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Survey responses

◦ A majority of respondents are familiar with Python.
▶ Most are comfortable with Jupyter notebooks.
▶ There is still some room to learn PyTorch.

Remark: ◦ Homeworks will be given as Jupyter notebooks.
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Outline

▶ This lecture
1. Linear algebra: Norms, matrix norms, dual norms
2. Analysis: Continuity, Lipschitz continuity, differentiation
3. Convexity: Convex sets, convex functions, subdifferentials, L-Lipschitz gradient functions, strong convexity
4. Convergence rates and convergence plots

▶ Next lecture
1. Gradient descent methods
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Vector norms

Definition (Vector norm)
A norm of a vector in Rp is a function ∥ · ∥ : Rp → R such that for all vectors x, y ∈ Rp and scalar λ ∈ R
(a) ∥x∥ ≥ 0 for all x ∈ Rp nonnegativity
(b) ∥x∥ = 0 if and only if x = 0 definitiveness
(c) ∥λx∥ = |λ|∥x∥ homogeniety
(d) ∥x + y∥ ≤ ∥x∥ + ∥y∥ triangle inequality

Observations: ◦ There is a family of ℓq-norms parameterized by q ∈ [1, ∞];

◦ For x ∈ Rp, the ℓq-norm is defined as ∥x∥q :=
(∑p

i=1 |xi|q
)1/q .

Example

(1) ℓ2-norm: ∥x∥2 :=
√∑p

i=1 x2
i (Euclidean norm)

(2) ℓ1-norm: ∥x∥1 :=
∑p

i=1 |xi| (Manhattan norm)

(3) ℓ∞-norm: ∥x∥∞ := max
i=1,...,p

|xi| (Chebyshev norm)
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Vector norms contd.

Definition (Quasi-norm)
A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by
∥x + y∥ ≤ c (∥x∥ + ∥y∥) for a constant c ≥ 1.

Definition (Semi(pseudo)-norm)
A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example
▶ The ℓq-norm is in fact a quasi norm when q ∈ (0, 1), with c = 21/q − 1.
▶ The total variation norm (TV-norm) defined (in 1D): ∥x∥TV :=

∑p−1
i=1 |xi+1 − xi| is a semi-norm since it

fails to satisfy (b); e.g., any x = c(1, 1, . . . , 1)T for c , 0 will have ∥x∥TV = 0 even though x , 0.

Definition (ℓ0-“norm”)
∥x∥0 = limq→0∥x∥q

q = |{i : xi , 0}|

Observations: ◦ The ℓ0-“norm” counts the non-zero components of x. Hence, it is not a norm.
◦ It does not satisfy the property (c) ⇒ it is also neither a quasi- nor a semi-norm.
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Vector norms contd.

Norm balls
Radius r ball in ℓq-norm: Bq(r) = {x ∈ Rp : ∥x∥q ≤ r}

∥x∥0 ≤ 2 ℓ0.5-quasi norm ball ℓ1-norm ball

ℓ2-norm ball ℓ∞-norm ball TV-semi norm ball

Table: Some norm balls in R3
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Vector norms contd.

Definition (Dual norm)
Let ∥ · ∥ be a norm in Rp, then the dual norm denoted by ∥ · ∥∗ is defined:

∥x∥∗ = sup
∥y∥≤1

xT y, for all x ∈ Rp

Observations: ◦ The dual of the dual norm is the original (primal) norm, i.e., ∥x∥∗∗ = ∥x∥.

◦ The dual of ∥ · ∥q is ∥ · ∥p where p is such that 1
q

+ 1
p

= 1.

◦ Hölder’s inequality: |xT y| ≤ ∥x∥q∥y∥p, where p ∈ [1, +∞) and 1
q

+ 1
p

= 1.

◦ Cauchy-Schwarz is a special case of Hölder’s inequality (q = p = 2).

Example
i) ∥ · ∥2 is dual of ∥ · ∥2 (i.e. ∥ · ∥2 is self-dual): sup{zT x | ∥x∥2 ≤ 1} = ∥z∥2.
ii) ∥ · ∥1 is dual of ∥ · ∥∞, (and vice versa): sup{zT x | ∥x∥∞ ≤ 1} = ∥z∥1.
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Matrix norms

◦ Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)
A norm of an n × p matrix is a map ∥ · ∥ : Rn×p → R such that for all matrices A, B ∈ Rn×p and scalar λ ∈ R
(a) ∥A∥ ≥ 0 for all A ∈ Rn×p nonnegativity
(b) ∥A∥ = 0 if and only if A = 0 definitiveness
(c) ∥λA∥ = |λ|∥A∥ homogeniety
(d) ∥A + B∥ ≤ ∥A∥ + ∥B∥ triangle inequality

Definition (Matrix inner product)
Matrix inner product is defined as follows

⟨A, B⟩ = trace
(

ABT
)

.
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Matrix norms contd.

◦ Similar to vector ℓp-norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)
∥A∥q :=

(∑p

i=1 (σ(A)i)q
)1/q , where σ(A)i is the ith singular value of A.

