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Outline

> This lecture

1. Principles of iterative descent methods
2. Gradient descent for smooth convex problems
3. Gradient descent for smooth non-convex problems

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 45



Recall: Learning machines result in optimization problems

deli
(a0, bi)iy —E s P(byfag, %) Y, (b) 1= H Pbilai, x)
parameter x identical dist. !
Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by
XKAL € arg min {L(hx(a)7 b) = lOg px(b)} ’
xeX

where p, (-) denotes the probability density function or probability mass function of Px, for x € X.

M-Estimators
Roughly speaking, estimators can be formulated as optimization problems of the following form:
x* € arg min {F(x)},
xXEX

with some constraints X C RP. The term “M-estimator” denotes “maximum-likelihood-type estimator” [2].
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Unconstrained minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

F* = min {F(x) = f(x)}

Note that (1) is unconstrained.

Definition (Optimal solutions and solution set)

1. x* € R? is a solution to (1) if m

2. ‘S* = {x* €RP : F(x*)=F"} ‘ is the solution set of (1).

3. (1) has solution if S* is non-empty.
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Approximate vs. exact optimality
Is it possible to solve an optimization problem?

“In general, optimization problems are unsolvable” - Y. Nesterov [4]

Observations: o Even when a closed-form solution exists, numerical accuracy may still be an issue.
o We must be content with approximately optimal solutions.

Definition

We say that x7 is e-optimal in objective value if

f(x5) —f<e.

Definition

We say that x} is e-optimal in sequence if, for some norm || - ||,

xF —x*|| <e
(I <

Remark: o The latter approximation guarantee is considered stronger.
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A basic iterative strategy

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.

Repeat the procedure until the result is good enough.
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Basic principles of descent methods

Template for iterative descent methods

1. Let x° € dom(f) be a starting point.

2. Generate a sequence of vectors x!,x2,--- € dom(f) so that we have descent:
FFETY < f(xF), forall k=0,1,...

until x* is e-optimal.

Such a sequence {xk}k>0 can be generated as:

k+1 k

x =xF + agp
where pF is a descent direction and oy, > 0 a step-size.
Remarks: o Iterative algorithms can use various oracle information in the optimization problem

o The type of oracle information used becomes a defining characteristic of the algorithm

o Example oracles: Objective value, gradient, and Hessian result in 0-th, 1-st, 2-nd order methods

o The oracle choices determine oy, and p* as well as the overall convergence rate and complexity
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Basic principles of descent methods

A condition for local descent directions

The iterates are given as follows:

k1 — 3k 4o, p

x
For a differentiable f, we have by Taylor's theorem

FEFTY) = F(x*) + ar (VI ("), PF) +O(F |Ipll3)-
For aj, small enough, the term a;(Vf(x*), p*) dominates O(a3) for a fixed p~.

Therefore, in order to have f(xFt1) < f(x*), we require

(Vf(x"), p*) <0
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Basic principles of descent methods

Local steepest descent direction k
, V(")
Since k

(VF(xP), p*) = V) [Ip* ] cos b,

. X . o +D(f,2")
where 6 is the angle between V f(x*) and p”, we have

p" = —Vf(x*)

as the local steepest descent direction. lovel gete

Figure: Descent directions in 2D should be an
element of the cone of descent directions D(f, -).
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A simple iterative algorithm: Gradient descent

1. Choose initial point: x°.
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A simple iterative algorithm: Gradient descent

B VI0)

1. Choose initial point: x°.

2. Take a step in the negative gradient direction with a step size o« > 0: x**1 = x¥ — oV f(x*).
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A simple iterative algorithm: Gradient descent

B VI

1. Choose initial point: x°.
2. Take a step in the negative gradient direction with a step size o« > 0: x**1 = x¥ — oV f(x*).

3. Repeat this procedure until x* is accurate enough.
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A simple iterative algorithm: Proximal-point method [5]

1. Choose initial point: x9.

2. Take a step in the negative gradient direction with a step size @ > 0: xF+1 = xF — aV f(xkFth).

3. Repeat this procedure until x* is accurate enough.
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Recall the statistical estimation context

Observations: o Denote x is the unknown true parameter
o The estimator x*'s performance, e.g., || x* — x! ||3 depends on the data size n.
o Evaluating || x* — x% ||2 is not enough for evaluating the performance of a Learning Machine
> We can only numerically approximate the solution of
x* € arg min {F(x)}.
xXERP
o We use algorithms to numerically approximate x*.

