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Recall: Gradient descent

Problem (Unconstrained convex problem)

Consider the following convex minimization problem:

"= min f(x)

XERP

> f is a convex function that is
> proper : Vx € RP, —oo < f(x) and there exists x € RP such that f(z) < +oo.
> closed : The epigraph epif = {(x,t) € RPT!, f(x) < t} is closed.
> smooth : f is differentiable and its gradient V f is L-Lipschitz.

> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.

Gradient descent (GD)

Choose a starting point x° and iterate
xFH = xF 0, V(xF)

where ay, is a step-size to be chosen so that x* converges to x*.
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Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

f is L-smooth,

f is L-smooth and p-strongly convex, «

f is L-smooth and p-strongly convex,

1, k_x*
T 7k - )

o=
2
=——: |Ix* —x*||2
L+p
1
a=g: X —x

Note that £=£ = £=1 \here k := % is the condition number of V2 £.

L+4p k+1"
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Information theoretic lower bounds [36]

Question: o What is the best achievable rate for a first-order method?
f € Fz°: oo-differentiable and L-smooth

It is possible to construct a function in F7°, for which any first order method must satisfy

3L
5 [x° — x*||2 forall k < (p—1)/2.

f(xk)*f(X*) > m

| € Fr,: oo-differentiable, L-smooth and y-strongly convex
It is possible to construct a function in ]-'EOM, for which any first order method must satisfy

kE_ o * \/Zi\/ﬂ § 0 _ *
[[x* —x*[]2 > Vit VR [lx” — x|z

Observations: o Note that (1) only holds if k is less than p, if K > p we can do better [4]
o Gradient descent is O(1/k) for F¢°

o It is also slower for ]—'EOH, hence it does not achieve the lower bounds!
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Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?
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Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.
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Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x* = y% € dom (f) and ¢¢ := 1.
2. For k=0,1,..., iterate

xEHL = yh — V(M)

the1 = (14 /4t +1)/2

k+l k41 4 Ge=D) k1 _ Lk
y XF 4 e (x x¥)
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Accelerated gradient descent algorithm
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Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?
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Accelerated Gradient algorithm for L-smooth
(AGD-L)
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Accelerated Gradient algorithm for L-smooth
and p-strongly convex (AGD-uL)

1. Choose xY = y¥ € dom (f)
2. For k=0,1,..., iterate

xFHL = yh — 1V F(y*)

yk+1 — xk+1 + oc(xk+1 _ xk)
V- i
VLt i

where a =
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Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth Accelerated Gradient algorithm for L-smooth
(AGD-L) and p-strongly convex (AGD-pL)
1. Choose xY = y¥ € dom (f)
1. Set x° = y° € dom (f) and tg := 1. 2. For k=0,1,..., iterate
2. For k=0,1,..., iterate
k+1 — vk 1 k
k41 _ ok _ 1 k X =y*" - V")
x =y LVJ;(Y ) { yhHl = xh+l ia(xk+l — xk)
Bt =0+ 4fk Jr1 b/ where o = R/
Remark: o AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

o The momentum x*+1
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— x* acts like an “extra-gradient.”
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Global convergence of AGD [36]

Theorem (f is convex with Lipschitz gradient)

If f is L-smooth or L-smooth and p-strongly convex, the sequence {xk }r>0 generated by AGD-L satisfies

4L
FF) = < m”xo—’(*”gv Vk > 0. (2)
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Global convergence of AGD [36]

Theorem (f is convex with Lipschitz gradient)

If f is L-smooth or L-smooth and p-strongly convex, the sequence {xk }r>0 generated by AGD-L satisfies

4L
FF) = < m”xo—’(*”gv Vk > 0. (2)

AGD-L is optimal for L-smooth but NOT for L-smooth and p-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)

If f is L-smooth and p-strongly convex, the sequence {xk}kzo generated by AGD-uL satisfies

k
56 = s 2 (1= E) 10 - %18, v 20 (3)

k
2L 2
b = x*ll2 < 4/ = (1= 4/5) 7 Ix° = x*|l2, VE > 0. (4)
o L

Observations: o AGD-L's iterates are not guaranteed to converge in general.
o AGD-L does not have a linear convergence rate for L-smooth and p-strongly convex.
o AGD-puL does, but needs to know p.
o AGD achieves the iteration lowerbound within a constant!
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Example: Ridge regression
Case n = 500,p = 2000, p = 0 Case 2: n = 500, p = 2000, p = 0.01)\,(ATA)

1 bound

= = =Theoretical bound AGD
——Theoretical bound AGD-uL

aD
X GD-yiL

VA8
AGD-pL

B,

f(x) = f* in log-scale
5
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Hidden gems in AGD: The method of similar triangles

o There are several variants of Nesterov's AGD [39].

<k Accelerated Gradient Descent Algorithm
,'.‘\‘ 1. Set x = yU =20 € dom (f) and tg := 1.
'.' . 2. For k=0,1,..., iterate
:' \\ 1 %4-1

yk+1','_;\xk+1 yhtl = (1— tk+1)xk 4 thtlgh

\“ xktl = yhtl _ Ly f(yh+l)
s L1 k1l = xk+1 4 (tklﬂ _ 1) (xF+1 — xk)

o Triangles (x¥,y*+1 x*+1) and (x#,2* zFt1) are “similar.”
o This geometric construction via averaging is typical of accelerated methods.
o Sequences (yk+1,zk+1) enable acceleration by estimating a lower-bound to the problem.

Remarks:
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The extra-gradient algorithm
o Recall: The momentum-term x**1 — x* in AGD acts like an “extra-gradient.”

o However, the name extra-gradient is reserved for another algorithm approximating the proximal-point method:

xk+1 — xk _ ,yvf(karl) (PPM)
Extra-gradient algorithm [21]
1. Choose xY € dom ()
2. For k=0,1,..., iterate
xk+1/2 — xk _ ,va(xk)
xk+1 — Xk _ ,va(xk+1/2)
> Picky < 1.

> Define xk11/2 = Zle xi+1/2 [k
> f(ikJrl/Q) —fx") <0 (%)
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The extra-gradient algorithm
o Recall: The momentum-term x**1 — x* in AGD acts like an “extra-gradient.”

o However, the name extra-gradient is reserved for another algorithm approximating the proximal-point method:

xk+1 — xk _ ,yvf(karl) (PPM)
Extra-gradient algorithm [21] Accelerated extra-gradient algorithm [11]
1. Choose x¥ € dom (f) 1.Set x0 =27 = xV
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
k4172 _ ok _ <k
xk+1/2 = xk YV f(x*) { Xk+1 — xk ak’ygf()-(k-)ﬂ/z
xEHL gk V(xR F1/2) x =x" —apyVf(x )
> Pick v < % > Pick v < % and define oy, = O(k)
k k=1 it1/2 k Lit+1/2
> Define xE+1/2 = S8 xit1/2) > gk = 2 +ng;1 N 721::1:”‘
Zi:l i Zi:l i
> fEM2) — f(x) <O (}) > FEM2) - f(x*) <0 (%) [11]
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Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates

Gradient descent:
: k * 2L 0 * 12
fis L-smooth, a= —: F(x7) = f(x) < —[|x" —x*[|3.
Accelerated Gradient Descent:

4L

fis L-smooth, o= —: F(xF) = fa*) < 72“)(0 —x*||2, VE > 0.
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Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates

Gradient descent:
: k * 2L 0 * 12
fis L-smooth, a= —: fx) — f(x*) < —||Ix° —x*|5.
Accelerated Gradient Descent:

fis L-smooth, o= —: F(xF) = fa*) < 72“)(0 —x*||2, VE > 0.

