

)
∥ x♮ ∥2

2

with probability at least 1 − 2 exp
[
−(1/4)(p− n)ϵ2

]
− 2 exp

[
−(1/4)pϵ2

]
, for all ϵ > 0 and x♮ ∈ Rp.
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Summarizing the findings so far

The message so far:
▶ Even in the absence of noise, we cannot recover x♮ from the observations b = Ax♮ unless n ≥ p

▶ But in applications, p might be thousands, millions, billions...
▶ Can we get away with n ≪ p under some further assumptions on x?
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A natural signal model

Definition (s-sparse vector)
A vector x ∈ Rp is s-sparse if it has at most s
non-zero entries.

Rp

x\

Sparse representations
x♮: sparse transform coefficients
▶ Basis representations Ψ ∈ Rp×p

▶ Wavelets, DCT, ...
▶ Frame representations Ψ ∈ Rm×p, m > p

▶ Gabor, curvelets, shearlets, ...
▶ Other dictionary representations...

=y\ x\ 
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Sparse representations strike back!

b Ã y\

▶ b ∈ Rn, Ã ∈ Rn×p, and n < p

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x♮ if we knew the location of the non-zero entries of x♮.
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▶ b ∈ Rn, Ã ∈ Rn×p, and n < p

▶ Ψ ∈ Rp×p, x♮ ∈ Rp, and ∥x♮∥0 ≤ s < n
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Sparse representations strike back!

b A x\

n× 1 n× s s× 1

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x♮ if we knew the location of the non-zero entries of x♮.
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Compressible signals
◦ Real signals may not be exactly sparse, but approximately sparse, or compressible.

Definition (Compressible signals [7])
Roughly speaking, a vector x := (x1, . . . , xp)T ∈ Rp is compressible if the number of its significant components
(i.e., entries larger than some ϵ > 0: |{k : |xk| ≥ ϵ, 1 ≤ k ≤ p}|) is small.

▶ Cameraman@MIT.

100 105101 102 103 10410-10

10-5

100

105

sorted index [log]

am
pl

itu
de

 [l
og

]

▶ Solid curve: Sorted wavelet coefficients of the cameraman image.
▶ Dashed curve: Expected order statistics of generalized Pareto

distribution with shape parameter 1.67.
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A different tale of the linear model b = Ax + w

A realistic linear model
Let b := Ãy♮ + w̃ ∈ Rn.
▶ Let y♮ := Ψxreal ∈ Rm that admits a compressible representation xreal.
▶ Let xreal ∈ Rp that is compressible and let x♮ be its best s-term approximation.
▶ Let w̃ ∈ Rn denote the possibly nonzero noise term.
▶ Assume that Ψ ∈ Rm×p and Ã ∈ Rn×m are known.

Then we have

b = ÃΨ
(

x♮ + xreal − x♮
)

+ w̃.

:=
(

ÃΨ
)︸   ︷︷   ︸

A

x♮ +
[
w̃ + ÃΨ

(
xreal − x♮

)]︸                             ︷︷                             ︸
w

,

equivalently, b = Ax♮ + w.
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Peeling the onion

◦ The realistic linear model uncovers yet another level of difficulty

Practical performance
The practical performance at time t is determined by

∥ xt − xreal ∥2 ≤ ∥ xt − x⋆ ∥2︸            ︷︷            ︸
numerical error

+ ∥ x⋆ − x♮ ∥2︸            ︷︷            ︸
statistical error

+ ∥ xreal − x♮ ∥2︸              ︷︷              ︸
model error

.
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x♮ from b = Ax♮ + w
We may search over all

(
p
s

)
subsets S ⊂ {1, . . . , p} of cardinality s, solve the restricted least-squares problem

minxS ∥b − ASxS∥2
2, and return the resulting x corresponding to the smallest error, putting zeros in the

entries of x outside S.

◦ Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.

Issues
▶
(

p
s

)
is a huge number - too many to search!

▶ s is not known in practice
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The ℓ1-norm heuristic

Heuristic: The ℓ1-ball with radius c∞ is an “approximation” of the set of sparse vectors
x̂ ∈ {x : ∥ x ∥0 ≤ s, ∥ x ∥∞ ≤ c∞} parameterized by their sparsity s and maximum amplitude c∞.

x̂ ∈ {x : ∥ x ∥1 ≤ c∞} with some c∞ > 0.