Practical performance

Denote the numerical approximation by an algorithm at time ¢ by xt.
The practical performance at time t using n data samples is determined by - / 7

1" = x|z < || —x*||, +[|x* = x* |, X
| S——

&(t,n) e(t) e(n)

where £(n) denotes the statistical error, €(t) is the numerical error, and &(¢,n)
denotes the total error of the Learning Machine.
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(x), given starting point x° based on only local information.

o Fog of war
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x* of f(z), given starting point x° based on only local information.

o Fog of war, non-differentiability, discontinuities, local minima, stationary points...

f()
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A notion of convergence: Stationarity
o Let f: RP — R be twice-differentiable and x* = minxcrr f(x).

Gradient method

Choose a starting point x° and iterate
xFH = xk _ oV f(xF)

where o > 0 is a step-size to be chosen so that x* converges to x*.

Definition (First order stationary point (FOSP))

A point X is a first order stationary point of a twice differentiable function f if

V(%) =0.
Fixed-point characterization
Multiply by -1 and add x to both sides to obtain the fixed point condition:

x =% —aVf(x) for all o € R.
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Geometric interpretation of stationarity

f()

Observation: o Neither X, nor X is necessarily equal to x* !

Proposition (*Local minima, maxima, and saddle points)

Let x be a stationary point of a twice differentiable function f.
1. If V2f(X) = 0, then the point X is called a local minimum or a second order stationary point (SOSP).
2. If V2f(X) < 0, then the point X is called a local maximum.

3. If VZf(i) = 0, then the point X can be a saddle point, a local minimum, or a local maximum.
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Local minima

. 4 3 2,3
min{x* — 3x T sx
IER{ + T 2 } 1
ar :4:E3—9a:2—i-29z:—i-§
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Choose 2° =0 and o = &

mlzxo—aj—f
T

T

16

ILHELI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

|z:m0
2 5

6
:0—

=
Nlw
=

Slide 17/ 45

T

k

v.

global minimum

converges to a local minimum!

EPFL



From local to global optimality
Definition (Local minimum)
Given f: RP — RU {400}, a vector x* € RP is called a local minimum of f if there exists ¢ > 0 s.t.

f(x*) < f(x) Vx€ERP with [x—x*||<e.

Theorem

If Q C RP is a convex set and f: RP — (—oo, +00] is a proper convex function, then a local minimum of f over
Q is also a global minimum of f over Q.

Proof.

Suppose x* is a local minimum but not global, i.e. there exist x € RP s.t. f(x) < f(x*). By convexity,
Flax* + (1 - a)x) < af(x*) + (1 — a)f(x) < f(x*),Ya € [0,1]

which contradicts the local minimality of x*. m]

Theorem

Let f: RP — R be a convex differentiable function. Then any stationary point of f is a global minimum.
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Effect of very small step-size «...

1

min - (z — 3)2

xER

df

—=x-3

dx

N T
ol 1 2 3 4 5 6
T

ChoosexO:5anda:%
xlzxo—adwlx b0 =90~ %2 4.8
x2:x17adz|l g =48- 10 .8 =4.62

x¥ converges very slowly.
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Effect of very large step-size a...

1
min - (z — 3)2

xER
df
—=r-3
dx
N T
0 1 2 3 4 5 6
! 20 z2
Choose z° = 5 and a = %
xlzxo—ag—i’x:mo :5—32:0
2 =gl - a%ble =0- %(73) = %
z* diverges.
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Discontinuities

In many practical problems,
we need to minimize the cost under some constraints.

:= min {f(x) XGX}

xERP
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Nonsmooth functions

F(x) + (vi,y =x)

Definition (Subdifferential)

The subdifferential of f at x, denoted df(z), is the set of all vectors v satisfying
fy) 2 f@)+@wy—x)+o(ly—zl) asy—=

If the function f is differentiable, then its subdifferential contains only the gradient.

Subgradient method

Choose a starting point x°, receive a subgradient from the (set of) subdifferential, and iterate

XL = xF _ 085 (xF)

where aj, > 0 is a step-size procedure to be chosen so that x* converges to a stationary point.
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Subdifferentials and (sub)gradients

Subgradient method

Choose a starting point x°, receive a subgradient from the (set of) subdifferential, and iterate

XL = xF _ 0 8f(xF)

where aj, > 0 is a step-size procedure to be chosen so that x* converges to a stationary point.

f(=)

Example Remark:
d|z| = {sgn(z)}, if z £ 0, but [-1,1], if 2 = 0. The step-size aj, often needs to decrease with k.
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Is convexity of f enough for an iterative optimization algorithm?

y f(2)

Constraints
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Smooth unconstrained convex minimization

Problem (Mathematical formulation)
The unconstrained convex minimization problem is defined as:
f* = min f(x)
XERP

1. f is a convex function that is

> proper : Vx € RP, —oo < f(x) and there exists x € RP such that f(x) < +oo.
> closed : The epigraph epif = {(x,t) € RPT!, f(x) < t} is closed.
> smooth : f is differentiable and its gradient V f is L-Lipschitz.