Observations: o We require a; to be a function of L.
o It may not be possible to know exactly the Lipschitz constant.

o Adaptation to local geometry — may lead to larger steps.
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Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.
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Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

Newton method

Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.
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How can we better adapt to the local geometry?

fx)

Global quadratic upper bound
Qulx,x")

7(xk) exitl = arg min {f(xk) +(Vf(xF),x —x*) + %Hx - xl‘Hﬁ}

IV/ (@) = VIl < Llly — = zzT

L is a global worst-case constant

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 44 EPFL



How can we better adapt to the local geometry?

fx)

Local quadratic upper bound

Qre(x,x")

7(x") o x" 1 = arg min {f(xk) F (V) x —x") + %Hx — kaﬁ}

: T k Ly k)2
IVf(z) - Vi) < Llly — 2] 22 60 < 70 + VIM (e = xb) + T [x = x|

L is a global worst-case constant > . applies only locally
=)
= =
Z1

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 44

EPFL



How can we better adapt to the local geometry?

fx)

(") 1
f(x) < f(xF) + Vf(xh 3’(x—¥/'1+;\\x’xl i
3 f
T
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

1. Choose xV € RP as a starting point and Hy > 0.
2. For k=0,1,---, perform:

dF = —H, 'V f(x),
xktl = xF 4 apdF,

where ay, € (0,1] is a given step size.
3. Update Hy,; > 0 if necessary.
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

dk
xk+1

1. Choose xV € RP as a starting point and Hy > 0.
2. For k=0,1,---, perform:

= 7H;1Vf(xk),
= xF + o d¥,

where ay, € (0,1] is a given step size.
3. Update Hy,; > 0 if necessary.

Common choices of the variable metric Hy,

> Hj, = Ml =
> Hj := Dy (a positive diagonal matrix) =
> Hj = V2 f(x) —
> Hy ~ V2f(x) =
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gradient descent method.
adaptive gradient methods.
Newton method.

quasi-Newton method.
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Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H;. as a function of past gradient information.
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Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H;. as a function of past gradient information.

o Roughly speaking, Hy, = function(V f(x'), Vf(x2?), -, Vf(x*))

o Some well-known examples:

AdaGrad (Scalar) [12, 32]

By = /35, (V6) TV (x0)

*RmsProp [51]

Hj = /BHj_1 + (1 — B)diag(V f(xF))2

*ADAM [20]
Hj, = BHj_1 + (1 — B)diag(V f(x*))2

H;, = /H/(1 - BF)
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AdaGrad - Adaptive gradient method with H;, = A, I [32]

o If Hr = AxI, it becomes gradient descent method with adaptive step-size ';f—:

How step-size adapts?

If gradient ||V f(x")|| is large/small — AdaGrad adjusts step-size aj, /Ay, smaller/larger

Adaptive gradient descent (AdaGrad with H;, = )\, I) [25]
1. Set Q0 =0.
2. For k=0,1,..., iterate

Q* QM+ VM2

H, =./QFI

xkHl = xk — akHI:lVf(xk)
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AdaGrad - Adaptive gradient method with H;, = A, I [32]

o If Hr = AxI, it becomes gradient descent method with adaptive step-size ';f—:

How step-size adapts?

If gradient ||V f(x")|| is large/small — AdaGrad adjusts step-size aj, /Ay, smaller/larger

Adaptive gradient descent (AdaGrad with H;, = )\, I) [25]
1. Set Q0 =0.
2. For k=0,1,..., iterate

QF  =QM !+ |VrEh)?

H, =./QFI

xkHl = xk — akHI:lVf(xk)

Adaptation through first-order information

> When Hj, = A\ I, AdaGrad estimates local geometry through gradient norms.

> Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.
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AdaGrad - Adaptive gradient method with H;, = D, [50]

Adaptation strategy with a positive diagonal matrix Dy,

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

Local quadratic upper bound

Qr, (x,x")

s o x" !l = arg Ill’}]l {f(x“) + (V") x —x*) + %Hx — kag}

1

[Vf(@) ~ Vi) < Lily -zl @ f00) < J) + VI (e = x) + 3

=X

L is a global worst-case constant applies only locally
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AdaGrad - Adaptive gradient method with H;, = D, [50]
o Suppose Hj, is diagonal,

>\k,1 0
Hk =

0 Ak,d
o For each coordinate 7, we have different step-size a2

is the step-size.
Ak, p

Adaptive gradient descent(AdaGrad with Hy = D)

1. Set QU =0.

2. For k=0,1,..., iterate
Q¥ =QF ! +diag(Vf(xF))?
H, = \/@
R akH;1Vf(xk)
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AdaGrad - Adaptive gradient method with H;, = D, [50]
o Suppose Hj, is diagonal,

>\k,1 0
Hk =

0 Ak,d
o For each coordinate 7, we have different step-size a2

is the step-size.
Ak, p

Adaptive gradient descent(AdaGrad with Hy = D)

1. Set QU =0.

2. For k=0,1,..., iterate
Q¥ =QF ! +diag(Vf(xF))?
H, = \/@
R akH;1Vf(xk)

Adaptation across each coordinate
> When Hj; = Dy, we adapt across each coordinate individually.
> Essentially, we have a finer treatment of the function we want to optimize.
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Convergence rate for AdaGrad

Original convergence for a different function class

Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT L-smooth). Let

D= max Ix* — x*||l2 and oy = %. Define x* = (Zle x%)/k. Then,

IN

k
FER) = 1) < 34 [202 3 IV A6
i=1

A more familiar convergence result [25]
Assume f is L-smooth, D = max ||x* — x*||2 and oy = %. Define x* = (Zf_l x?)/k. Then,
€ =

4D2L
<

k
FE) = F) < = [2D2 ) IVFGF < =
=1

Bl
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AcceleGrad - Adaptive gradient + Accelerated gradient [26]
Motivation behind AcceleGrad
Is it possible to achieve acceleration for when f is L-smooth, without knowing the Lipschitz constant?

o The answer is yes! AcceleGrad combines an accelerated algorithm with AdaGrad step-size.

o A rough comparison of the accelerated methods:

Accelerated Gradient algorithm AcceleGrad (Accelerated Adaptive Gradient Method)
1. Choose x¥ = y0 € dom () 1. Set yU =20 =0
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
{ xk+1 =ykfonf(yk) T}i+1 = :[/C;i]C .
yRPL =P g (P — xP) X (1= my?
2Tl = 2P — oy V f (xP)
YR =M g Y (xF)

> for some proper choice of a and yg41. > for ap = (k +1)/4, and

> o = - 2D :
\/GZ+Zi:0<ak)2HVf<xk>u2
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Convergence of AcceleGrad

Theorem (Convergence rate of AcceleGrad)

Let the sequence {y*} be generated by AcceleGrad. Under the assumptions
> f is convex and L-smooth,
> lterates are bounded, such that D = max,  cpa [[x —y
> Gradient norms are bounded ||V f(x)| < G,

AcceleGrad has the following guarantee:

1

fF") — min f(x) <O
x€eRd

(DG + LD?log(LD/G) >
k2 ’

where §* = (Zf:_ol akyk+1)/(2f:_()l ay) is the average iterate.

