Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 5: Optimality of Convergence rates. Accelerated Gradient/Tensor Descent Methods

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

. " STIFTUNG OSDSC PN
llons@epfl aws N swim i% Google Al [

License Information for Mathematics of Data Slides

\4

This work is released under a Creative Commons License with the following terms:
Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

» Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor's permission.
» Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

v

» Full Text of the License

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 44

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Recall: Gradient descent

Problem (Unconstrained convex problem)

Consider the following convex minimization problem:

"= min f(x)

XERP

> f is a convex function that is
> proper : Vx € RP, —oo < f(x) and there exists x € RP such that f(z) < +oo.
> closed : The epigraph epif = {(x,t) € RPT!, f(x) < t} is closed.
> smooth : f is differentiable and its gradient V f is L-Lipschitz.

> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.

Gradient descent (GD)

Choose a starting point x° and iterate
xFH = xF 0, V(xF)

where ay, is a step-size to be chosen so that x* converges to x*.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 44

Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

f is L-smooth,

f is L-smooth and p-strongly convex, «

f is L-smooth and p-strongly convex,

1, k_x*
T 7k -)

o=
2
=——: |Ix* —x*||2
L+p
1
a=g: X —x

Note that £=£ = £=1 \here k := % is the condition number of V2 £.

L+4p k+1"

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 4/ 44

IN

IN

IN

2L

+
T &
SN—

T T
~—

/N /N
[ol o
+

~
+
=

E
2

[l — x*[I3
[x% —x*||2
1% = x*[|2

Information theoretic lower bounds [36]

Question: o What is the best achievable rate for a first-order method?
f € Fz°: oo-differentiable and L-smooth

It is possible to construct a function in F7°, for which any first order method must satisfy

3L
5 [x° — x*||2 forall k < (p—1)/2.

f(xk)*f(X*) > m

| € Fr,: oo-differentiable, L-smooth and y-strongly convex
It is possible to construct a function in]-'EOM, for which any first order method must satisfy

kE_ o * \/Zi\/ﬂ § 0 _ *
[[x* —x*[]2 > Vit VR [lx” — x|z

Observations: o Note that (1) only holds if k is less than p, if K > p we can do better [4]
o Gradient descent is O(1/k) for F¢°

o It is also slower for]—'EOH, hence it does not achieve the lower bounds!

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 44

Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 44

Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 44

Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x* = y% € dom (f) and ¢¢ := 1.
2. For k=0,1,..., iterate

xEHL = yh — V(M)

the1 = (14 /4t +1)/2

k+l k41 4 Ge=D) k1 _ Lk
y XF 4 e (x x¥)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 44

Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x* = y% € dom (f) and ¢¢ := 1.
2. For k=0,1,..., iterate

xEHL = yh — V(M)

the1 = (14 /4t +1)/2

k+l k41 4 Ge=D) k1 _ Lk
y XF 4 e (x x¥)

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Accelerated Gradient algorithm for L-smooth
and p-strongly convex (AGD-uL)

1. Choose xY = y¥ € dom (f)
2. For k=0,1,..., iterate

xFHL = yh — 1V F(y*)

yk+1 — xk+1 + oc(xk+1 _ xk)
V- i
VLt i

where a =

Slide 6/ 44

Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth Accelerated Gradient algorithm for L-smooth
(AGD-L) and p-strongly convex (AGD-pL)
1. Choose xY = y¥ € dom (f)
1. Set x° = y° € dom (f) and tg := 1. 2. For k=0,1,..., iterate
2. For k=0,1,..., iterate
k+1 — vk 1 k
k41 _ ok _ 1 k X =y*" - V")
x =y LVJ;(Y) { yhHl = xh+l ia(xk+l — xk)
Bt =0+ 4fk Jr1 b/ where o = R/
Remark: o AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

o The momentum x*+1

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

— x* acts like an “extra-gradient.”

Slide 6/ 44

Global convergence of AGD [36]

Theorem (f is convex with Lipschitz gradient)

If f is L-smooth or L-smooth and p-strongly convex, the sequence {xk }r>0 generated by AGD-L satisfies

4L
FF) = < m”xo—’(*”gv Vk > 0. (2)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 44

Global convergence of AGD [36]

Theorem (f is convex with Lipschitz gradient)

If f is L-smooth or L-smooth and p-strongly convex, the sequence {xk }r>0 generated by AGD-L satisfies

4L
FF) = < m”xo—’(*”gv Vk > 0. (2)

AGD-L is optimal for L-smooth but NOT for L-smooth and p-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)

If f is L-smooth and p-strongly convex, the sequence {xk}kzo generated by AGD-uL satisfies

k
56 = s 2 (1= E) 10 - %18, v 20 (3)

k
2L 2
b = x*ll2 < 4/ = (1= 4/5) 7 Ix° = x*|l2, VE > 0. (4)
o L

Observations: o AGD-L's iterates are not guaranteed to converge in general.
o AGD-L does not have a linear convergence rate for L-smooth and p-strongly convex.
o AGD-puL does, but needs to know p.
o AGD achieves the iteration lowerbound within a constant!

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 44

Example: Ridge regression
Case n = 500,p = 2000, p = 0 Case 2: n = 500, p = 2000, p = 0.01)\,(ATA)

1 bound

= = =Theoretical bound AGD
——Theoretical bound AGD-uL

aD
X GD-yiL

VA8
AGD-pL

B,

f(x) = f* in log-scale
5

0 1000 2000 3000 4000 5000 10

. 0 0 200 400 600 800 1000 1200 1400
Number of iterations

Number of iterations

10
D

10
o
El
i
o
L
Iy
|
&)

10°?

10°

0 2 4 6 8 10 12 14

15 2 25 3 35
Time (s)

BHEIHN Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 44 EPFL

Time (s)

Hidden gems in AGD: The method of similar triangles

o There are several variants of Nesterov's AGD [39].

<k Accelerated Gradient Descent Algorithm
,'.‘\‘ 1. Set x = yU =20 € dom (f) and tg := 1.
'.' . 2. For k=0,1,..., iterate
:' \\ 1 %4-1

yk+1','_;\xk+1 yhtl = (1— tk+1)xk 4 thtlgh

\“ xktl = yhtl _ Ly f(yh+l)
s L1 k1l = xk+1 4 (tklﬂ _ 1) (xF+1 — xk)

o Triangles (x¥,y*+1 x*+1) and (x#,2* zFt1) are “similar.”
o This geometric construction via averaging is typical of accelerated methods.
o Sequences (yk+1,zk+1) enable acceleration by estimating a lower-bound to the problem.

Remarks:

Slide 9/ 44

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

The extra-gradient algorithm
o Recall: The momentum-term x**1 — x* in AGD acts like an “extra-gradient.”

o However, the name extra-gradient is reserved for another algorithm approximating the proximal-point method:

xk+1 — xk _ ,yvf(karl) (PPM)
Extra-gradient algorithm [21]
1. Choose xY € dom ()
2. For k=0,1,..., iterate
xk+1/2 — xk _ ,va(xk)
xk+1 — Xk _ ,va(xk+1/2)
> Picky < 1.

> Define xk11/2 = Zle xi+1/2 [k
> f(ikJrl/Q) —fx") <0 (%)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 44

The extra-gradient algorithm
o Recall: The momentum-term x**1 — x* in AGD acts like an “extra-gradient.”

o However, the name extra-gradient is reserved for another algorithm approximating the proximal-point method:

xk+1 — xk _ ,yvf(karl) (PPM)
Extra-gradient algorithm [21] Accelerated extra-gradient algorithm [11]
1. Choose x¥ € dom (f) 1.Set x0 =27 = xV
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
k4172 _ ok _ <k
xk+1/2 = xk YV f(x*) { Xk+1 — xk ak’ygf()-(k-)ﬂ/z
xEHL gk V(xR F1/2) x =x" —apyVf(x)
> Pick v < % > Pick v < % and define oy, = O(k)
k k=1 it1/2 k Lit+1/2
> Define xE+1/2 = S8 xit1/2) > gk = 2 +ng;1 N 721::1:”‘
Zi:l i Zi:l i
> fEM2) — f(x) <O (}) > FEM2) - f(x*) <0 (%) [11]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 44

Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates

Gradient descent:
: k * 2L 0 * 12
fis L-smooth, a= —: F(x7) = f(x) < —[|x" —x*[|3.
Accelerated Gradient Descent:

4L

fis L-smooth, o= —: F(xF) = fa*) < 72“)(0 —x*||2, VE > 0.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 44

Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates

Gradient descent:
: k * 2L 0 * 12
fis L-smooth, a= —: fx) — f(x*) < —||Ix° —x*|5.
Accelerated Gradient Descent:

fis L-smooth, o= —: F(xF) = fa*) < 72“)(0 —x*||2, VE > 0.