2. The solution set 8* := {x* € dom (f) : f(x*) = f*} is nonempty.
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Example: Maximum likelihood estimation and M-estimators

Problem

Let x! € RP be unknown and by, ..., by, be i.i.d. samples of a random variable B with p.d.f.
Pyt (b) € P := {px(b) : x € RP}. Goal: Estimate x7 from b1, ..., bn.

Optimization formulation (ML estimator)

n

1

x5 =a i —— 1 b; = a; i X

ML g = E 1 [p, (b;)] rgf;Rr;f( )
=1

Theorem (Performance of the ML estimator [3, 6])
The random variable X, satisfies

lim \/’71.]71/2 ()A(ML —Xh) 4 Z ~N(0,1),

n—o00

where J := —E [Vi In [px(B)]] |x is the Fisher information matrix associated with one sample. Roughly

speaking,

=xi

| VRITY2 (3o %) B~ T @ =p = | [[%m % [ = O/m) |
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Gradient descent methods

Definition
Gradient descent (GD) Starting from x° € dom(f), update {x*};>¢ as
xFHl = x*F — 0, V(xF) = x*F + oy p”.

Notice that p* := —V f(x*) is the steepest descent (anti-gradient) search direction.

Key question: how to choose ay, to have descent/contraction?
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Gradient descent methods

Definition

Gradient descent (GD) Starting from x° € dom(f), update {xk}kzo as

xFHl = x*F — 0, V(xF) = xF + ap”.

Notice that p* := —V f(x*) is the steepest descent (anti-gradient) search direction.

Key question: how to choose ay, to have descent/contraction?

Next few slides: structural assumptions
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L-smooth, p-strongly convex functions

Definition (Recall Lecture 3)

Let f: QO — R, Q C RP be a continuously differentiable function. Then, f p-strongly convex if for any x,y € Q,
o
FO) = f6) + (VF),y = %) + S lly = 3.
The function f is L-smooth if for any x,y € Q,
L 2
F) < FG) +(VI(x),y —x) + Zlly — x]lz.

If f is twice differentiable, an equivalent characterization of f being L-smooth and p-strongly convex is

pl 2 V2 f(x) < L1
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L-smooth, p-strongly convex functions

Definition (Recall Lecture 3)

Let f: QO — R, Q C RP be a continuously differentiable function. Then, f p-strongly convex if for any x,y € Q,
o
F¥) 2 £+ (Vf(x),y = %) + S lly = x]3.
The function f is L-smooth if for any x,y € Q,
L 2
F) < FG) +(VI(x),y —x) + Zlly — x]lz.

If f is twice differentiable, an equivalent characterization of f being L-smooth and p-strongly convex is

pl 2 V2 f(x) < L1

Observations: o Both p and L show up in convergence rate characterization of algorithms
o Unfortunately, p, L are usually not known a priori...

o When they are known, they can help significantly (even in stopping algorithms)
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Example: Least-squares estimation

Problem
Let x4 € RP and A € R™*P (full column rank). Goal: estimate x!, given A and

b:Axh+w,

where w denotes unknown noise.

Optimization formulation (Least-squares estimator)

1
min =||b— Ax|3 .
x€ERP 2

f)

Structural properties

1. Vf(x) = AT(Ax —b), and V2 f(x) = ATA.
2. ApI = V2f(x) 2 M1, where Ay > Ao > ... > Ap are the eigenvalues of ATA.

3. It follows that L = A1 and pn = Ay, If Ap > 0, then f is L-smooth and p-strongly convex, otherwise f is
just L-smooth.

4. Since rank(AT A) < min{n, p}, if n < p, then \p, = 0.
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Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from x° € dom(f), produce the sequence x!,...,x*, ... according to
xFHl = x*F — 0, V(xF) = x*F + ayp”.

Notice that p* := —V f(x*) is the steepest descent (anti-gradient) direction.
Key question: how do we choose o, to have descent/contraction?
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Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from x° € dom(f), produce the sequence x!,...,x*, ... according to
xFHl = xk aka(xk) = x" + ay,pF.