Remarks: o Accelegrad is a nearly “universal” algorithm (more on this later!)
o We still need a bound on G and D to run the algorithm.
o It cannot handle constraints.
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UniXGrad - Accelerated Extra-gradient (!) algorithm for constraints [19]

o Universal extra-gradient method offers improvements over AcceleGrad

Extra-Gradient algorithm UniXGrad
1. Choose xY € dom (f) 1.Set x0 =2z = xY
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
xkH1/2 = 3k _ oV f(xk) xEHL/2 =Ty (x* — apme V(X))
xk+1 —xk _ och(xk+1/2) xk+1 =My (xk — aknka()?kJrl/Q))

> Pick a < 1/L.

ILHEEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

> I1x(x) is Euclidean projection onto X and o = k

axitl/2

k .
> S(k — zkzl
.
Dl

k Lit1/2
gh+1/2 — Zi:l Xix

>
o
i=1 "

bnk:
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Convergence of UniXGrad

Theorem (Convergence rate of UniXGrad)
Let the sequence {xk+1/2} be generated by UniXGrad. Under the assumptions
> f is convex and L-smooth,

> Constraint set X has bounded diameter, i.e., D = maxy yex ||[x —y

’

UniXGrad guarantees the following:

f(ik+1/2) — min f(x) <O (LDZ) 5
xeX

k2
k i+1/2
TR
where xF+1/2 = Zl:l,ﬂil is the average iterate.
i=1 i
Remarks: o UniXGrad is a truly “universal” algorithm (more on this later!)

o We still need a bound on D to run the algorithm.
o It can handle constraints.

o It removes the log-factor in AcceleGrad.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 44



Adaptive methods and open questions

Question: o Can we improve diameter D dependence on adaptive methods?

Answer: o UnderGrad [3] has O(log D) dependence instead of O(D) while retaining the fast rates.

—¥ UnderGrad
—e— UnixGrad, y1=m
—e— UnixGrad, y; = 1E+04n;

UnixGrad, y; = 1E-03-n
10-6 | —8— UnixGrad, y, = 1E-05:m *
AEG A

10° 10t 10? 10° 10*

Figure: UniXGrad vs. UnderGrad vs. Accelerated extra-gradient algorithm.

Question: o Can we go beyond O(1/k?) rate while adapting to problem parameters and oracle noise?

1

o Yes, ExtraNewton™ [2] achieves a rate of O (173) using a regularized Newton update.

Answer:
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A quick look at descent methods: beyond first-order minimization
Revisiting majorization-minimization
> Gradient descent, for a > 0:
xF 1 = argmin, cpa { F(xF) + (VF(xF), x — xF) + oL ||x — xF[|2}
=xk — aVf(xF).
» Newton's method, for a > 0:
xh 1 = arg min, cga { F(xF) + (VF(x), x = xF) + 2 (V2 £(xk) (x — x*), x — xF) }
= xk — o(V2f(xF)) "1V f(xF).
> Regularized Newton’s method, for o, 8 > 0 [24, 31]:
xE+L = argmin, cga { F(xF) + (VF(P), x — xF) + £ (V2 (xF) (x — xF), x — x%) + 525 [Ix — x|}
=xP — (V2 f(x*) + BI) TV F(xF).
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A quick look at descent methods: beyond first-order minimization
Revisiting majorization-minimization
> Gradient descent, for a > 0:
xF 1 = argmin, cpa { F(xF) + (VF(xF), x — xF) + oL ||x — xF[|2}
=xk — aVf(xF).
» Newton's method, for a > 0:
xh 1 = arg min, cga { F(xF) + (VF(x), x = xF) + 2 (V2 £(xk) (x — x*), x — xF) }
= xk — o(V2f(xF)) "1V f(xF).
> Regularized Newton’s method, for o, 8 > 0 [24, 31]:
xE+L = argmin, cga { F(xF) + (VF(P), x — xF) + £ (V2 (xF) (x — xF), x — x%) + 525 [Ix — x|}
=xP — (V2 f(x*) + BI) TV F(xF).

Remarks: o Global convergence of the Newton method is difficult.
o Local convergence of the Newton method using self-concordance is well-studied.
o Quasi-Newton methods that approximate the Newton method are well-studied [45].
o See advanced material at the end of the lecture.
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Sophia: Yet another second-order optimization algorithm [28]

Sophia

1. Set xY € dom (f), mo =0, H_,, =0, h € {Hutchinson, GNB}
2. For k=0,1,..., iterate
mi = fimg_1 + (1 - B1)VF(x)
If Kk mod n =0, do:
Hy = BoHy_p + (1 - B2)h(x")

else: H,=H;

xF T = (1 — apN)xF — ay, - clip(my,/ max{p - Hy, €}, 1)

Remarks: o More adaptive to heterogeneous curvatures than ADAM

o See the appendix for the Hessian estimators (Hutchinson, GNB)
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Convergence of Sophia

Theorem (Convergence rate of Sophia)

Let the sequence {xk} be generated by Sophia. Assume the following:
> f:RY R is a twice continuously differentiable, strictly convex function.

> There exists a constant R > 0, such that

vx,x' €RY[|[x —x|la <R = || V2f(x)T'V2f(x) 2 < 2.

Then, if we set « = 1/2,p = 2—%, Sophia guarantees the following
R2 'f(xo)—nlink Feky)
FET) = ) s o=t T e

32d
where ¢ = Amin(v2f(x*))'
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Learning rate scheduling

o Choosing a sequence of step sizes for an algorithm {ak}£:1 is a core problem in optimization.

Definition
Learning rate scheduling incorporates two elements:
1. A baseline learning rate o, which can be determined adaptively;

2. A schedule baseline multiplier, which has a predetermined sequence of values {sk}gzl .

Example: o How can we incorporate a learning rate schedule into gradient descent (GD)?

GD with step size scheduling

1. Set x° € dom ().
2. For k=0,1,..., iterate

{ xFtl = xF — as, VF(xF)
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Basic forms

o The choice of schedule is empirically motivated.

o Basic examples include linear, exponential and step-ladder-like decreasing sequences [6].

1.0

—— Linear

Exponential

0.8

—— Step

0 200 400 600 800 1000
Figure: Example of common schedule (sub)sequences.

Warm up

[15, 23] note how better results for computer vision models can be achieved by adding a warm up phase where
the step-size scheduler initially increases the step-size multiplier from a small value to a large one.
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Additional considerations
= Power = Cosine WSD

0.015

50k 100k 150k 200k 250k

Figure: Example Warm-up+Runtime+Cool-down schedules vs. cosine annealing schedule. Credit: [48].

Fusion of ideas

[30, 54] motivate three-phase schedules with results for residual neural networks and vision transformers:
1. Warm-up schedule with increasing step size.
2. Runtime schedule with constant or decreasing step size.