Observations: o We require a; to be a function of L.
o It may not be possible to know exactly the Lipschitz constant.

o Adaptation to local geometry — may lead to larger steps.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 44

Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 44

Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

Newton method

Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 44 EPFL

How can we better adapt to the local geometry?

fx)

Global quadratic upper bound
Qulx,x")

7(xk) exitl = arg min {f(xk) +(Vf(xF),x —x*) + %Hx - xl‘Hﬁ}

IV/ (@) = VIl < Llly — = zzT

L is a global worst-case constant

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 44 EPFL

How can we better adapt to the local geometry?

fx)

Local quadratic upper bound

Qre(x,x")

7(x") o x" 1 = arg min {f(xk) F (V) x —x") + %Hx — kaﬁ}

: T k Ly k)2
IVf(z) - Vi) < Llly — 2] 22 60 < 70 + VIM (e = xb) + T [x = x|

L is a global worst-case constant > . applies only locally
=)
= =
Z1

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 44

EPFL

How can we better adapt to the local geometry?

fx)

(") 1
f(x) < f(xF) + Vf(xh 3’(x—¥/'1+;\\x’xl i
3 f
T

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 44 EPFL

Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

1. Choose xV € RP as a starting point and Hy > 0.
2. For k=0,1,---, perform:

dF = —H, 'V f(x),
xktl = xF 4 apdF,

where ay, € (0,1] is a given step size.
3. Update Hy,; > 0 if necessary.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 44

Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

dk
xk+1

1. Choose xV € RP as a starting point and Hy > 0.
2. For k=0,1,---, perform:

= 7H;1Vf(xk),
= xF + o d¥,

where ay, € (0,1] is a given step size.
3. Update Hy,; > 0 if necessary.

Common choices of the variable metric Hy,

> Hj, = Ml =
> Hj := Dy (a positive diagonal matrix) =
> Hj = V2 f(x) —
> Hy ~ V2f(x) =

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

gradient descent method.
adaptive gradient methods.
Newton method.

quasi-Newton method.

Slide 16/ 44

Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H;. as a function of past gradient information.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 44

Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H;. as a function of past gradient information.

o Roughly speaking, Hy, = function(V f(x'), Vf(x2?), -, Vf(x*))

o Some well-known examples:

AdaGrad (Scalar) [12, 32]

By = /35, (V6) TV (x0)

*RmsProp [51]

Hj = /BHj_1 + (1 — B)diag(V f(xF))2

*ADAM [20]
Hj, = BHj_1 + (1 — B)diag(V f(x*))2

H;, = /H/(1 - BF)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 44

AdaGrad - Adaptive gradient method with H;, = A, I [32]

o If Hr = AxI, it becomes gradient descent method with adaptive step-size ';f—:

How step-size adapts?

If gradient ||V f(x")|| is large/small — AdaGrad adjusts step-size aj, /Ay, smaller/larger

Adaptive gradient descent (AdaGrad with H;, =)\, I) [25]
1. Set Q0 =0.
2. For k=0,1,..., iterate

Q* QM+ VM2

H, =./QFI

xkHl = xk — akHI:lVf(xk)

IHEETI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 44 EPFL

AdaGrad - Adaptive gradient method with H;, = A, I [32]

o If Hr = AxI, it becomes gradient descent method with adaptive step-size ';f—:

How step-size adapts?

If gradient ||V f(x")|| is large/small — AdaGrad adjusts step-size aj, /Ay, smaller/larger

Adaptive gradient descent (AdaGrad with H;, =)\, I) [25]
1. Set Q0 =0.
2. For k=0,1,..., iterate

QF =QM !+ |VrEh)?

H, =./QFI

xkHl = xk — akHI:lVf(xk)

Adaptation through first-order information

> When Hj, = A\ I, AdaGrad estimates local geometry through gradient norms.

> Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 44

AdaGrad - Adaptive gradient method with H;, = D, [50]

Adaptation strategy with a positive diagonal matrix Dy,

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

Local quadratic upper bound

Qr, (x,x")

s o x" !l = arg Ill’}]l {f(x“) + (V") x —x*) + %Hx — kag}

1

[Vf(@) ~ Vi) < Lily -zl @ f00) < J) + VI (e = x) + 3

=X

L is a global worst-case constant applies only locally

IHETIl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 44 EPFL

AdaGrad - Adaptive gradient method with H;, = D, [50]
o Suppose Hj, is diagonal,

>\k,1 0
Hk =

0 Ak,d
o For each coordinate 7, we have different step-size a2

is the step-size.
Ak, p

Adaptive gradient descent(AdaGrad with Hy = D)

1. Set QU =0.

2. For k=0,1,..., iterate
Q¥ =QF ! +diag(Vf(xF))?
H, = \/@
R akH;1Vf(xk)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 44

AdaGrad - Adaptive gradient method with H;, = D, [50]
o Suppose Hj, is diagonal,

>\k,1 0
Hk =

0 Ak,d
o For each coordinate 7, we have different step-size a2

is the step-size.
Ak, p

Adaptive gradient descent(AdaGrad with Hy = D)

1. Set QU =0.

2. For k=0,1,..., iterate
Q¥ =QF ! +diag(Vf(xF))?
H, = \/@
R akH;1Vf(xk)

Adaptation across each coordinate
> When Hj; = Dy, we adapt across each coordinate individually.
> Essentially, we have a finer treatment of the function we want to optimize.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 44

Convergence rate for AdaGrad

Original convergence for a different function class

Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT L-smooth). Let

D= max Ix* — x*||l2 and oy = %. Define x* = (Zle x%)/k. Then,

IN

k
FER) = 1) < 34 [202 3 IV A6
i=1

A more familiar convergence result [25]
Assume f is L-smooth, D = max ||x* — x*||2 and oy = %. Define x* = (Zf_l x?)/k. Then,
€ =

4D2L
<

k
FE) = F) < = [2D2) IVFGF < =
=1

Bl

IHETI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 44 EPFL

AcceleGrad - Adaptive gradient + Accelerated gradient [26]
Motivation behind AcceleGrad
Is it possible to achieve acceleration for when f is L-smooth, without knowing the Lipschitz constant?

o The answer is yes! AcceleGrad combines an accelerated algorithm with AdaGrad step-size.

o A rough comparison of the accelerated methods:

Accelerated Gradient algorithm AcceleGrad (Accelerated Adaptive Gradient Method)
1. Choose x¥ = y0 € dom () 1. Set yU =20 =0
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
{ xk+1 =ykfonf(yk) T}i+1 = :[/C;i]C .
yRPL =P g (P — xP) X (1= my?
2Tl = 2P — oy V f (xP)
YR =M g Y (xF)

> for some proper choice of a and yg41. > for ap = (k +1)/4, and

> o = - 2D :
\/GZ+Zi:0<ak)2HVf<xk>u2

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 44 EPFL

Convergence of AcceleGrad

Theorem (Convergence rate of AcceleGrad)

Let the sequence {y*} be generated by AcceleGrad. Under the assumptions
> f is convex and L-smooth,
> lterates are bounded, such that D = max, cpa [[x —y
> Gradient norms are bounded ||V f(x)| < G,

AcceleGrad has the following guarantee:

1

fF") — min f(x) <O
x€eRd

(DG + LD?log(LD/G) >
k2 ’

where §* = (Zf:_ol akyk+1)/(2f:_()l ay) is the average iterate.

Remarks: o Accelegrad is a nearly “universal” algorithm (more on this later!)
o We still need a bound on G and D to run the algorithm.
o It cannot handle constraints.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 44

UniXGrad - Accelerated Extra-gradient (!) algorithm for constraints [19]

o Universal extra-gradient method offers improvements over AcceleGrad

Extra-Gradient algorithm UniXGrad
1. Choose xY € dom (f) 1.Set x0 =2z = xY
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
xkH1/2 = 3k _ oV f(xk) xEHL/2 =Ty (x* — apme V(X))
xk+1 —xk _ och(xk+1/2) xk+1 =My (xk — aknka()?kJrl/Q))

> Pick a < 1/L.