Notice that p* := —V f(x*) is the steepest descent (anti-gradient) direction.
Key question: how do we choose o, to have descent/contraction?

Step-size selection
Case 1: If f is L-smooth, then:
1. We can choose 0 < aj < % The optimal choice is oy, := %
2. ay can be determined by a line-search procedure:
2.1 Exact line search: o := arg min f(x’C - onf(xk)).

a>0
2.2 Back-tracking line search with Armijo-Goldstein's condition:

Fx" —aVf(x")) < f(x") = cal VF)I?, e € (0,1/2].

Case 2: If in addition to being L-smooth, f is u-strongly convex, then:
2 . . 2
1. We can choose 0 < aj < T The optimal choice is oy, = T
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Towards a geometric interpretation |

Remarks: o Let f be L-smooth with gradient V f(x) and Hessian V2 f(x).

o First-order Taylor approximation of f at y:

F(x) > f(y) +(VI(y),x—y)

y SR (Vi)Y X)X

o Convex functions: 15t-order Taylor approximation is a global lower surrogate.
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An equivalent characterization of smoothness

Lemma

Let f be a continuously differentiable convex function :

L
f is L-Lipschitz gradient — f(y) < f(x) + (Vf(x),y — x) + §||y —x||3

Proof: o By Taylor's theorem:

1
f(y):f(X)+<Vf(X),y—X>+/ (Vi(x+7(y —%) = Vi(x),y — x)dr.
0

Therefore,
1
f(y)—f(X)—<Vf(X)7y—X>S/ IVf(x+7(y —x)) = V)" - ly — x[ldr
0

! L
< Luy—xué/ rdr = Zlly - I3
0
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Gradient descent methods: geometrical

intuition
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Gradient descent methods: geometrical intuition

Structure in optimization: * k

(1) F0) 2 f(x) + (V) x —xF)
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Gradient descent methods: geometrical intuition

Majorize:
FO6) < FO) (70,3 x¥) + £ = x4 = Qo)
Minimize:

xF = argmin Qp (x, x*)
x

1 2 f(x)
_ ; C(k_E k
= argmin (|x <x LVf(x )> ‘
:xk_lvf(xk) b
L P
Structure in optimization: <* k1 gk

(1) F0) = fx) +(VF(x),x - %) .
(2)  fO) < FOP) (V) x = x) + Sl = xF 3
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Gradient descent methods: geometrical intuition

Majorize:

L'>L (2)

F) < F) + (V") % = x5) + %HX* x* 3 = Que(x, %)

Minimize:

xF*1 = arg min Qr (%, xk)
x

f(x)
= arg min
x

k 1 (K :
x—(x —?Vf(x ))H
=x* - T},v,f(x’“)

slower

Structure in optimization: * 3. k
(1) 00 = fF(x") + (V") x = xb) I xFH1
2 fx)< f(xk)+<Vf(xk),x—xk>+§Hx—xk||§
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Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

1
f is L-smooth, = F&R) — f(x*)
. 2 k *
f is L-smooth and p-strongly convex, a=——: [x" —x"2
L+p
q 1 k *
f is L-smooth and pu-strongly convex, w= [[x% — x*]|2

L—p _ k—1 . L e 2
Note that Thn = rfl where k := L is the condition number of V< f.
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Convergence rate of gradient descent

Theorem
Let f be a twice-differentiable convex function, if

2L

. 1 k
f is L-smooth, a= = D f(xY) - f(x*) < P ||x0 - x*||§
2 L —
f is L-smooth and p-strongly convex, a=——: [x¥—x*|. < (7“) Ix0 — x*||2
L+p L+p
k
1 L— 2
f is L-smooth and pu-strongly convex, a=—: |x¥—x*|2 < (7“) : 1x° — x*|2
L L+ p

L—p _ k—1 . L e 2
Note that Thn = rfl where K := L is the condition number of V= f.

o Assumption: Lipschitz gradient. Result: convergence rate in objective values.
o Assumption: Strong convexity. Result: convergence rate in sequence of the iterates and in objective values.