The set{
x : ∥ x ∥0 ≤ 1, ∥ x ∥∞ ≤ 1,x ∈ R3

} The unit ℓ1-norm ball{
x : ∥ x ∥1 ≤ 1,x ∈ R3

}
Remark: ◦ This heuristic leads to the so-called Lasso optimization problem.
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Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

x⋆
Lasso := arg min

x∈Rp
∥ b − Ax ∥2

2 + ρ∥ x ∥1

with some ρ ≥ 0.

◦ The second term in the objective function is called the regularizer.

◦ The parameter ρ is called the regularization parameter. It is used to trade off the objectives:
▶ Minimize ∥b − Ax∥2

2, so that the solution is consistent with the observations
▶ Minimize ∥x∥1, so that the solution has the desired sparsity structure

Remark: ◦ The Lasso has a convex but non-smooth objective function
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Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [23])
This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms
of the inputs n and p. Surprisingly, if the signal x♮ is s-sparse and the noise w is sub-Gaussian (e.g., Gaussian

or bounded) with parameter σ, then choosing ρ =
√

16σ2 log p
n

yields an error of

∥ x⋆
Lasso − x♮ ∥2 ≤

8σ
κ(A)

√
s ln p
n

,

with probability at least 1 − c1 exp(−c2nρ2), where c1 and c2 are absolute constants, and κ(A) > 0 encodes
the difficulty of the problem.

Remark: ◦ The number of measurements is O (s ln p) – this may be much smaller than p!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 46



Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)
How can we find an optimal solution to the following optimization problem?

F ⋆ := min
x∈Rp

f(x) (1)

where f is proper, closed, convex, but not everywhere differentiable.
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Subdifferentials: A generalization of the gradient

Definition
Let f : Q → R ∪ {+∞} be a convex function. The subdifferential of f at a point x ∈ Q is defined by the set:

∂f(x) = {v ∈ Rp : f(y) ≥ f(x) + ⟨v, y − x⟩ for all y ∈ Q} .

Each element v of ∂f(x) is called subgradient of f at x.

Lemma
Let f : Q → R ∪ {+∞} be a differentiable convex function. Then, the subdifferential of f at a point x ∈ Q
contains only the gradient, i.e., ∂f(x) = {∇f(x)}.

f(x)

x
...

f(x) + hv1,y � xi

f(x) + hv2,y � xi

f(y)

y

Tuesday, May 27, 14

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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(Sub)gradients in convex functions

Example
f(x) = |x| −→ ∂|x| = {sgn(x)} , if x , 0, but [−1, 1], if x = 0.

x

f(x)

f(x) = |x|

�11

o
[�1, 1]

Tuesday, May 27, 14

Figure: Subgradients of f(x) = |x| in R.
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Subdifferentials: Two basic results
Lemma (Necessary and sufficient condition)

x⋆ ∈ dom (F ) is a globally optimal solution to (1) iff 0 ∈ ∂F (x⋆).

Sketch of the proof.
◦ ⇐: For any x ∈ Rp, by definition of ∂F (x⋆):

F (x) − F (x⋆) ≥ 0T (x − x⋆) = 0,

that is, x⋆ is a global solution to (1).

◦ ⇒: If x⋆ is a global of (1) then for every x ∈ dom (F ), F (x) ≥ F (x⋆) and hence

F (x) − F (x⋆) ≥ 0T (x − x⋆), ∀x ∈ Rp,

which leads to 0 ∈ ∂F (x⋆). □

Theorem (Moreau-Rockafellar’s theorem [26])
Let ∂f and ∂g be the subdiffierential of f and g, respectively. If f, g ∈ F(Rp) and dom (f) ∩ dom (g) , ∅, then:

∂(f + g) = ∂f + ∂g.
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Non-smooth unconstrained convex minimization

Problem (Non-smooth convex minimization)

F ⋆ := min
x∈Rp

f(x) (2)

Subgradient method
The subgradient method relies on the fact that even though f is non-smooth, we can still compute its
subgradients, informing of the local descent directions.