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

> I1x(x) is Euclidean projection onto X and o = k

axitl/2

k .
> S(k — zkzl
.
Dl

k Lit1/2
gh+1/2 — Zi:l Xix

>
o
i=1 "

bnk:

Slide 24/ 44

\/1+Z ()2 V F(RFH1/2) =V f(%F)|2

Convergence of UniXGrad

Theorem (Convergence rate of UniXGrad)
Let the sequence {xk+1/2} be generated by UniXGrad. Under the assumptions
> f is convex and L-smooth,

> Constraint set X has bounded diameter, i.e., D = maxy yex ||[x —y

’

UniXGrad guarantees the following:

f(ik+1/2) — min f(x) <O (LDZ) 5
xeX

k2
k i+1/2
TR
where xF+1/2 = Zl:l,ﬂil is the average iterate.
i=1 i
Remarks: o UniXGrad is a truly “universal” algorithm (more on this later!)

o We still need a bound on D to run the algorithm.
o It can handle constraints.

o It removes the log-factor in AcceleGrad.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 44

Adaptive methods and open questions

Question: o Can we improve diameter D dependence on adaptive methods?

Answer: o UnderGrad [3] has O(log D) dependence instead of O(D) while retaining the fast rates.

—¥ UnderGrad
—e— UnixGrad, y1=m
—e— UnixGrad, y; = 1E+04n;

UnixGrad, y; = 1E-03-n
10-6 | —8— UnixGrad, y, = 1E-05:m *
AEG A

10° 10t 10? 10° 10*

Figure: UniXGrad vs. UnderGrad vs. Accelerated extra-gradient algorithm.

Question: o Can we go beyond O(1/k?) rate while adapting to problem parameters and oracle noise?

1

o Yes, ExtraNewton™ [2] achieves a rate of O (173) using a regularized Newton update.

Answer:

IHETI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 44 EPFL

A quick look at descent methods: beyond first-order minimization
Revisiting majorization-minimization
> Gradient descent, for a > 0:
xF 1 = argmin, cpa { F(xF) + (VF(xF), x — xF) + oL ||x — xF[|2}
=xk — aVf(xF).
» Newton's method, for a > 0:
xh 1 = arg min, cga { F(xF) + (VF(x), x = xF) + 2 (V2 £(xk) (x — x*), x — xF) }
= xk — o(V2f(xF)) "1V f(xF).
> Regularized Newton’s method, for o, 8 > 0 [24, 31]:
xE+L = argmin, cga { F(xF) + (VF(P), x — xF) + £ (V2 (xF) (x — xF), x — x%) + 525 [Ix — x|}
=xP — (V2 f(x*) + BI) TV F(xF).

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 44

A quick look at descent methods: beyond first-order minimization
Revisiting majorization-minimization
> Gradient descent, for a > 0:
xF 1 = argmin, cpa { F(xF) + (VF(xF), x — xF) + oL ||x — xF[|2}
=xk — aVf(xF).
» Newton's method, for a > 0:
xh 1 = arg min, cga { F(xF) + (VF(x), x = xF) + 2 (V2 £(xk) (x — x*), x — xF) }
= xk — o(V2f(xF)) "1V f(xF).
> Regularized Newton’s method, for o, 8 > 0 [24, 31]:
xE+L = argmin, cga { F(xF) + (VF(P), x — xF) + £ (V2 (xF) (x — xF), x — x%) + 525 [Ix — x|}
=xP — (V2 f(x*) + BI) TV F(xF).

Remarks: o Global convergence of the Newton method is difficult.
o Local convergence of the Newton method using self-concordance is well-studied.
o Quasi-Newton methods that approximate the Newton method are well-studied [45].
o See advanced material at the end of the lecture.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 44

Sophia: Yet another second-order optimization algorithm [28]

Sophia

1. Set xY € dom (f), mo =0, H_,, =0, h € {Hutchinson, GNB}
2. For k=0,1,..., iterate
mi = fimg_1 + (1 - B1)VF(x)
If Kk mod n =0, do:
Hy = BoHy_p + (1 - B2)h(x")

else: H,=H;

xF T = (1 — apN)xF — ay, - clip(my,/ max{p - Hy, €}, 1)

Remarks: o More adaptive to heterogeneous curvatures than ADAM

o See the appendix for the Hessian estimators (Hutchinson, GNB)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 44

Convergence of Sophia

Theorem (Convergence rate of Sophia)

Let the sequence {xk} be generated by Sophia. Assume the following:
> f:RY R is a twice continuously differentiable, strictly convex function.

> There exists a constant R > 0, such that

vx,x' €RY[|[x —x|la <R = || V2f(x)T'V2f(x) 2 < 2.

Then, if we set « = 1/2,p = 2—%, Sophia guarantees the following
R2 'f(xo)—nlink Feky)
FET) =) s o=t T e

32d
where ¢ = Amin(v2f(x*))'

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 44

Learning rate scheduling

o Choosing a sequence of step sizes for an algorithm {ak}£:1 is a core problem in optimization.

Definition
Learning rate scheduling incorporates two elements:
1. A baseline learning rate o, which can be determined adaptively;

2. A schedule baseline multiplier, which has a predetermined sequence of values {sk}gzl .

Example: o How can we incorporate a learning rate schedule into gradient descent (GD)?

GD with step size scheduling

1. Set x° € dom ().
2. For k=0,1,..., iterate

{ xFtl = xF — as, VF(xF)

IHEETIl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 44 EPFL

Basic forms

o The choice of schedule is empirically motivated.

o Basic examples include linear, exponential and step-ladder-like decreasing sequences [6].

1.0

—— Linear

Exponential

0.8

—— Step

0 200 400 600 800 1000
Figure: Example of common schedule (sub)sequences.

Warm up

[15, 23] note how better results for computer vision models can be achieved by adding a warm up phase where
the step-size scheduler initially increases the step-size multiplier from a small value to a large one.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 44

EPFL

Additional considerations
= Power = Cosine WSD

0.015

50k 100k 150k 200k 250k

Figure: Example Warm-up+Runtime+Cool-down schedules vs. cosine annealing schedule. Credit: [48].

Fusion of ideas

[30, 54] motivate three-phase schedules with results for residual neural networks and vision transformers:
1. Warm-up schedule with increasing step size.
2. Runtime schedule with constant or decreasing step size.

3. Cool down or Ramp down or Decay phase of sharp learning rate decrease.

Remarks: o [53] theoretically motivates fast linear decay at the end of schedules.

o [18] describes the benefits of non-linear step size cool-down for language models.

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 44 EPFL

The Road Less Scheduled [9]

o Tuning the learning rate scheduler is difficult! Can we do it without it?

ScheduleFreeGD
1. Set x? = 27 € dom (f) and «, B € [0, 1].
2. For k=0,1,..., iterate
1l — 1
yboo= (1 Byt + Bxk
ZFl =2k —aVf(y*
)k = (1 — otk 4 ghtlgh+1

Remarks: o This “schedule-free” algorithm uses a identical formulation to [22] up to parameter choices:
> see Section 3 of [9]
o The approach differs from these conventional accelerated methods.
o It uses a different weight for the y* and x* interpolations:
> constant weight 3 for y*,

> a decreasing weight for x* and fixed o.

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 44

Schedule-free theory

Theorem (General schedule-free theory)

Let f be a convex function. Let z', ...,z be arbitrary vectors and let w1, ..., wr and B1,...,Br be arbitrary
numbers in [0, 1]. Set:

k
i1 WiZg _ w w
<k = 2171 — k11 k + k__ k
S wi Siawi) Y wi
i=1 ¢ i=1 ¢ i=1*
___ﬂ,____/ \—v—/
L1tk ¢k

y* = Bex? + (1 — Br)z"
Then we have for all x*:
T
Y ope1 WkBUVF(yF), 28 — x*)]
v '
k=1 "k

E[f(x") = f(x")] <

Remarks: o The theoretical analysis is not much more involved than the adaptive methods we have seen so far!
o We refer to the online-offline conversion in [19] and [2].

o See the numerical evidence in the appendix.

MGl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 44 EPFL

Example: linear and logistic regression

o Performance of adaptive algorithms on basic optimization problems

[Ax — b

10
10?
W
=10*
I
< — GD
® . 6
=100 — ApAMm
—— UniXGrad
10° - = Sophia
—— SchFrecGD
10 10' 10° 10
k
. o] |Ax b
10
10?
o
=10*
I
5% 5 — GD
=100 — ApaM
—— UniXGrad
10° = Sophia

hFrecGD
10° 10° !
Wall time [s]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Logistic Regression

10
10°
10°
X
<
10t
%, 5 — GD
=100 apam
10° | — UniXGrad
— Sophia
107 = SchFreeGD
10° 10' 10° 10° 10°
k
Logistic Regression
10"
10°
-10°
R
e
10*
%, 5 —— GD
S0 Apam
10° | — UniXGrad
— Sophia
107 = SchFreeGD
10° 10 10" 10°
Wall time [s]
Slide 35/ 44

EPFL

Performance of optimization algorithms

Time-to-reach ¢

time-to-reach ¢ = number of iterations to reach € X per iteration time

o The speed of numerical solutions depends on two factors:
> Convergence rate determines the number of iterations needed to obtain an e-optimal solution.