Remarks: o Note that the suboptimal step-size choice a = % adapts to the strongly convex case

o That is, it features a linear rate vs. the standard sublinear rate.
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Example: Ridge regression

Optimization formulation
> Let A € R"*P and b € R" given by b = AxY 4+ w, where w € R" is some noise.
> A classical estimator of xb, known as ridge regression, is

1 P
min f(x):= =||b— Ax||%2 + Z|x||3.
min f(x) = 5| 13+ £ 113

where p > 0 is a regularization parameter

Remarks: o fis L-smooth and p-strongly convex with:
L L=XM(ATA)+p;
2. p=X(ATA) +p;
3. where A1 > ... > X, are the eigenvalues of ATA.
o The ratio kK = % decreases as p increases, leading to faster linear convergence.

o Note that if n < p and p = 0, we have p = 0, hence f is only L-smooth.

o We can expect only O(1/k) convergence from the gradient descent method.
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Example: Ridge regression

Case 1:

n = 500,p = 2000,p =0
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2
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Example: Ridge regression
Case 1: n = 500,p = 2000, p = 0 Case 2: n = 500, p = 2000, p = 0.01\,(ATA)
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Smooth unconstrained non-convex minimization

Problem (Mathematical formulation)

Let us consider the following problem formulation:

min f(x)

xXERP

> f is a smooth and possibly non-convex function.

> Recall that finding the global minimizer, i.e., f* := minxerp f(x), is NP-hard
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Example: Image classification using neural networks

Neural network formulation
> (aj, b;): sample points, o(-): non-linear activation function

> the function class H is given by H := {hx(a)7 X € Rd}, where

x:(W17”’17W27”’27"'7wk7”k)7 WieRdiXdi_17 I‘l‘ieRdi7
hx(a) = o (Wio (-- 0 (Wao (Wia+ py) + po) -+ +) + 1y)

> the loss function is given by L(hx(a),b) := (b — hx(a))2.

Example: Image classification

Imagenet: 1000 object classes.
1.2M/100K train/test images
Below human level error rates!
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Example: Phase retrieval for Fourier ptychography

Definition (Phase retrieval)

Given a set of measurements of the amplitude of a signal, phase retrieval is the task of finding the phase for the
original signal that satisfies certain constraints/properties.

Definition (Fourier ptychography)

Fourier ptychography is the task of reconstructing high-resolution images from low resolution samples, based on
optical microscopy. It is a special case of phase retrieval problem.
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Example: Phase retrieval for Fourier ptychography

Definition (Phase retrieval)

Given a set of measurements of the amplitude of a signal, phase retrieval is the task of finding the phase for the
original signal that satisfies certain constraints/properties.
Definition (Fourier ptychography)

Fourier ptychography is the task of reconstructing high-resolution images from low resolution samples, based on
optical microscopy. It is a special case of phase retrieval problem.

Lens Aperture

0\ Specimen
Sources of tilted I

illumination Diffraction pattern Detector in
moves as illumination image plane
is tilted
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The necessity of non-convex optimization

Why non-convex?

> Inherent properties of optimization problem, e.g., phase retrieval

> Robustness or better estimation, e.g., binary classification with non-convex losses

Optimization Formulation: Phase Retrieval

: 2 2
min || Ax|? — b3

where x € CP is a complex signal and |Ax| is the component-wise magnitude of the measurement Ax.

Optimization Formulation: Binary Classification

n
. 1 2
min ¢ — E (bi — g(ai,x))
@ n
i=1
where g(-, ) is non-linear, and hence, the loss function is non-convex.
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Notion of convergence: Stationarity

o Let f:R% — R be twice-differentiable and x* € argmin,cpa f(x)

Definition (Recall - First order stationary point)

A point X is a first order stationary point of a twice differentiable function f(x) if

V(%) =0.

Definition (Recall - Second order stationary point)

A point X is a second order stationary point of a twice differentiable function f(x) if

Vf(®) =0 and V2f(x) > 0.
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Geometric interpretation of stationarity

f(z)

o Note that neither %, nor X is not necessarily equal to x* !!
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Assumptions and the gradient method

Assumption: Smoothness

Let f be a twice differentiable function that is L-Lipschitz gradient with respect to ¢2-norm, such that,

[[Vf(x) = V)2 < Lllx = yll2

Gradient descent

Let a < % be the constant step size and x° € dom(f) be the initial point. Then, gradient method produces
iterates using the following iterative update,

xFTl = xk — onf(xk)
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Convergence rate and iteration complexity

Theorem ([1])

Let f be a twice differentiable L-Lipschitz gradient function, and o < % Then, gradient method converges to
the FOSP with the following properties:

Convergence rate to an e-FOSP:

IVFe*)l =0 (%) .

Iteration complexity to reach an e-FOSP:
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Wrap up!

> Lecture 5 on Friday 16:00 - 18:00
> Handout 2 (self study)
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