Subgradient method
1. Choose x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform:{

xk+1 = xk − αkdk, (3)

where dk ∈ ∂f(xk) and αk ∈ (0, 1] is a given step size.
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Convergence of the subgradient method

Theorem
Assume that the following conditions are satisfied:

1. ∥g∥2 ≤ G for all g ∈ ∂f(x) for any x ∈ Rp.
2. ∥x0 − x⋆∥2 ≤ R

Let the stepsize be chosen as
αk =

R

G
√
k

then the iterates generated by the subgradient method satisfy

min
0≤i≤k

f(xi) − f⋆ ≤
RG
√
k
.

Remarks
▶ Condition (1) holds, for example, when f is G-Lipschitz.
▶ The convergence rate of O

(
1/

√
k
)

is the slowest we have seen so far!
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Stochastic subgradient methods
◦ An unbiased stochastic subgradient

E[G(x)|x] ∈ ∂f(x).
◦ Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)
1. Choose x1 ∈ Rp and (γk)k∈N ∈ (0,+∞)N.
2. For k = 1, . . . perform:

xk+1 = xk − γkG(xk).

Theorem (Convergence in expectation [28])
Suppose that:

1. E[∥G(xk)∥2] ≤ M2,
2. γk = γ0/

√
k.

Then,

E[f(xk) − f(x⋆)] ≤
(
D2

γ0
+ γ0M

2
)

2 + log k
√
k

.

Remark: ◦ The rate is O(log k/
√
k) instead of O(1/

√
k) for the deterministic algorithm.
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Wrap up!

◦ Three supplementary lectures to take a look once the course is over!
▶ One on compressive sensing (Math of Data Lecture 4 from 2014):

https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf
▶ One on source separation (Math of Data Lecture 6 from 2014)

https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf
▶ One on convexification of structured sparsity models (research presentation)

https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf
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⋆Adaptive methods for stochastic optimization

Remark
▶ Adaptive methods have extensive applications in stochastic optimization.

▶ We will see another nature of adaptive methods in this lecture.

▶ Mild additional assumption: bounded variance of gradient estimates.
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⋆AdaGrad for stochastic optimization
◦ Only modification: ∇f(x) ⇒ G(x, θ)

AdaGrad with Hk = λkI [18]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ∥G(xk, θ)∥2

Hk =
√
QkI

xk+1 = xt − αkH−1
k
G(xk, θ)

Theorem (Convergence rate: stochastic, convex optimization [18])
Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
∥G(x, θ) − ∇f(x)∥2|x

]
≤ σ2. Then,

E[f(xk)] − min
x∈Rd

f(x) = O

(
σD
√
k

)

◦ AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.
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⋆AcceleGrad for stochastic optimization
◦ Similar to AdaGrad, replace ∇f(x) ⇒ G(x, θ)

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk

xk+1 = τtzk + (1 − τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiyi+1

Theorem (Convergence rate [19])
Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
∥G(x, θ) − ∇f(x)∥2|x

]
≤ σ2. Then,

E[f(yk)] − min
x
f(x) = O

(
GD
√

log k
√
k

)
.
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⋆Example: Synthetic least squares
◦ A ∈ Rn×d, where n = 200 and d = 50.
◦ Number of epochs: 20.
◦ Algorithms: SGD, AdaGrad & AcceleGrad.
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10
0

10
1
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⋆UniXGrad for stochastic optimization

UniXGrad
1. Set x0 = z0 = x0

2. For k = 0, 1, . . ., iterate{
xk+1/2 = ΠX

(
xk − αkηk∇f(x̃k)

)
xk+1 = ΠX

(
xk − αkηk∇f(x̄k+1/2)

)
▶ ΠX (x) is Euclidean projection onto X and αk = k

▶ x̃k =
αkxk+

∑k−1
i=1

αixi+1/2∑k

i=1
αi

, x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

▶ ηk = 2D√
1+
∑k

i=1
(αk)2∥∇f(x̄k+1/2)−∇f(x̃k)∥2

Theorem (Convergence rate of UniXGrad)
Let the sequence {xk+1/2} be generated by UniXGrad. Under the assumptions
▶ f is convex and L-smooth,
▶ Constraint set X has bounded diameter, i.e., D = maxx,y∈X ∥x − y∥,
▶ E[∇̃f(x)|x] = ∇f(x) and E[∥∇̃f(x) − ∇f(x)∥2|x] ≤ σ2