> Per-iteration time depends on the information oracles, implementation, and the computational platform.

o In general, convergence rate and per-iteration time are inversely proportional.

Finding the fastest algorithm is tricky!

IHEETIl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 44 EPFL

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient
Prodigy [33] Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k2) One gradient
UniXGrad Sublinear (1/k2) Two gradients
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Reg. Newton method Sublinear (1/k2) One gradient, one linear system
ExtraNewton method Sublinear (1/k3) Two gradients, one linear system
Gradient descent Linear (e —F) One gradient
L-smooth and p-strongly convex Accelerated GD Linear (efk) One gradient
Newton method Linear (efk), Quadratic One gradient, one linear system
Sophia [27] Linear (e —*) SVD dec., one linear system, one gradient

Gradient descent: AdaGrad:
xkt+1 :xkfan(xk), xkt1 :xkfoszf(xk)7

where scalar version of the step size is given by
k_ D

A= e
NN Aol

Slide 37/ 44

where the stepsize is chosen as « € (0, %)

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f

Algorithm

Convergence rate

Iteration complexity

L-smooth

Gradient descent
AdaGrad
Prodigy [33]
Accelerated GD
AcceleGrad
UniXGrad
Newton method
Reg. Newton method
ExtraNewton method

Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k), Quadratic
Sublinear (1/k2)
Sublinear (1/k3)

One gradient

One gradient

One gradient

One gradient

One gradient

Two gradients
One gradient, one linear system
One gradient, one linear system
Two gradients, one linear system

L-smooth and p-strongly convex

Gradient descent

Accelerated GD

Newton method
Sophia [27]

Linear (e —F)
Linear (e %)
Linear (efk), Quadratic
Linear (e %)

One gradient
One gradient
One gradient, one linear system

SVD dec., one linear system, one gradient

UniXGrad:

P2 = xb — o, VF(RF)

X = xF oy VF(RFH?),

for some proper choice of ay, = k and nj.

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

AcceleGrad:

<P = b 4 (1 -7y
2" = 2F — e VF(xY)
yP =<V (xR,

for ap, = (k+1)/4, 7, = 1/ay and
—1/2
me=20 (62 + XL IVIeh)

Slide 38/ 44

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Newton method
Reg. Newton method
ExtraNewton method

Sublinear (1/k), Quadratic
Sublinear (1/k2)
Sublinear (1/k3)

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient
Prodigy Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k?) One gradient
UniXGrad Sublinear (1/k2) Two gradients

One gradient, one linear system
One gradient, one linear system
Two gradients, one linear system

L-smooth and p-strongly convex

Gradient descent

Accelerated GD

Newton method
Sophia

Linear (e —F)
Linear (e ~F)
Linear (efk), Quadratic
Linear (e —F)

One gradient
One gradient
One gradient, one linear system
SVD dec., one linear system, one gradient

The main computation of the Newton method requires the solution of the linear system

(V2 f(x*) + BiI)p* = -V f(xF) .

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 39/ 44

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient
Prodigy Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k2) One gradient
UniXGrad Sublinear (1/k2) Two gradients
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Reg. Newton method Sublinear (1/k2) One gradient, one linear system
ExtraNewton method Sublinear (1/k3 Two gradients, one linear system
Gradient descent Linear (e k) One gradient
L-smooth and p-strongly convex Accelerated GD Linear (efk) One gradient
Newton method Linear (e_k), Quadratic One gradient, one linear system
Sophia Linear (eik) SVD dec., one linear system, one gradient

Prodigy [33] is gradient descent with step sizes defined as

k
D i Yilgisxo — mi)

| zit1 — zo ||

d
k
Ve S @IV |2

Yt = with d;41 = max < d;,

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 44

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f

Algorithm

Convergence rate

Iteration complexity

L-smooth

Gradient descent
AdaGrad
Prodigy

Accelerated GD

AcceleGrad
UniXGrad
Newton method
Reg. Newton method
ExtraNewton method

Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k), Quadratic
Sublinear (1/k2)
Sublinear (1/lc)

One gradient

One gradient

One gradient

One gradient

One gradient

Two gradients
One gradient, one linear system
One gradient, one linear system
Two gradients, one linear system

L-smooth and p-strongly convex

Gradient descent

Accelerated GD

Newton method
Sophia

Linear (e)
Linear (e k)
Linear (e —F) Quadratlc
Linear (e~ ")

One gradient
One gradient
One gradient, one linear system

SVD dec., one linear system, one gradient

o Sophia stands for Second-order Clipped Stochastic Optimization [27].

o They introduce a novel Hessian estimator to stabilize the Newton's method in nonconvex landscapes.

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 41/ 44

Overview of adaptive methods

A non-exhaustive comparison:

ExtraNewton method

Sublinear (1/k%)

Assumptions on f Algorithm Convergence rate Setting
AdaGrad Sublinear (1/k) Unknown L
Prodigy Sublinear (1/k) Unknown ||z — zg ||
L-smooth AcceleGrad Sublinear (1/k2) Unknown L
UniXGrad Sublinear (1/k2) Unknown L

Unknown L, ||z — zq ||

o Notice that L and ||z — x¢ || are rarely known in real world problems.

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 42/ 44

The gradient method for non-convex optimization

Remarks: o Gradient descent does not match lower bounds in convex setting.

o How about non-convex problems?

Lower bounds for non-convex problems [7]

Assume f is L-gradient Lipschitz and non-convex. Then any first-order method must satisfy,

IVF6E =2 ().

Observations: o Gradient descent is optimal for non-convex problems, up to some constant factor!

o Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 44

Wrap up!

o The remaining slides in this lecture are advanced material.

o Lecture on Monday!

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 44

*Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 49

*Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when
> L is known but it is expensive to evaluate;

> The global constant L usually does not capture the local behavior of f or it is unknown.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 49

*Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when
> L is known but it is expensive to evaluate;

> The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search

At each iteration, we try to find a constant Lj that satisfies:
Ly
FOEHY) < Quy (L YR) 1= (%) + (VH5F), k= yF) 4+ ZE L - R 3,

1 0
Here: Lo > 0 is given (e.g., Lo := CW) for ¢ € (0, 1].

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 49

*How can we better adapt to the local geometry?

fx)

Global quadratic upper bound
Qulx,x")

IVi@) =Vl <Llly -zl

L is a global worst-case constant

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 49

EPFL

*How can we better adapt to the local geometry?

fx)

Local quadratic upper bound

Qre(x,x")

7(x") ox"! = arg min {f(xk) +(Vf(xF),x —x*) + %Hx - kaﬁ}

3 T k Ly k|2
IVf(@) =V <Lly—z| () < O + DT (=) 4+ T e — 3

L is a global worst-case constant > . applies only locally
=)
= =
T

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 49

EPFL

*Enhancements

Why do we need a restart strategy?

> AGD-pL requires knowledge of p and AGD-L does not have optimal convergence for strongly convex f.
> AGD is non-monotonic (i.e., f(x*t1) < f(x*) is not always satisfied).
> AGD has a periodic behavior, where the momentum depends on the local condition number k = L/ p.

> A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use
function values but other strategies are possible.

Restart strategies

1. O’'Donoghue - Candes’s strategy [42]: There are at least three options: Restart with fixed number of
iterations, restart based on objective values, and restart based on a gradient condition.

2. Giselsson-Boyd’s strategy [14]: Do not require ¢, = 1 and do not necessary require function evaluations.

. Fercog-Qu’s strategy [13]: Unconditional periodic restart for strongly convex functions. Do not require
the strong convexity parameter.

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 49 EPFL

*Example: Ridge regression

Case 1: n = 500, p = 2000, p = 0 Case 2: n = 500, p = 2000, p = 0.012,(ATA)
10"
Y AR .
AGD-R
§{: b
LS-Af

f(x) — f* in log-scale

0 1000 2000 3000 4000 5000 0 200 400 600 800 1000 1200 1400
Number of iterations Number of iterations

6
Time (s)

BHEIHE Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 49 EPFL

*AcceleGrad - Adaptive gradient + Accelerated gradient [26]

Motivation behind AcceleGrad

Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : xU € K, diameter D, weights {ay }xen, learning
rate {ny tren

1. Set y9 =20 =x0
2. For k=0,1,..., iterate

Tk = 1/Oé]€

xFtL = 2k + (1 — 73,)y", define g, := V f(x**1)
2Pt =Tl (2% — apmegr)

yEl = xFtl ey

Output : ¥° x Zi:ol oyttt

where Ik (y) = arg mingex (x — y,x —y) (projection onto K).