3. Cool down or Ramp down or Decay phase of sharp learning rate decrease.

Remarks: o [53] theoretically motivates fast linear decay at the end of schedules.

o [18] describes the benefits of non-linear step size cool-down for language models.
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The Road Less Scheduled [9]

o Tuning the learning rate scheduler is difficult! Can we do it without it?

ScheduleFreeGD
1. Set x? = 27 € dom (f) and «, B € [0, 1].
2. For k=0,1,..., iterate
1l — 1
yboo= (1 Byt + Bxk
ZFl =2k —aVf(y*
)k = (1 — otk 4 ghtlgh+1

Remarks: o This “schedule-free” algorithm uses a identical formulation to [22] up to parameter choices:
> see Section 3 of [9]
o The approach differs from these conventional accelerated methods.
o It uses a different weight for the y* and x* interpolations:
> constant weight 3 for y*,

> a decreasing weight for x* and fixed o.
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Schedule-free theory

Theorem (General schedule-free theory)

Let f be a convex function. Let z', ...,z be arbitrary vectors and let w1, ..., wr and B1,...,Br be arbitrary
numbers in [0, 1]. Set:

k
i1 WiZg _ w w
<k = 2171 — k11 k + k__ k
S wi Siawi) Y wi
i=1 ¢ i=1 ¢ i=1*
\___ﬂ,____/ \—v—/
L1tk ¢k

y* = Bex? + (1 — Br)z"
Then we have for all x*:
T
Y ope1 WkBUVF(yF), 28 — x*)]
v '
k=1 "k

E[f(x") = f(x")] <

Remarks: o The theoretical analysis is not much more involved than the adaptive methods we have seen so far!
o We refer to the online-offline conversion in [19] and [2].

o See the numerical evidence in the appendix.
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Example: linear and logistic regression

o Performance of adaptive algorithms on basic optimization problems

[ Ax — b

10
10?
W
=10*
I
< — GD
® . 6
=100 — ApAMm
—— UniXGrad
10° - = Sophia
—— SchFrecGD
10 10' 10° 10
k
. o] |Ax b
10
10?
o
=10*
I
5% 5 — GD
=100 — ApaM
—— UniXGrad
10° = Sophia

hFrecGD
10° 10° !
Wall time [s]
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Logistic Regression

10
10°
10°
X
<
10t
%, 5 — GD
=100 apam
10° | — UniXGrad
— Sophia
107 = SchFreeGD
10° 10' 10° 10° 10°
k
Logistic Regression
10"
10°
-10°
R
e
10*
%, 5 —— GD
S0 Apam
10° | — UniXGrad
— Sophia
107 = SchFreeGD
10° 10 10" 10°
Wall time [s]
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Performance of optimization algorithms

Time-to-reach ¢

time-to-reach ¢ = number of iterations to reach € X per iteration time

o The speed of numerical solutions depends on two factors:
> Convergence rate determines the number of iterations needed to obtain an e-optimal solution.

> Per-iteration time depends on the information oracles, implementation, and the computational platform.

o In general, convergence rate and per-iteration time are inversely proportional.

Finding the fastest algorithm is tricky!
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient
Prodigy [33] Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k2) One gradient
UniXGrad Sublinear (1/k2) Two gradients
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Reg. Newton method Sublinear (1/k2) One gradient, one linear system
ExtraNewton method Sublinear (1/k3) Two gradients, one linear system
Gradient descent Linear (e —F) One gradient
L-smooth and p-strongly convex Accelerated GD Linear (efk) One gradient
Newton method Linear (efk), Quadratic One gradient, one linear system
Sophia [27] Linear (e —*) SVD dec., one linear system, one gradient

Gradient descent: AdaGrad:
xkt+1 :xkfan(xk), xkt1 :xkfoszf(xk)7

where scalar version of the step size is given by
k_ D

A= e
NN Aol

Slide 37/ 44

where the stepsize is chosen as « € (0, %)

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch




Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f

Algorithm

Convergence rate

Iteration complexity

L-smooth

Gradient descent
AdaGrad
Prodigy [33]
Accelerated GD
AcceleGrad
UniXGrad
Newton method
Reg. Newton method
ExtraNewton method

Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k), Quadratic
Sublinear (1/k2)
Sublinear (1/k3)

One gradient

One gradient

One gradient

One gradient

One gradient

Two gradients
One gradient, one linear system
One gradient, one linear system
Two gradients, one linear system

L-smooth and p-strongly convex

Gradient descent

Accelerated GD

Newton method
Sophia [27]

Linear (e —F)
Linear (e %)
Linear (efk), Quadratic
Linear (e %)

One gradient
One gradient
One gradient, one linear system

SVD dec., one linear system, one gradient

UniXGrad:

P2 = xb — o, VF(RF)

X = xF oy VF(RFH?),

for some proper choice of ay, = k and nj.
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AcceleGrad:

<P = b 4 (1 -7y
2" = 2F — e VF(xY)
yP =<V (xR,

for ap, = (k+1)/4, 7, = 1/ay and
—1/2
me=20 (62 + XL IVIeh )
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Newton method
Reg. Newton method
ExtraNewton method

Sublinear (1/k), Quadratic
Sublinear (1/k2)
Sublinear (1/k3)

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient
Prodigy Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k?) One gradient
UniXGrad Sublinear (1/k2) Two gradients

One gradient, one linear system
One gradient, one linear system
Two gradients, one linear system

L-smooth and p-strongly convex

Gradient descent

Accelerated GD

Newton method
Sophia

Linear (e —F)
Linear (e ~F)
Linear (efk), Quadratic
Linear (e —F)

One gradient
One gradient
One gradient, one linear system
SVD dec., one linear system, one gradient

The main computation of the Newton method requires the solution of the linear system

(V2 f(x*) + BiI)p* = -V f(xF) .
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient
Prodigy Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k2) One gradient
UniXGrad Sublinear (1/k2) Two gradients
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Reg. Newton method Sublinear (1/k2) One gradient, one linear system
ExtraNewton method Sublinear (1/k3 Two gradients, one linear system
Gradient descent Linear (e k) One gradient
L-smooth and p-strongly convex Accelerated GD Linear (efk) One gradient
Newton method Linear (e_k), Quadratic One gradient, one linear system
Sophia Linear (eik) SVD dec., one linear system, one gradient

Prodigy [33] is gradient descent with step sizes defined as

k
D i Yilgisxo — mi)

| zit1 — zo ||

d
k
Ve S @IV |2

Yt = with  d;41 = max < d;,
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f

Algorithm

Convergence rate

Iteration complexity

L-smooth

Gradient descent
AdaGrad
Prodigy

Accelerated GD

AcceleGrad
UniXGrad
Newton method
Reg. Newton method
ExtraNewton method

Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k2)
Sublinear (1/k), Quadratic
Sublinear (1/k2)
Sublinear (1/lc )

One gradient

One gradient

One gradient

One gradient

One gradient

Two gradients
One gradient, one linear system
One gradient, one linear system
Two gradients, one linear system

L-smooth and p-strongly convex

Gradient descent

Accelerated GD

Newton method
Sophia

Linear (e )
Linear (e k)
Linear (e —F) Quadratlc
Linear (e~ ")

One gradient
One gradient
One gradient, one linear system

SVD dec., one linear system, one gradient

o Sophia stands for Second-order Clipped Stochastic Optimization [27].

o They introduce a novel Hessian estimator to stabilize the Newton's method in nonconvex landscapes.
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Overview of adaptive methods

A non-exhaustive comparison:

ExtraNewton method

Sublinear (1/k%)

Assumptions on f Algorithm Convergence rate Setting
AdaGrad Sublinear (1/k) Unknown L
Prodigy Sublinear (1/k) Unknown ||z — zg ||
L-smooth AcceleGrad Sublinear (1/k2) Unknown L
UniXGrad Sublinear (1/k2) Unknown L

Unknown L, ||z — zq ||

o Notice that L and ||z — x¢ || are rarely known in real world problems.
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The gradient method for non-convex optimization

Remarks: o Gradient descent does not match lower bounds in convex setting.

o How about non-convex problems?