UniXGrad guarantees the following:

f(x̄k+1/2) − min
x∈X

f(x) ≤ O

(
LD2

k2 +
σD
√
k

)
.
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⋆Randomized Kaczmarz algorithm

Problem
Given a full-column-rank matrix A ∈ Rn×p and b ∈ Rn, solve the linear system

Ax = b.

Notations: b := (b1, . . . , bn)T and aT
j is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x0 ∈ Rp .
2. For k = 0, 1, . . . perform:

2a. Pick jk ∈ {1, · · · , n} randomly with Pr(jk = i) = ∥ai∥2
2/∥A∥2

F

2b. xk+1 = xk −
(

⟨ajk
,xk⟩ − bjk

)
ajk

/∥ajk
∥2

2.

Linear convergence [29]
Let x⋆ be the solution of Ax = b and κ = ∥A∥F ∥A−1∥. Then

E∥xk − x⋆∥2
2 ≤ (1 − κ−2)k∥x0 − x∗∥2

2

◦ RKA can be seen as a particular case of SGD [22].
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⋆Other models with simplicity

pixels 
large 
wavelet 
coefficients 
 

(blue = 0) 

sparse 
signals 

low-rank 
matrices 

Information  
level: 

nonlinear 
models 

p
s ⌧ p

Rp Rp

x\
x\

There are many models extending far beyond sparsity, coming with other non-smooth regularizers.
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⋆Generalization via simple representations

Definition (Atomic sets & atoms [9])
An atomic set A is a set of vectors in Rp. An atom is an element in an atomic set.

Terminology (Simple representation [9])
A parameter x♮ ∈ Rp admits a simple representation with respect to an atomic set A ⊆ Rp, if it can be
represented as a non-negative combination of few atoms, i.e., x♮ =

∑k

i=1 ciai, ai ∈ A, ci ≥ 0.

Example (Sparse parameter)
Let x♮ be s-sparse. Then x♮ can be represented as the non-negative combination of s elements in A, with
A := {±e1, . . . ,±ep}, where ei := (δ1,i, δ2,i, . . . , δp,i) for all i.

Example (Sparse parameter with a dictionary)
Let Ψ ∈ Rm×p, and let y♮ := Ψx♮ for some s-sparse x♮. Then y♮ can be represented as the non-negative
combination of s elements in A, with A := {±ψ1, . . . ,±ψp}, where ψk denotes the kth column of Ψ.
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⋆Atomic norms

◦ Recall the Lasso problem
x⋆

Lasso := arg min
x∈Rp

∥ b − Ax ∥2
2 + ρ∥ x ∥1

Observations: ◦ ℓ1-norm is the atomic norm associated with the atomic set A := {±e1, . . . ,±ep}.
◦ The norm is closely tied with the convex hull of the set.
◦ We can extend the same principle for a wide range of regularizers

A :=
{[

1
0

]
,

[
0
1

]
,

[
−1

0

]
,

[
0

−1

]}
.

C := conv (A) .

C
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⋆Gauge functions and atomic norms

Definition (Gauge function)
Let C be a convex set in Rp, the gauge function associated with C is given by

gC(x) := inf {t > 0 : x = tc for some c ∈ C} .

Definition (Atomic norm)
Let A be a symmetric atomic set in Rp such that if a ∈ A then −a ∈ A for all a ∈ A. Then, the atomic norm
associated with a symmetric atomic set A is given by

∥x∥A := gconv(A)(x), ∀x ∈ Rp,

where conv(A) denotes the convex hull of A.

A generalization of the Lasso
Given an atomic set A, solve the following regularized least-squares problem:

x⋆ = arg min
x∈Rp

∥ b − Ax ∥2
2 + ρ∥ x ∥A (4)
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⋆Pop quiz
Let A :=

{
(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T

}
, and let x := (− 1

5 , 1)T . What is ∥ x ∥A?