Remark: o This is essentially the MD + GD scheme [1], with an adaptive step size!

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 49

*AcceleGrad - Properties and convergence

Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms ||V f(x*)||2 < G2, i.e., f is G-Lipschitz
continuous. AcceleGrad uses the following weights and learning rate:

_k+1 2D

aE = 4 Nk = =
V& + T 02V e)2

o Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad

Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x* € K.
Define y* = (Zi:ol aiyiJrl)/(Zf;Ol a;). Then,

x€ERd k2

FG*) — min f(x) <O (DG+LD2 1og(LD/G)>

If f is only convex and G-Lipschitz, then

£5*) - min, 5x) < 0 (GD \flog i/ V)
x€ER

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 49

*Example: Logistic regression

Problem (Logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:
*o_ s - 1 - T
7= 1;[(17151 f(x) = - Z log (1 + exp (—bj (aj x+ ﬁ)))
j=1

Real data

> Real data: ada with A € R"*%, where n = 4781 data points, d = 122 features
> All methods are run for T' = 10000 iterations

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 49

*RMSProp - Adaptive gradient method with H; = Dy

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 49

*RMSProp - Adaptive gradient method with H; = Dy

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with H, = D, RMSProp
1. Set Qo =0. 1. Set Qo =0.
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
QF = QF ! 4 diag(Vf(x*))? QF =pQF !+ (1 - B)diag(Vf(x*))?
H, =./Q* H, =./Q*
xktl = xk _ oakH,;1Vf(xk) xktl = xk _ akH;1Vf(xk)

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 49

*RMSProp - Adaptive gradient method with H; = Dy

What could be improved over AdaGrad?

1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with H, = D,

1. Set Qo =0.

2. For k=0,1,..., iterate
QF =QF ! +diag(Vf(xF))?
H, =./Q*
xFtl = xk —oakH,:1Vf(xk)

o RMSProp uses weighted averaging with constant g

o Recent gradients have greater importance

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

RMSProp
1. Set Qo =0.
2. For k=0,1,..., iterate
QF =p8QF !+ (1 - pB)diag(VF(xF))?
H, = \/@
bt = xk oakH,:1Vf(xk)

Slide 9/ 49

*ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 49

*ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM

Input. Step size «, exponential decay rates 31, 82 € [0,1)

1. Set mgp,vg =0

2. For k=0,1,..., iterate
ge =V
mpg = fimg_1 + (1 — B1)gk < lst order estimate
Vi = fBovi_1+(1— ﬂg)gi < 2nd order estimate
iy, =m;/(1 - B¥) + Bias correction
Vi = vy/(1 — B5) + Bias correction
H; = Vi +e€

xFtl = x* — amy /Hy

Output : x*

(Every vector operation is an element-wise operation)

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 49

*Non-convergence of ADAM and a new method: AmsGrad

o It has been shown that ADAM may not converge for some objective functions [44].

o An ADAM alternative is proposed that is proved to be convergent [44].

AmsGrad

Input. Step size {oy, }rew, exponential decay rates {81k} ke, B2 € [0,1)

1. Set mg =0,vop=0and vo =0

2. For k=1,2,..., iterate
8k = G(kae)
my =1 ymyu_1 + (1 — B)8k < lst order estimate
Vi = favi_1+ (1 — Bg)gi < 2nd order estimate
Vi = max{Vi_1,Vg} and Vi = diag(Vg)
H, =/

Xk+1 = HX V"'(xk - akﬁlk/Hk)

Output : x*

where H%(y) = argminxex ((x —y), A(x —y)) (weighted projection onto K).

(Every vector operation is an element-wise operation)

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 49

The key ingredient of acceleration: (weighted) averaging

o One common theme we see in acceleration schemes is iterate averaging.
o It is important to compute averages with larger weights on recent iterates.

o Through UniXGrad/Extra-gradient framework, we could summarize the effect of averaging.

Convergence rate vs. averaging parameter

Let {x*11/2} be a sequence generated by UniXGrad algorithm, and define 0 < oy, < O(k) to be a
non-decreasing sequence of weights. It is ensured that,

k

=1

FEFFY2) — min f(x) <O
xeX

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 49

The key ingredient of acceleration: (weighted) averaging

o One common theme we see in acceleration schemes is iterate averaging.
o It is important to compute averages with larger weights on recent iterates.

o Through UniXGrad/Extra-gradient framework, we could summarize the effect of averaging.

Convergence rate vs. averaging parameter

Let {x*11/2} be a sequence generated by UniXGrad algorithm, and define 0 < oy, < O(k) to be a
non-decreasing sequence of weights. It is ensured that,

JEREFZ) = min f(x) <O |

i=1
Remarks: ; (- _ 1
o Uniform averaging: ay =1 =— O (E) convergence rate

1

o Weighted averaging: o = O(k) = O (k—Q) convergence rate

o In general: a, = O(kP) forp € [0,1] = O (kf’%)

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 49

*Newton method

e Fast (local) convergence but expensive per iteration cost

e Useful when warm-started near a solution

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 49

*Newton method

e Fast (local) convergence but expensive per iteration cost

e Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):

J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 49

*Newton method
e Fast (local) convergence but expensive per iteration cost
e Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):

J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the Hessian V2 f}, to be
positive definite:

VIaMph = ViR e pb=—(VEeN) T VAR

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 49

*Newton method

e Fast (local) convergence but expensive per iteration cost

o Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):
J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the Hessian V2 f}, to be
positive definite:

VIaMph = ViR e pb=—(VEeN) T VAR

> A unit step-size ap = 1 can be chosen near convergence:

xFtl = xk (VQf(xk))_1 VxR .

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 49

*Newton method
e Fast (local) convergence but expensive per iteration cost
e Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):

J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the Hessian V2 f}, to be
positive definite:

.\ —1
V)t = —VixF) e pF=—(VE(xF) Vi)
> A unit step-size o = 1 can be chosen near convergence:
xk+l — yk _ (VQf(xk:)) -1 Vf(xk:) .
Remark

> For f € .7-'%1 but f ¢ .FEL the Hessian may not always be positive definite.

ICLHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 49

*(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x* such that:
> V2f(x*) = pl for some pu > 0,
> IV2f(x) — V2f(y)|lam2 < M||x — y||2 for some constant M > 0 and all x,y € dom(f).

Moreover, assume the starting point x° € dom(f) is such that ||x° — x*||2 < %
Then, the Newton method iterates converge quadratically:

k 2
”xk:+1 _ X*” < AI”X B X*II2
2 (n— Mjx* —x*||2)

Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a p X p linear system at each
iteration, V2 f(xF)p* = —V f(xF)!

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 49

*Locally quadratic convergence of the Newton method-I

Newton's method local quadratic convergence - Proof [41]
Since V f(x*) = 0 we have

xk+1 _x* = xk _x* — (VZf(xk))—lvf(xk)
= (V2 (M) ™1 (V2P (e — x*) — (VI (x4) = VF(x*)))
By Taylor's theorem, we also have
1
ViR - Vi) = / V2 F(xF 4+ t(x* — xP))(xF — x*)dt
0
Combining the two above, we obtain

IV2F(xF)(xF —x*) = (VF(x") = V(x))|
1
= H/ (V2F(F) = V2 (P + t(x* — xF))) (xF — x*)dt
0

1
< / [V2F (%) = V2 (™ + 1" — xF)) || [[5F — x|t
0

1
1
< Ml =2 [bt = MR — x|

:) 0) epre
IHEETI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 49 EPFL

*Locally quadratic convergence of the Newton method-II

Newton's method local quadratic convergence - Proof [41].

> Recall
K —xt = (V2F() T (VAR (8 = x%) = (VF(x*) = VF(x)

192 5GK) ek — %) = (VF6) = VI < 5 Mk — x|

> Since V2 f(x*) is nonsingular, there must exist a radius 7 such that ||(V2f(x*))~!|| < 2|[(V2f(x*)) "1
for all x* with ||x* — x*|| < r.

> Substituting, we obtain
3 — x* || < MV £(*) T lx® — x*|12 = M — x|,

where M = M||(V2f(x*))".

> If we choose [|x° — x*|| < min(r, 1/(2]\7[)), we obtain by induction that the iterates x* converge
quadratically to x*.