Lower bounds for non-convex problems [7]

Assume f is L-gradient Lipschitz and non-convex. Then any first-order method must satisfy,

IVF6E =2 ().

Observations: o Gradient descent is optimal for non-convex problems, up to some constant factor!

o Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.
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Wrap up!

o The remaining slides in this lecture are advanced material.

o Lecture on Monday!
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*Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.
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*Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when
> L is known but it is expensive to evaluate;

> The global constant L usually does not capture the local behavior of f or it is unknown.
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*Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when
> L is known but it is expensive to evaluate;

> The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search

At each iteration, we try to find a constant Lj that satisfies:
Ly
FOEHY) < Quy (L YR) 1= (%) + (VH5F), k= yF) 4+ ZE L - R 3,

1 0
Here: Lo > 0 is given (e.g., Lo := CW) for ¢ € (0, 1].
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*How can we better adapt to the local geometry?

fx)

Global quadratic upper bound
Qulx,x")

IVi@) =Vl <Llly -zl

L is a global worst-case constant
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*How can we better adapt to the local geometry?

fx)

Local quadratic upper bound

Qre(x,x")

7(x") ox"! = arg min {f(xk) +(Vf(xF),x —x*) + %Hx - kaﬁ}

3 T k Ly k|2
IVf(@) =V <Lly—z| () < O + DT (=) 4+ T e — 3

L is a global worst-case constant > . applies only locally
=)
= =
T
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*Enhancements

Why do we need a restart strategy?

> AGD-pL requires knowledge of p and AGD-L does not have optimal convergence for strongly convex f.
> AGD is non-monotonic (i.e., f(x*t1) < f(x*) is not always satisfied).
> AGD has a periodic behavior, where the momentum depends on the local condition number k = L/ p.

> A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use
function values but other strategies are possible.

Restart strategies

1. O’'Donoghue - Candes’s strategy [42]: There are at least three options: Restart with fixed number of
iterations, restart based on objective values, and restart based on a gradient condition.

2. Giselsson-Boyd’s strategy [14]: Do not require ¢, = 1 and do not necessary require function evaluations.

. Fercog-Qu’s strategy [13]: Unconditional periodic restart for strongly convex functions. Do not require
the strong convexity parameter.
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*Example: Ridge regression

Case 1: n = 500, p = 2000, p = 0 Case 2: n = 500, p = 2000, p = 0.012,(ATA)
10"
Y AR .
AGD-R
§{: b
LS-Af

f(x) — f* in log-scale

0 1000 2000 3000 4000 5000 0 200 400 600 800 1000 1200 1400
Number of iterations Number of iterations

6
Time (s)
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*AcceleGrad - Adaptive gradient + Accelerated gradient [26]

Motivation behind AcceleGrad

Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : xU € K, diameter D, weights {ay }xen, learning
rate {ny tren

1. Set y9 =20 =x0
2. For k=0,1,..., iterate

Tk = 1/Oé]€

xFtL = 2k + (1 — 73,)y", define g, := V f(x**1)
2Pt =Tl (2% — apmegr)

yEl = xFtl ey

Output : ¥° x Zi:ol oyttt

where Ik (y) = arg mingex (x — y,x —y) (projection onto K).

Remark: o This is essentially the MD + GD scheme [1], with an adaptive step size!
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*AcceleGrad - Properties and convergence

Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms ||V f(x*)||2 < G2, i.e., f is G-Lipschitz
continuous. AcceleGrad uses the following weights and learning rate:

_k+1 2D

aE = 4 Nk = =
V& + T 02V e )2

o Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad

Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x* € K.
Define y* = (Zi:ol aiyiJrl)/(Zf;Ol a;). Then,

x€ERd k2

FG*) — min f(x) <O (DG+LD2 1og(LD/G)>

If f is only convex and G-Lipschitz, then

£5*) - min, 5x) < 0 (GD \flog i/ V)
x€ER
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*Example: Logistic regression

Problem (Logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:
*o_ s - 1 - T
7= 1;[(17151 f(x) = - Z log (1 + exp (—bj (aj x+ ﬁ)))
j=1

Real data

> Real data: ada with A € R"*%, where n = 4781 data points, d = 122 features
> All methods are run for T' = 10000 iterations
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*RMSProp - Adaptive gradient method with H; = Dy

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.
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*RMSProp - Adaptive gradient method with H; = Dy

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with H, = D, RMSProp
1. Set Qo =0. 1. Set Qo =0.
2. For k=0,1,..., iterate 2. For k=0,1,..., iterate
QF = QF ! 4 diag(Vf(x*))? QF  =pQF !+ (1 - B)diag(Vf(x*))?
H, =./Q* H, =./Q*
xktl = xk _ oakH,;1Vf(xk) xktl = xk _ akH;1Vf(xk)
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*RMSProp - Adaptive gradient method with H; = Dy

What could be improved over AdaGrad?

1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with H, = D,

1. Set Qo =0.

2. For k=0,1,..., iterate
QF  =QF ! +diag(Vf(xF))?
H, =./Q*
xFtl = xk —oakH,:1Vf(xk)

o RMSProp uses weighted averaging with constant g

o Recent gradients have greater importance
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RMSProp
1. Set Qo =0.
2. For k=0,1,..., iterate
QF  =p8QF !+ (1 - pB)diag(VF(xF))?
H, = \/@
bt = xk oakH,:1Vf(xk)
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*ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM
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*ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM

Input. Step size «, exponential decay rates 31, 82 € [0,1)

1. Set mgp,vg =0

2. For k=0,1,..., iterate
ge =V
mpg = fimg_1 + (1 — B1)gk < lst order estimate
Vi = fBovi_1+(1— ﬂg)gi < 2nd order estimate
iy, =m;/(1 - B¥) + Bias correction
Vi = vy/(1 — B5) + Bias correction
H; = Vi +e€

xFtl = x* — amy /Hy

Output : x*

(Every vector operation is an element-wise operation)
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*Non-convergence of ADAM and a new method: AmsGrad

o It has been shown that ADAM may not converge for some objective functions [44].

o An ADAM alternative is proposed that is proved to be convergent [44].