ANS: ∥ x ∥A = 6
5 .

x =


� 1

5
1

�

conv(A)

x1

x2
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⋆Pop quiz 2

What is the expression of ∥ x ∥A for any x := (x1, x2, x3)T ∈ R3?

ANS: ∥ x ∥A = |x1| + ∥ (x2, x3)T ∥2.
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⋆Application: Multi-knapsack feasibility problem

Problem formulation [20]
Let x♮ ∈ Rp which is a convex combination of k vectors in A := {−1,+1}p, and let A ∈ Rn×p. How can we
recover x♮ given A and b = Ax♮?

The answer: ◦ We can use the ℓ∞-norm, ∥ · ∥∞ as ∥ · ∥A. The regularized estimator is given by

x⋆ ∈ arg min
x∈Rp

∥ b − Ax ∥2
2 + ρ∥ x ∥∞, ρ > 0.

The derivation: ◦ In this case, we have conv(A) = [−1, 1]p and

gconv(A)(x) = inf {t > 0 : x = tc for some c such that |ci| ≤ 1 ∀i} .

◦ We also have, ∀x ∈ Rp, c ∈ conv(A), t > 0,

x = tc ⇒ ∀i, |xi| = |tci| ≤ t

⇒ gconv(A)(x) ≥ max
i

|xi|.

◦ Let x , 0, let j ∈ arg maxi |xi| and choose t = maxi |xi|, ci = xi/t ∈ [−1, 1]p.

◦ Then, x = tc, and so gconv(A)(x) ≤ maxi |xi|.
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⋆Application: Matrix completion

Problem formulation [5, 13]
Let X♮ ∈ Rp×p with rank(X♮) = r, and let A1, . . . ,An be matrices in Rp×p. How do we estimate X♮ given
A1, . . . ,An and bi = Tr

(
AiX♮

)
+ wi, i = 1, . . . , n, where w := (w1, . . . , wn)T denotes unknown noise?

The answer: ◦ We can use the nuclear norm, ∥ · ∥∗ as ∥ · ∥A. The regularized estimator is given by

x⋆ ∈ arg min
X∈Rp×p

n∑
i=1

(bi − Tr (AiX))2 + ρ∥ X ∥∗, ρ > 0.

The derivation: ◦ Let us use the following atomic set A =
{

X : rank (X) = 1, ∥ X ∥F = 1,X ∈ Rp×p
}

.

◦ Let ∀X ∈ Rp×p,C =
∑

i
λiCi ∈ conv(A),

∑
i
λi = 1,Ci ∈ A, t > 0. Then, we have

X = t
∑

i

λiCi ⇒ ∥X∥∗ = t

∥∥∥∥∥∑
i

λiCi

∥∥∥∥∥
∗

≤ t
∑

i

λi ∥Ci∥∗ ≤ t ⇒ gconv(A)(X) ≥ ∥X∥∗ .

◦ Let X , 0, let X =
∑

i
σiuivt

i be its SVD decomposition, where σi’s are its singular values.

◦ Let t = ∥X∥∗ =
∑

i
|σi|, Ci = uivT

i ∈ A, ∀i. Then, X = t
∑

i
λiCi, λi = |σi|

t
.

◦ Since t is feasible and
∑

i
λi = 1, it follows that gconv(A)(X) ≤ ∥X∥∗.
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⋆Structured Sparsity
There exist many more structures that we have not covered here, each of which is handled using different
non-smooth regularizers. Some examples [3, 11]:
▶ Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to

known patterns.
▶ Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form

a rooted connected tree.

 

 

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant
coefficients.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 24



⋆Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose ρ.

Design of A:
▶ Sometimes A is given “by nature”, whereas sometimes it can be designed
▶ For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must

resort to structured matrices permitting more efficient storage and computation
▶ See [14] for an extensive study in the context of compressive sensing

Selection of ρ:
▶ Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
▶ In practice, a common approach is cross-validation [10], which involves searching for a parameter that

performs well on a set of known training signals
▶ Other approaches include covariance penalty [10] and upper bound heuristic [30]
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