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 49

2

*Example: Logistic regression - GD, AGD, AcceleGrad + NM

10? T i 10 i
—GD —GD
—AGD —AGD
0 —NM] ol —NM 1
10 AcceleGrad 10 AcceleGrad
|
—~ 10 —~10? E
) B
= =
10 104]
10 . : . 106 . . |
10° 10’ 102 10° 10t 102 107 10° 10’
iterations (t) time (sec)
Parameters

> Newton's method: maximum number of iterations 30, tolerance 10—6.
> For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance 10~6.

> Ground truth: Get a high accuracy approximation of x* and f* by applying Newton's method for 200
iterations.

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 49

*Approximating Hessian: Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

o Useful for f(x) :

:L:l fi(x) with n > p.

Main ingredients

Quasi-Newton direction: _
p" = —H_'Vf(x*) = -B,V/f(x").

> Matrix Hg, or its inverse By, undergoes low-rank updates:

> Rank 1 or 2 updates: famous Broyden—Fletcher-Goldfarb—Shanno (BFGS) algorithm.
> Limited memory BFGS (L-BFGS).

> Line-search: The step-size oy is chosen to satisfy the Wolfe conditions:
F(xF 4+ app®) < F(xF) + cron (Vf(xF), p¥) (sufficient decrease)
(VP + agp®), p*) > ca(VF(xF), p") (curvature condition)
with 0 < ¢; < ca < 1. For quasi-Newton methods, we usually use ¢; = 0.1.

> Convergence is guaranteed under the Dennis & Moré condition [10].

> For more details on quasi-Newton methods, see Nocedal&Wright's book [41].

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 49

*Quasi-Newton methods

How do we update Bj17

Suppose we have (note the coordinate change from p to p)
_ _ 1 _ _

my11(P) i= fFT) + (VM) p— xF 1) + B (Br1(p — xF), (B — x11))).

We require the gradient of my; to match the gradient of f at xk and xk+1

Vmpyq (xFH1) = VF(xF+1) as desired;
k

v

v

For x®, we have

mG+1(xk) = Vf(xk+1) ar Bk+1(xk — Xk+1)
which must be equal to V f(xF).

> Rearranging, we have that By ; must satisfy the secant equation

Bjis” =y*
where sF = xk+1 — x* and y* = Vf(xFt1) — V£(xF).

The secant equation can be satisfied with a positive definite matrix B only if (s®,y*) > 0, which is
guaranteed to hold if the step-size «, satisfies the Wolfe conditions.

\4

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 49

*Quasi-Newton methods

BFGS method [41] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hy = B;l. The update on the inverse B is found by solving

n}{in |H — Hy|lw subject to H=H” and Hy* = s* (5)
The solution is a rank-2 update of the matrix Hy:
Hy. = VIH, V, + nest (s,
where Vi, =T — npy*(sF)T.

> Initialization of Hp is an art. We can choose to set it to be an approximation of V2 f(x°) obtained by
finite differences or just a multiple of the identity matrix.

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 49

*Quasi-Newton methods

BFGS method [41] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hy = B;l. The update on the inverse B is found by solving

mHin |[H — Hy|lw subject to H=HT and Hy* = s* (5)

The solution is a rank-2 update of the matrix Hy:
Hy 1 = Vi H Vi +mes™(sM)T

where Vi, =T — n,y*(s®)T.

Theorem (Convergence of BFGS)

Let f € C2. Assume that the BFGS sequence {x*} converges to a point x* and ZZOZI |x*F — x*|| < co.

k

Assume also that V2 f(x) is Lipschitz continuous at x*. Then x* converges to x* at a superlinear rate.

Remarks

The proof shows that given the assumptions, the BFGS updates for By, satisfy the Dennis & Moré condition,
which in turn implies superlinear convergence.

ICLHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 49

*L-BFGS
Challenges for BFGS

> BFGS approach stores and applies a dense p X p matrix Hy.

> When p is very large, Hy can prohibitively expensive to store and apply.

L(imited memory)-BFGS

> Do not store Hy, but keep only the m most recent pairs {(s?,y?)}.
> Compute H; V f(x}) by performing a sequence of operations with s* and y*:

> Choose a temporary initial approximation Hz.

> Recursively apply Hy 1 = VZHka + nksk(sk)T

, m times starting from Hg:
By = (Vs VI) B (Vi Vi)

+ Nk—m (Vf—l o ‘VkamH) Skim(skim)T (Vi—m+1-+-Vg_1)
+ . e
+ 77]C7151c71(slc71)T
> From the previous expression, we can compute Hka(xk) recursively.
> Replace the oldest element in {s?, y*} with (s*,y*).
> From practical experience, m € (3,50) does the trick.
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 49

*L-BFGS: A quasi-Newton method

Procedure for computing H;,V f(xF)
0. Recall n, = 1/(y",sF).
1. q = Vf(xF).
2. Fori=k—-1,...,k—m
a; =ni(s’,a)

q =q-oay"

3. r:ng.

4. Fori=k—m,...,k—1
B =mnily'r) _
r =r+ (o —B)s"

5 H,Vf(xF)=r.

Remarks
> Apart from the step r = H%q, the algorithm requires only 4mp multiplications.
> |If Hg is chosen to be diagonal, another p multiplications are needed.

> An effective initial choice is Hg = v, I, where

(sF=1,y* 1)
(yk=1,yk=1)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 49 EPFL

Ve =

*L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x° and m > 0.
2. For k=0,1,...
2.a Choose Hg.
2.b Compute p¥ = —H;,V f(x*) using the previous algorithm.
2.c Set x¥t1 = x* 4 oy pF, where «, satisfies the Wolfe conditions.
if k > m, discard the pair {s*~™ p¥~™} from storage.
2.d Compute and store s¥ = xF+1 —x* y* = Vf(xFt1) - Vf(xF).

Warning

L-BFGS updates does not guarantee positive semidefiniteness of the variable metric Hy in contrast to BFGS.

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 49

*Example: Logistic regression
10

3

- numerical results

10
——Newton —Newton
5 Quasi-Newton with BFGS 5 Quasi-Newton with BFGS
10° Quasi-Newton with L-BFGS 107 Quasi-Newton with L-BEGS
Accelerated gradient method - Accelerated gradient method
10 - - Line Search AGD with adaptive restart|_ 10! - - Line Search AGD with adaptive restart

10° 10' 102 10° 10* 102 107! 10° 10! 107
Number of iterations Time (s)

Parameters

> For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200, tolerance 10=6. L-BFGS
memory m = 50.

> For accelerated gradient method: maximum number of iterations 20000, tolerance 10-6.

> Ground truth: Get a high accuracy approximation of x*, f* by running Newton's method for 200 iterations.

LOHEERHE Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 49

*ExtraNewton: Adaptive Newton’s method with fast rates

Question: o Under what minimal regularity conditions, can we achieve faster rates beyond O(1/k?)?

Answer: o Higher-order smoothness

Second-order smoothness

If the objective f has L-Lipschitz continuous Hessian, then

o~

f(X)*f(Y)*Wf(.Y),X*W*%(VQf(Y)(X*Y)vxfw < <lx -yl

Question: o How can we exploit the higher-order smoothness?

Answer: o Proximal Point method (PPM) + Newton-type updates!

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 49

*Better approximation, better rates
o The extra-gradient method approximates PPM through the “extrapolation” sequence x*+1/2 [34]
Higher-order information for better approximation

> Extra-gradient approximates the “next” iterate, x*T1, using first-order information.

> Can we achieve a better estimate x**1/2 using second-order information? YES!

ExtraNewton [2]

1. Set x = 20 = x0. Define apy = k2 and Ay = Y1 ay,

2. For k=0,1,..., iterate

>

—1
xkH+1/2 = 3k _ oy, (flk- V2 f(xR) + I) VI

k
XL = xF — oy, VF(xFH1/2)

k k=1 it1/2
> %k = XX +Z7;c:1 @ix ,

@
Zi:l v

v

k Lit1/2
gk+1/2 — Doy X

k
=1

)
a;

bnk:

ILHEIN Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 49

\/1+Zf;f(ak>2 V5 (=R H1/2) =0 f (k) =02 f (k) (RF+H1/2 —xk) |2

*Convergence of ExtraNewton

Theorem ([2])
Let the sequence x¥t1/2 pe generated by ExtraNewton. Under the assumptions
> f has L-Lipschitz Hessian (not Lipschitz smooth),
> D = maxx,yex [|x — ¥l
ExtraNewton guarantees that
L (%4 + D72)
F(&FY/2) — min f(x) < O

xeX - k3 ’
k i+1/2
. ;X
where xF+1/2 = 221:%7‘ is the average sequence.
i=1 i
Remarks: o The first globally convergent Newton method without a line-search procedure.

o The algorithm does not need to know the diameter D.

o ExtraNewton is also noise-adaptive; continuously adapts to noise in oracles.