AmsGrad

Input. Step size {oy, }rew, exponential decay rates {81k} ke, B2 € [0,1)

1. Set mg =0,vop=0and vo =0

2. For k=1,2,..., iterate
8k = G(kae)
my =1 ymyu_1 + (1 — B )8k < lst order estimate
Vi = favi_1+ (1 — Bg)gi < 2nd order estimate
Vi = max{Vi_1,Vg} and Vi = diag(Vg)
H, =/

Xk+1 = HX V"'(xk - akﬁlk/Hk)

Output : x*

where H%(y) = argminxex ((x —y), A(x —y)) (weighted projection onto K).

(Every vector operation is an element-wise operation)
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The key ingredient of acceleration: (weighted) averaging

o One common theme we see in acceleration schemes is iterate averaging.
o It is important to compute averages with larger weights on recent iterates.

o Through UniXGrad/Extra-gradient framework, we could summarize the effect of averaging.

Convergence rate vs. averaging parameter

Let {x*11/2} be a sequence generated by UniXGrad algorithm, and define 0 < oy, < O(k) to be a
non-decreasing sequence of weights. It is ensured that,

k

=1

FEFFY2) — min f(x) <O
xeX
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The key ingredient of acceleration: (weighted) averaging

o One common theme we see in acceleration schemes is iterate averaging.
o It is important to compute averages with larger weights on recent iterates.

o Through UniXGrad/Extra-gradient framework, we could summarize the effect of averaging.

Convergence rate vs. averaging parameter

Let {x*11/2} be a sequence generated by UniXGrad algorithm, and define 0 < oy, < O(k) to be a
non-decreasing sequence of weights. It is ensured that,

JEREFZ) = min f(x) <O |

i=1
Remarks: ; (- _ 1
o Uniform averaging: ay =1 =— O (E) convergence rate

1

o Weighted averaging: o = O(k) = O (k—Q) convergence rate

o In general: a, = O(kP) forp € [0,1] = O (kf’%)
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*Newton method

e Fast (local) convergence but expensive per iteration cost

e Useful when warm-started near a solution
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*Newton method

e Fast (local) convergence but expensive per iteration cost

e Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):

J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)
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*Newton method
e Fast (local) convergence but expensive per iteration cost
e Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):

J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the Hessian V2 f}, to be
positive definite:

VIaMph = ViR e pb=—(VEeN) T VAR
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*Newton method

e Fast (local) convergence but expensive per iteration cost

o Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):
J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the Hessian V2 f}, to be
positive definite:

VIaMph = ViR e pb=—(VEeN) T VAR

> A unit step-size ap = 1 can be chosen near convergence:

xFtl = xk (VQf(xk))_1 VxR .
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*Newton method
e Fast (local) convergence but expensive per iteration cost
e Useful when warm-started near a solution
Local quadratic approximation using the Hessian
> Obtain a local quadratic approximation using the second-order Taylor series approximation to f(x* + p):

J6 4+ p) = F0H) + (9, VIGH)) + 5 (B, V2 (<*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the Hessian V2 f}, to be
positive definite:

.\ —1
V)t = —VixF) e pF=—(VE(xF) Vi)
> A unit step-size o = 1 can be chosen near convergence:
xk+l — yk _ (VQf(xk:)) -1 Vf(xk:) .
Remark

> For f € .7-'%1 but f ¢ .FEL the Hessian may not always be positive definite.
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*(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x* such that:
> V2f(x*) = pl for some pu > 0,
> IV2f(x) — V2f(y)|lam2 < M||x — y||2 for some constant M > 0 and all x,y € dom(f).

Moreover, assume the starting point x° € dom(f) is such that ||x° — x*||2 < %
Then, the Newton method iterates converge quadratically:

k 2
”xk:+1 _ X*” < AI”X B X*II2
2 (n— Mjx* —x*||2)

Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a p X p linear system at each
iteration, V2 f(xF)p* = —V f(xF)!
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*Locally quadratic convergence of the Newton method-I

Newton's method local quadratic convergence - Proof [41]
Since V f(x*) = 0 we have

xk+1 _x* = xk _x* — (VZf(xk))—lvf(xk)
= (V2 (M) ™1 (V2P (e — x*) — (VI (x4) = VF(x*)))
By Taylor's theorem, we also have
1
ViR - Vi) = / V2 F(xF 4+ t(x* — xP))(xF — x*)dt
0
Combining the two above, we obtain

IV2F(xF)(xF —x*) = (VF(x") = V(x))|
1
= H/ (V2F(F) = V2 (P + t(x* — xF))) (xF — x*)dt
0

1
< / [ V2F (%) = V2 (™ + 1" — xF)) || [[5F — x|t
0

1
1
< Ml =2 [ bt = MR — x|

: ) 0 ) epre
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*Locally quadratic convergence of the Newton method-II

Newton's method local quadratic convergence - Proof [41].

> Recall
K —xt = (V2F() T (VAR (8 = x%) = (VF(x*) = VF(x)

192 5GK) ek — %) = (VF6) = VI < 5 Mk — x|

> Since V2 f(x*) is nonsingular, there must exist a radius 7 such that ||(V2f(x*))~!|| < 2|[(V2f(x*)) "1
for all x* with ||x* — x*|| < r.

> Substituting, we obtain
3 — x* || < MV £(*) T lx® — x*|12 = M — x|,

where M = M||(V2f(x*))".

> If we choose [|x° — x*|| < min(r, 1/(2]\7[)), we obtain by induction that the iterates x* converge
quadratically to x*.
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2

*Example: Logistic regression - GD, AGD, AcceleGrad + NM

10? T i 10 i
—GD —GD
—AGD —AGD
0 —NM ] ol —NM 1
10 AcceleGrad 10 AcceleGrad
|
—~ 10 —~10? E
) B
= =
10 104 ]
10 . : . 106 . . |
10° 10’ 102 10° 10t 102 107 10° 10’
iterations (t) time (sec)
Parameters

> Newton's method: maximum number of iterations 30, tolerance 10—6.
> For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance 10~6.

> Ground truth: Get a high accuracy approximation of x* and f* by applying Newton's method for 200
iterations.
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*Approximating Hessian: Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

o Useful for f(x) :

:L:l fi(x) with n > p.

Main ingredients

Quasi-Newton direction: _
p" = —H_'Vf(x*) = -B,V/f(x").

> Matrix Hg, or its inverse By, undergoes low-rank updates:

> Rank 1 or 2 updates: famous Broyden—Fletcher-Goldfarb—Shanno (BFGS) algorithm.
> Limited memory BFGS (L-BFGS).

> Line-search: The step-size oy is chosen to satisfy the Wolfe conditions:
F(xF 4+ app®) < F(xF) + cron (Vf(xF), p¥) (sufficient decrease)
(VP + agp®), p*) > ca(VF(xF), p") (curvature condition)
with 0 < ¢; < ca < 1. For quasi-Newton methods, we usually use ¢; = 0.1.

> Convergence is guaranteed under the Dennis & Moré condition [10].

> For more details on quasi-Newton methods, see Nocedal&Wright's book [41].
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*Quasi-Newton methods

How do we update Bj17

Suppose we have (note the coordinate change from p to p)
_ _ 1 _ _

my11(P) i= fFT) + (VM) p— xF 1) + B (Br1(p — xF), (B — x11))).