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 49

*Logistic regression: ExtraNewton vs. adaptive first-order methods

o Logistic regression with regularization using ala dataset.

o Comparison against first-order adaptive methods.

e’ — GD
1051 —— AdaGrad
—— AcceleGrad
UniXGrad
10774 —— ExtraNewton
Newton

10° 10! 102 103 10*
oracle calls

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 49

*Lower bounds for higher-order smoothness?

o Higher-order methods and the limits of their performance has received great attention lately.

o Beyond Lipschitz smoothness, we can achieve improving sublinear rates.

Theorem ([40])

Consider that f is p-th order smooth (equivalently has Lipschitz continuous p + 1-th order derivative). Let xk
be generated by some p-th order iterative tensor method. Then, it holds that

) 1
. AN . — O —— .
oSilgkf(x) xeRd F(x) (kg’éﬂ)

Remarks: o AGD matches the lower bound for 1-st order smooth function.

o The lower bound for second-order methods evaluates to O (ﬁ)

o Monteiro-Svaiter’s accelerated Newton method [35] and a recent work [8] archive this rate.

o In practice, all of them seem slower than ExtraNewton.

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 49

*Logistic regression: ExtraNewton vs. second-order methods

o Logistic regression with regularization using a9a dataset.

o Comparison against second-order methods with matching and optimal rates.

Logistic Regression - Dataset:a9a - Deterministic - Second-order Methods

o Legend:
> Optimal Monteiro-Svaiter [8],
> Cubic regularization of Newton's method [38],

> Accelerated cubic regularization of Newton's
methods [37].

—— Newton
107°y —— ExtraNewton
Bl Opt Monteiro-Svaiter
10 —— Cubic Reg
—— Acc Cubic Re
1078 I 9

10° 10! 102 103
Linear system solutions

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 49

*Efficient Hessian estimation for Sophia

o Sophia uses a diagonal Hessian pre-conditioner, which directly adjusts the update size of
different parameters according to their curvatures.

o To mitigate the overhead, it only estimates the Hessian every n steps (unlike e.g. AdaGrad
where it is done every step).

o Two efficient diagonal Hessian estimators:

Hutchinson(x) [17, 46, 52]

1. Draw u from AN(0,1;)
2. Output u ®© V((V f(x), u))

Gauss-Newton-Bartlett(x) [43, 47, 5]
1. Draw a mini-batch of input {a;}E |
2. Sample b; ~ softmax(hx(a;)), Vi € [B]
3. Caleulate § = V(1/B Y 1 | L(hx(ai), b;))
4. Output B-§ O g
Remarks: o Hutchinson's estimator is unbiased and does not assume any structure of the loss, but
requires Hessian-vector products

o The G.N.B. estimator always gives a positive semi-definite diagonal Hessian estimate

ILHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 49

*Examples of step size schedulers with details and applications

o Common scheduler formulas used to define the warm-up, runtime or decay phase:
o Linear scheduler: s, = [(1 — %) Cstart + %Cend]y where cstart, Cend > 0
o Exponential scheduler: s, = v*, where v > 0
o Step scheduler: s = ,},LH where v, 7 > 0

(& if k 2 kmin

o Constant (simplest two-phase) scheduler: s = , where kmin,c >0

1, otherwise

2
o Cyclical scheduler [49] - multiple cycles of warm-up then decay, common in deep computer vision models and
adversarial training research
o WSD [16], Power [48] schedulers - three-phase step size sequences powerful in LLM pre-training

o Cosine annealing scheduler [29]: aj = ar + 22T (1 + cos (%ﬂ)), where 0 < ar < ag

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 49

ScheduleFree numerical evidence

CIFAR-10 (WRN-16-8)

CIFAR-100 (DenseNet)

95

Test Accuracy (%)

i

—— Schedule-Free (96.03% SE 0.04)
Step-Wise Schedule (95.59% SE 0.03)
—— Cosine Schedule (95.73% SE 0.04)

Il —— Schedule-Free (78.71% SE 0.06)

50 - Step-Wise Schedule (76.41% SE 0.14)
I —— Cosine Schedule (77.41% SE 0.09)

I

Test Accuracy (%)
2
E
L

T T T T T T
0 50 100 150 200 250 300

SVHN (ResNet-3-96)

T T T T T

0 50 100 150 200 250 300
Epoch

ILSVRC 2012 ImageNet (ResNet-50)

98
97
96

Test Accuracy (%)

—— Schedule-Free (98.40% SE 0.01)
—— Cosine Schedule (98.27% SE 0.02)
Step-Wise Schedule (98.20% SE 0.01)

- — Schedule-Free (76.90% SE 0.03)
—— Cosine Schedule (76.90% SE 0.06)
Step-Wise Schedule (76.49% SE 0.07)

Test Accuracy (%)
P
2
L

Test Accuracy (%)
I

T T T T T T T
0 50 100 150 200 250 300

MAE ImageNet Finetune (VIT)

40 T T T T T
0 20 40 60 80 100
Epoch
OpenWebText (GPT-2 124M)

32
L, 31
= 30+
if —— Schedule-Free (8354 SE0.03) |~ 2.9 -|
if Cosine Schedule (83.52 SE 0.02)
T T T T T T 28— T
0 20 40 60 80 100 0 200000 400000 600000
Epoch Step

Figure: ScheduleFree experiments. Credit: [9].

ons@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 33/ 49

EPFL

*Tensor methods |

o Let us investigate a generic method for handling p-th order smooth problems using p-th order derivatives.
Taylor polynomial
Let us focus on the Taylor polynomial expansion for a function f(x) of order p at x:
1 . .
Tp(y) = F() +) =Dy —]',
i=1
> D?f(x)[h]® is the directional derivative along h such that
D'f(x)[h] = (Vf(x),h), and D?f(x)[h]* = (V?f(x)h,h),

> p-th order smoothness:

— Tp(x, x — PJrl7
lf(y) = Tp(x¥)| < CEEI +1) lIx— vl
> Regularized Taylor polynomial of order p at x:
pH kp+1
Dl _ 7 _ p .
(xi ﬂm+§ Xy~ + Pl =

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 49

*Tensor methods |
o Let us investigate a generic method for handling p-th order smooth problems using p-th order derivatives.
Taylor polynomial
Let us focus on the Taylor polynomial expansion for a function f(x) of order p at x:
1 . .
Tp(y) = F() +) =Dy —]',
i=1
> D?f(x)[h]® is the directional derivative along h such that
D'f(x)[h] = (Vf(x),h), and D?f(x)[h]* = (V?f(x)h,h),

> p-th order smoothness:

F) = Tye)] < ==y,

> Regularized Taylor polynomial of order p at x:

pH kp+1
Dl _ 7 _ p .
e ﬂm+§)y = + B e =]
Remark: o If H > Ly, then, f(y) < Tp(x;y) and Tp(x;y) is convex. We will assume this condition!

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 49

*Tensor methods 11

o Recall regularized Taylor polynomial of order p at x*:

X; x =D'f(x)]ly — x x — xF||PFL.
Ty (x;y) = f(x) +Z Tel =+ +1>"' I
=1
Approach: o Use prH(xk;x) as the new majorizer, and minimize to obtain x*+1
Tensor method [40]
1. Choose x¥ = y¥ € dom (f)
2. For k=0,1,..., iterate
xFt1 = arg min T}, g (x*;x)
x€ERd

Theorem (Convergence of p-th order tensor method [40])
Consider f to be p-th order smooth and let {x’“} be generated by the Tensor method. Then, it holds that

FxF) - i) S O (tip) :

ILHEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 49

References |

[1] Zeyuan Allen-Zhu and Lorenzo Orecchia.
Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent.
In Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS '17, 2017.
Full version available at http://arxiv.org/abs/1407.1537.
(Cited on page 65.)

[2] Kimon Antonakopoulos, Ali Kavis, and Volkan Cevher.
A first approach to universal second-order acceleration for convex minimization.
Advances In Neural Information Processing Systems 35 (Nips 2022), (CONF), 2022.
(Cited on pages 38, 47, 94, and 95.)

[3] Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Levy, and Panayotis Mertikopoulos.
UnderGrad: A universal black-box optimization method with almost dimension-free convergence rate
guarantees.

In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 772-795. PMLR, 17-23 Jul 2022.

(Cited on page 38.)

\HNET{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 49 EPFL

http://arxiv.org/abs/1407.1537

References ||

[4] Hedy Attouch and Juan Peypouquet.
The Rate of Convergence of Nesterov's Accelerated Forward-Backward Method is Actually Faster Than
$1/k™28.
SIAM Journal on Optimization, 26(3):1824-1834, January 2016.
Publisher: Society for Industrial and Applied Mathematics.
(Cited on page 5.)

[5] M. S. Bartlett.
Approximate Confidence Intervals.
Biometrika, 40(1/2):12-19, 1953.
(Cited on page 99.)

[6] Yoshua Bengio.
Practical recommendations for gradient-based training of deep architectures, September 2012.
(Cited on page 44.)

[7] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford.
Lower bounds for finding stationary points i.
arXiv preprint arXiv:1710.11606, 2017.
(Cited on page 56.)

ILHELI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 49

EPFL

References Il

[8] Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford.
Optimal and adaptive monteiro-svaiter acceleration.
CoRR, abs/2205.15371, 2022.
(Cited on pages 97 and 98.)

[9

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky.

The Road Less Scheduled, August 2024.

arXiv:2405.15682 [cs, math, stat].

(Cited on pages 46 and 101.)

[10] JE Dennis and Jorge J Moré.
A characterization of superlinear convergence and its application to quasi-newton methods.
Math. Comp., 28(126):549-560, 1974.
(Cited on page 85.)

[11] Jelena Diakonikolas and Lorenzo Orecchia.
Accelerated extra-gradient descent: A novel accelerated first-order method.
2018.
(Cited on pages 15 and 16.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 49 EPFL

References IV

[12] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic optimization.
J. Mach. Learn. Res., 12(null):2121-2159, July 2011.
(Cited on pages 26 and 27.)

[13] Olivier Fercoq and Zheng Qu.
Restarting accelerated gradient methods with a rough strong convexity estimate.
arXiv preprint arXiv:1609.07358, 2016.
(Cited on page 63.)

[14] P. Giselsson and S. Boyd.
Monotonicity and Restart in Fast Gradient Methods.
In IEEE Conf. Decision and Control, Los Angeles, USA, December 2014. CDC.
(Cited on page 63.)

[15] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, April 2018.
(Cited on page 44.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 49 EPFL

References V

[16] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang, Yuan Yao, Chenyang
Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and
Maosong Sun.

MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies, June 2024.
(Cited on page 100.)

[17] M.F. Hutchinson.
A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines.
Communications in Statistics - Simulation and Computation, 19(2):433-450, January 1990.
(Cited on page 99.)

[18] Alexander Hagele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin Jaggi.
Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations, May 2024.
(Cited on page 45.)

[19] Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher.
Unixgrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization.
Advances In Neural Information Processing Systems 32 (Nips 2019), 32(CONF), 2019.
(Cited on pages 36 and 47.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 49 EPFL

References VI

[20] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.
(Cited on pages 26 and 27.)

[21] Galina M Korpelevich.
The extragradient method for finding saddle points and other problems.
Matecon, 12:747-756, 1976.
(Cited on pages 15 and 16.)

[22] Guanghui Lan.
An optimal method for stochastic composite optimization.
Mathematical Programming, 133(1):365-397, June 2012.
(Cited on page 46.)

[23] Guillaume Leclerc and Aleksander Madry.
The Two Regimes of Deep Network Training, February 2020.
arXiv:2002.10376 [cs, stat].
(Cited on page 44.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 41/ 49 EPFL

References VII

[24] Kenneth Levenberg.
A method for the solution of certain non — linear problems in least squares.
Quarterly of Applied Mathematics, 2:164-168, 1944.
(Cited on pages 39 and 40.)

[25] Kfir Levy.
Online to offline conversions, universality and adaptive minibatch sizes.
In Advances in Neural Information Processing Systems, pages 1613-1622, 2017.
(Cited on pages 28, 29, and 33.)

[26] Kfir Levy, Alp Yurtsever, and Volkan Cevher.
Online adaptive methods, universality and acceleration.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018.
(Cited on pages 34 and 65.)

[27] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma.
Sophia: A scalable stochastic second-order optimizer for language model pre-training.
arXiv preprint arXiv:2305.14342, 2023.
(Cited on pages 50, 51, and 54.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 49 EPFL

References VIII

[28] Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma.
Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024.
(Cited on page 41.)

[29] llya Loshchilov and Frank Hutter.
SGDR: Stochastic gradient descent with warm restarts.
In International Conference on Learning Representations, 2017.
(Cited on page 100.)

[30] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten.
Exploring the Limits of Weakly Supervised Pretraining, May 2018.
(Cited on page 45.)

[31] Donald W. Marquardt.
An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431-441, 1963.
(Cited on pages 39 and 40.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 49 EPFL

References IX

[32] H. Brendan McMahan and Matthew Streeter.
Adaptive Bound Optimization for Online Convex Optimization.
In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010.
(Cited on pages 26, 27, 28, and 29.)

[33] Konstantin Mishchenko and Aaron Defazio.
Prodigy: An expeditiously adaptive parameter-free learner.
arXiv preprint arXiv:2306.06101, 2023.
(Cited on pages 50, 51, and 53.)

[34] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil.
A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal
point approach.
In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
1497-1507. PMLR, 26-28 Aug 2020.

(Cited on page 94.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 49 EPFL

References X

[35] Renato D. C. Monteiro and B. F. Svaiter.
An accelerated hybrid proximal extragradient method for convex optimization and its implications to
second-order methods.
SIAM Journal on Optimization, 23(2):1092-1125, 2013.
(Cited on page 97.)

[36] Y. Nesterov.
Introductory lectures on convex optimization: A basic course, volume 87.
Springer, 2004.
(Cited on pages 5, 11, and 12.)

[37] Y. Nesterov.
Accelerating the cubic regularization of Newton's method on convex problems.
Math. Program., 112:159-181, 2008.
(Cited on page 98.)

[38] Y. Nesterov and B.T. Polyak.
Cubic regularization of newton method and its global performance.
Math. Program., 108(1):177-205, 2006.
(Cited on page 98.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 49 EPFL

References Xl

[39] Yu. E. Nesterov.
A method of solving a convex programming problem with convergence rate O(1/k?).
Soviet Math. Dokl., 27(2):372-376, 1983.
(Cited on page 14.)

[40] Yurii Nesterov.
Implementable tensor methods in unconstrained convex optimization.
Math. Program., 186(1-2):157-183, mar 2021.
(Cited on pages 97 and 104.)

[41] J. Nocedal and S. Wright.
Numerical Optimization.
Springer Series in Operations Research and Financial Engineering. Springer New York, 2006.
(Cited on pages 82, 83, 85, 87, and 88.)

[42] Brendan O’'donoghue and Emmanuel Candes.
Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715-732, 2015.
(Cited on page 63.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 49 EPFL

References XlI

[43] J. M. Ortega and W. C. Rheinboldt.
Iterative Solution of Nonlinear Equations in Several Variables.
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, January 2000.
(Cited on page 99.)

[44] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar.
On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.
(Cited on page 73.)

[45] Anton Rodomanov.
Quasi-Newton methods with provable efficiency guarantees.
PhD thesis, UCL - Université Catholique de Louvain, 2022.
(Cited on pages 39 and 40.)

[46] Farbod Roosta-Khorasani and Uri Ascher.
Improved Bounds on Sample Size for Implicit Matrix Trace Estimators.
Foundations of Computational Mathematics, 15(5):1187-1212, October 2015.
(Cited on page 99.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 49 EPFL

References Xl

[47] Nicol N. Schraudolph.
Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent.
Neural Computation, 14(7):1723-1738, July 2002.
(Cited on page 99.)

[48] Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad,
Adriana Meza Soria, David D. Cox, and Rameswar Panda.
Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler, September 2024.
(Cited on pages 45 and 100.)

[49] Leslie N. Smith.
Cyclical Learning Rates for Training Neural Networks.
In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 464—472, March 2017.
(Cited on page 100.)

[50] Matthew J. Streeter and H. Brendan McMahan.
Less Regret via Online Conditioning.
CoRR, abs/1002.4862, 2010.
arXiv: 1002.4862.
(Cited on pages 30, 31, and 32.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 48/ 49 EPFL

References XIV

[51] Tijmen Tieleman and Geoffrey Hinton.
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2):26-31, 2012.
(Cited on pages 26 and 27.)

[52] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10665-10673, May 2021.
(Cited on page 99.)

[53] Moslem Zamani and Francgois Glineur.
Exact convergence rate of the last iterate in subgradient methods, July 2023.
(Cited on page 45.)

[54] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer.
Scaling Vision Transformers, June 2022.
(Cited on page 45.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 49/ 49 EPFL

	Appendix