We require the gradient of my; to match the gradient of f at xk and xk+1

Vmpyq (xFH1) = VF(xF+1) as desired;
k

v

v

For x®, we have

mG+1(xk) = Vf(xk+1) ar Bk+1(xk — Xk+1)
which must be equal to V f(xF).

> Rearranging, we have that By ; must satisfy the secant equation

Bjis” =y*
where sF = xk+1 — x* and y* = Vf(xFt1) — V£(xF).

The secant equation can be satisfied with a positive definite matrix B only if (s®,y*) > 0, which is
guaranteed to hold if the step-size «, satisfies the Wolfe conditions.

\4
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*Quasi-Newton methods

BFGS method [41] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hy = B;l. The update on the inverse B is found by solving

n}{in |H — Hy|lw subject to H=H” and Hy* = s* (5)
The solution is a rank-2 update of the matrix Hy:
Hy. = VIH, V, + nest (s,
where Vi, =T — npy*(sF)T.

> Initialization of Hp is an art. We can choose to set it to be an approximation of V2 f(x°) obtained by
finite differences or just a multiple of the identity matrix.
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*Quasi-Newton methods

BFGS method [41] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hy = B;l. The update on the inverse B is found by solving

mHin |[H — Hy|lw subject to H=HT and Hy* = s* (5)

The solution is a rank-2 update of the matrix Hy:
Hy 1 = Vi H Vi +mes™(sM)T

where Vi, =T — n,y*(s®)T.

Theorem (Convergence of BFGS)

Let f € C2. Assume that the BFGS sequence {x*} converges to a point x* and ZZOZI |x*F — x*|| < co.

k

Assume also that V2 f(x) is Lipschitz continuous at x*. Then x* converges to x* at a superlinear rate.

Remarks

The proof shows that given the assumptions, the BFGS updates for By, satisfy the Dennis & Moré condition,
which in turn implies superlinear convergence.
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*L-BFGS
Challenges for BFGS

> BFGS approach stores and applies a dense p X p matrix Hy.

> When p is very large, Hy can prohibitively expensive to store and apply.

L(imited memory)-BFGS

> Do not store Hy, but keep only the m most recent pairs {(s?,y?)}.
> Compute H; V f(x}) by performing a sequence of operations with s* and y*:

> Choose a temporary initial approximation Hz.

> Recursively apply Hy 1 = VZHka + nksk(sk)T

, m times starting from Hg:
By = (Vs VI ) B (Vi Vi)

+ Nk—m (Vf—l o ‘VkamH) Skim(skim)T (Vi—m+1-+-Vg_1)
+ . e
+ 77]C7151c71(slc71)T
> From the previous expression, we can compute Hka(xk) recursively.
> Replace the oldest element in {s?, y*} with (s*,y*).
> From practical experience, m € (3,50) does the trick.
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*L-BFGS: A quasi-Newton method

Procedure for computing H;,V f(xF)
0. Recall n, = 1/(y",sF).
1. q = Vf(xF).
2. Fori=k—-1,...,k—m
a;  =ni(s’,a)

q =q-oay"

3. r:ng.

4. Fori=k—m,...,k—1
B =mnily'r) _
r =r+ (o —B)s"

5 H,Vf(xF)=r.

Remarks
> Apart from the step r = H%q, the algorithm requires only 4mp multiplications.
> |If Hg is chosen to be diagonal, another p multiplications are needed.

> An effective initial choice is Hg = v, I, where

(sF=1,y* 1)
(yk=1,yk=1)
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*L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x° and m > 0.
2. For k=0,1,...
2.a Choose Hg.
2.b Compute p¥ = —H;,V f(x*) using the previous algorithm.
2.c Set x¥t1 = x* 4 oy pF, where «, satisfies the Wolfe conditions.
if k > m, discard the pair {s*~™ p¥~™} from storage.
2.d Compute and store s¥ = xF+1 —x* y* = Vf(xFt1) - Vf(xF).

Warning

L-BFGS updates does not guarantee positive semidefiniteness of the variable metric Hy in contrast to BFGS.
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*Example: Logistic regression
10

3

- numerical results

10
——Newton —Newton
5 Quasi-Newton with BFGS 5 Quasi-Newton with BFGS
10° Quasi-Newton with L-BFGS 107 Quasi-Newton with L-BEGS
Accelerated gradient method - Accelerated gradient method
10 - - Line Search AGD with adaptive restart|_ 10! - - Line Search AGD with adaptive restart

10° 10' 102 10° 10* 102 107! 10° 10! 107
Number of iterations Time (s)

Parameters

> For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200, tolerance 10=6. L-BFGS
memory m = 50.

> For accelerated gradient method: maximum number of iterations 20000, tolerance 10-6.

> Ground truth: Get a high accuracy approximation of x*, f* by running Newton's method for 200 iterations.
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*ExtraNewton: Adaptive Newton’s method with fast rates

Question: o Under what minimal regularity conditions, can we achieve faster rates beyond O(1/k?)?

Answer: o Higher-order smoothness

Second-order smoothness

If the objective f has L-Lipschitz continuous Hessian, then

o~

f(X)*f(Y)*Wf(.Y),X*W*%(VQf(Y)(X*Y)vxfw < <lx -yl

Question: o How can we exploit the higher-order smoothness?

Answer: o Proximal Point method (PPM) + Newton-type updates!
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*Better approximation, better rates
o The extra-gradient method approximates PPM through the “extrapolation” sequence x*+1/2 [34]
Higher-order information for better approximation

> Extra-gradient approximates the “next” iterate, x*T1, using first-order information.

> Can we achieve a better estimate x**1/2 using second-order information? YES!

ExtraNewton [2]

1. Set x = 20 = x0. Define apy = k2 and Ay = Y1 ay,

2. For k=0,1,..., iterate

>

—1
xkH+1/2 = 3k _ oy, (flk- V2 f(xR) + I) VI

k
XL = xF — oy, VF(xFH1/2)

k k=1 it1/2
> %k = XX +Z7;c:1 @ix ,

@
Zi:l v

v

k Lit1/2
gk+1/2 — Doy X

k
=1

)
a;

bnk:
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*Convergence of ExtraNewton

Theorem ([2])
Let the sequence x¥t1/2 pe generated by ExtraNewton. Under the assumptions
> f has L-Lipschitz Hessian (not Lipschitz smooth),
> D = maxx,yex [|x — ¥l
ExtraNewton guarantees that
L (%4 + D72)
F(&FY/2) — min f(x) < O

xeX - k3 ’
k i+1/2
. ;X
where xF+1/2 = 221:%7‘ is the average sequence.
i=1 i
Remarks: o The first globally convergent Newton method without a line-search procedure.

o The algorithm does not need to know the diameter D.

o ExtraNewton is also noise-adaptive; continuously adapts to noise in oracles.
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*Logistic regression: ExtraNewton vs. adaptive first-order methods

o Logistic regression with regularization using ala dataset.

o Comparison against first-order adaptive methods.

e’ — GD
1051 —— AdaGrad
—— AcceleGrad
UniXGrad
10774 —— ExtraNewton
Newton

10° 10! 102 103 10*
# oracle calls
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*Lower bounds for higher-order smoothness?

o Higher-order methods and the limits of their performance has received great attention lately.

o Beyond Lipschitz smoothness, we can achieve improving sublinear rates.

Theorem ([40])

Consider that f is p-th order smooth (equivalently has Lipschitz continuous p + 1-th order derivative). Let xk
be generated by some p-th order iterative tensor method. Then, it holds that

) 1
. AN . — O —— .
oSilgkf(x ) xeRd F(x) (kg’éﬂ )

Remarks: o AGD matches the lower bound for 1-st order smooth function.

o The lower bound for second-order methods evaluates to O (ﬁ)

o Monteiro-Svaiter’s accelerated Newton method [35] and a recent work [8] archive this rate.

o In practice, all of them seem slower than ExtraNewton.
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*Logistic regression: ExtraNewton vs. second-order methods

o Logistic regression with regularization using a9a dataset.

o Comparison against second-order methods with matching and optimal rates.

Logistic Regression - Dataset:a9a - Deterministic - Second-order Methods

o Legend:
> Optimal Monteiro-Svaiter [8],
> Cubic regularization of Newton's method [38],

> Accelerated cubic regularization of Newton's
methods [37].

—— Newton
107°y —— ExtraNewton
Bl Opt Monteiro-Svaiter
10 —— Cubic Reg
—— Acc Cubic Re
1078 I 9

10° 10! 102 103
Linear system solutions
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*Efficient Hessian estimation for Sophia

o Sophia uses a diagonal Hessian pre-conditioner, which directly adjusts the update size of
different parameters according to their curvatures.

o To mitigate the overhead, it only estimates the Hessian every n steps (unlike e.g. AdaGrad
where it is done every step).

o Two efficient diagonal Hessian estimators:

Hutchinson(x) [17, 46, 52]

1. Draw u from AN(0,1;)
2. Output u ®© V((V f(x), u))

Gauss-Newton-Bartlett(x) [43, 47, 5]
1. Draw a mini-batch of input {a;}E |
2. Sample b; ~ softmax(hx(a;)), Vi € [B]
3. Caleulate § = V(1/B Y 1 | L(hx(ai), b;))
4. Output B-§ O g
Remarks: o Hutchinson's estimator is unbiased and does not assume any structure of the loss, but
requires Hessian-vector products

o The G.N.B. estimator always gives a positive semi-definite diagonal Hessian estimate
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*Examples of step size schedulers with details and applications

o Common scheduler formulas used to define the warm-up, runtime or decay phase:
o Linear scheduler: s, = [(1 — %) Cstart + %Cend]y where cstart, Cend > 0
o Exponential scheduler: s, = v*, where v > 0
o Step scheduler: s = ,},LH where v, 7 > 0

(& if k 2 kmin

o Constant (simplest two-phase) scheduler: s = , where kmin,c >0

1, otherwise

2
o Cyclical scheduler [49] - multiple cycles of warm-up then decay, common in deep computer vision models and
adversarial training research
o WSD [16], Power [48] schedulers - three-phase step size sequences powerful in LLM pre-training

o Cosine annealing scheduler [29]: aj = ar + 22T (1 + cos (%ﬂ)), where 0 < ar < ag
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ScheduleFree numerical evidence

CIFAR-10 (WRN-16-8)

CIFAR-100 (DenseNet)

95

Test Accuracy (%)

i

—— Schedule-Free (96.03% SE 0.04)
Step-Wise Schedule (95.59% SE 0.03)
—— Cosine Schedule (95.73% SE 0.04)

Il —— Schedule-Free (78.71% SE 0.06)

50 - Step-Wise Schedule (76.41% SE 0.14)
I —— Cosine Schedule (77.41% SE 0.09)

I

Test Accuracy (%)
2
E
L

T T T T T T
0 50 100 150 200 250 300

SVHN (ResNet-3-96)

T T T T T

0 50 100 150 200 250 300
Epoch

ILSVRC 2012 ImageNet (ResNet-50)

98
97
96

Test Accuracy (%)

—— Schedule-Free (98.40% SE 0.01)
—— Cosine Schedule (98.27% SE 0.02)
Step-Wise Schedule (98.20% SE 0.01)

- — Schedule-Free (76.90% SE 0.03)
—— Cosine Schedule (76.90% SE 0.06)
Step-Wise Schedule (76.49% SE 0.07)

Test Accuracy (%)
P
2
L

Test Accuracy (%)
I

T T T T T T T
0 50 100 150 200 250 300

MAE ImageNet Finetune (VIT)

40 T T T T T
0 20 40 60 80 100
Epoch
OpenWebText (GPT-2 124M)

32
L, 31
= 30+
if —— Schedule-Free (8354 SE0.03) |~ 2.9 -|
if Cosine Schedule (83.52 SE 0.02)
T T T T T T 28— T
0 20 40 60 80 100 0 200000 400000 600000
Epoch Step

Figure: ScheduleFree experiments. Credit: [9].
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*Tensor methods |

o Let us investigate a generic method for handling p-th order smooth problems using p-th order derivatives.
Taylor polynomial
Let us focus on the Taylor polynomial expansion for a function f(x) of order p at x:
1 . .
Tp(y) = F() + ) =Dy —]',
i=1
> D?f(x)[h]® is the directional derivative along h such that
D'f(x)[h] = (Vf(x),h), and  D?f(x)[h]* = (V?f(x)h,h),

> p-th order smoothness:

— Tp(x, x — PJrl7
lf(y) = Tp(x¥)| < CEEI +1) lIx— vl
> Regularized Taylor polynomial of order p at x:
pH kp+1
Dl _ 7 _ p .
(xi ﬂm+§ Xy~ + Pl =
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*Tensor methods |
o Let us investigate a generic method for handling p-th order smooth problems using p-th order derivatives.
Taylor polynomial
Let us focus on the Taylor polynomial expansion for a function f(x) of order p at x:
1 . .
Tp(y) = F() + ) =Dy —]',
i=1
> D?f(x)[h]® is the directional derivative along h such that
D'f(x)[h] = (Vf(x),h), and  D?f(x)[h]* = (V?f(x)h,h),

> p-th order smoothness:

F) = Tye )] < ==y,

> Regularized Taylor polynomial of order p at x:

pH kp+1
Dl _ 7 _ p .
e ﬂm+§ )y = + B e =]
Remark: o If H > Ly, then, f(y) < Tp(x;y) and Tp(x;y) is convex. We will assume this condition!
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*Tensor methods 11

o Recall regularized Taylor polynomial of order p at x*:

X; x =D'f(x)]ly — x x — xF||PFL.
Ty (x;y) = f(x) +Z Tel =+ +1>"' I
=1
Approach: o Use prH(xk;x) as the new majorizer, and minimize to obtain x*+1
Tensor method [40]
1. Choose x¥ = y¥ € dom (f)
2. For k=0,1,..., iterate
xFt1 = arg min T}, g (x*;x)
x€ERd

Theorem (Convergence of p-th order tensor method [40])
Consider f to be p-th order smooth and let {x’“} be generated by the Tensor method. Then, it holds that

FxF) - i ) S O (tip) :
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