Example (with r = min{n, p} and σi = σ(A)i)

∥A∥S
1 = ∥A∥∗ :=

r∑
i=1

σi ≡ trace
(√

AT A
)

(Nuclear/trace)

∥A∥S
2 = ∥A∥F :=

√√√√ r∑
i=1

(σi)2 ≡

√√√√ n∑
i=1

p∑
j=1

|aij |2 (Frobenius)

∥A∥S
∞ = ∥A∥ := max

i=1,...,r
{σi} ≡ max

x,0

∥Ax∥
∥x∥

(Spectral/matrix)
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Matrix norms contd.
Definition (Operator norm)
The operator norm between ℓq and ℓr (1 ≤ q, r ≤ ∞) of a matrix A is defined as

∥A∥q→r = sup
∥x∥q≤1

∥Ax∥r

Problem
Show that ∥A∥2→2 = ∥A∥ i.e., ℓ2 to ℓ2 operator norm is the spectral norm.

Solution
∥A∥2→2 = sup

∥x∥2≤1
∥Ax∥2 = sup

∥x∥2≤1
∥UΣVT x∥2 (using SVD of A)

= sup
∥x∥2≤1

∥ΣVT x∥2 (rotational invariance of ∥ · ∥2)

= sup
∥z∥2≤1

∥Σz∥2 (letting VT x = z)

= sup
∥z∥2≤1

√√√√min(n,p)∑
i=1

σ2
i z2

i = σmax = ∥A∥ □
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Matrix norms contd.

Other examples
▶ The ∥A∥∞→∞ (norm induced by ℓ∞-norm) also denoted ∥A∥∞, is the max-row-sum norm:

∥A∥∞→∞ := sup{∥Ax∥∞ | ∥x∥∞ ≤ 1} = max
i=1,...,n

p∑
j=1

|aij |.

▶ The ∥A∥1→1 (norm induced by ℓ1-norm) also denoted ∥A∥1, is the max-column-sum norm:

∥A∥1→1 := sup{∥Ax∥1 | ∥x∥1 ≤ 1} = max
i=1,...,p

n∑
j=1

|aij |.
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Matrix norms contd.

Matrix & vector norm analogy

Vectors ∥x∥1 ∥x∥2 ∥x∥∞
Matrices ∥X∥∗ ∥X∥F ∥X∥

Definition (Dual of a matrix)
The dual norm of A ∈ Rn×p is defined as

∥A∥∗ = sup
{

trace
(

AT X
)

| ∥X∥ ≤ 1
}

.

Matrix & vector dual norm analogy

Vector primal norm ∥x∥1 ∥x∥2 ∥x∥∞
Vector dual norm ∥x∥∞ ∥x∥2 ∥x∥1

Matrix primal norm ∥X∥∗ ∥X∥F ∥X∥
Matrix dual norm ∥X∥ ∥X∥F ∥X∥∗
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A ∈ Rn×n is positive semidefinite (denoted A ⪰ 0) if xT Ax ≥ 0 for all x , 0; while it is
positive definite (denoted A ≻ 0) if xT Ax > 0.

Observations: ◦ A ⪰ 0 iff all its eigenvalues are nonnegative i.e. λmin(A) ≥ 0.

◦ Similarly, A ≻ 0 iff all its eigenvalues are positive i.e. λmin(A) > 0.

◦ A is negative semidefinite if −A ⪰ 0; while A is negative definite if −A ≻ 0.

◦ Semidefinite ordering of two symmetric matrices, A and B: A ⪰ B if A − B ⪰ 0.

Example (Matrix inequalities)
1. If A ⪰ 0 and B ⪰ 0, then A + B ⪰ 0
2. If A ⪰ B and C ⪰ D, then A + C ⪰ B + D
3. If B ⪯ 0 then A + B ⪯ A
4. If A ⪰ 0 and α ≥ 0, then αA ⪰ 0
5. If A ≻ 0, then A2 ≻ 0
6. If A ≻ 0, then A−1 ≻ 0
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Continuity in functions
Definition (Continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is a continuous function over its domain Q if and only if

lim
x→y

f(x) = f(y), ∀y ∈ Q,

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)
We denote the class of continuous functions f over the domain Q as f ∈ C(Q).

Definition (Lipschitz continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is called Lipschitz continuous if there exists a constant value K ≥ 0
such that the following holds

|f(y) − f(x)| ≤ K∥y − x∥2, ∀x, y ∈ Q.

Observation: ◦ “Small” changes in the input result into “small” changes in the function values.
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Continuity in functions
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Differentiability in functions

Definition (Differentiability)
Let Q ⊆ Rp. A function f : Q → R is said to be k-times continuously differentiable on Q if all its partial
derivatives up to k-th order exist and are continuous over Q. Notation: f ∈ Ck(Q).

◦ A key quantity is the gradient of the function f : Q → R, which we denote as ∇f (ei is the i-th unit vector):

∇f(x) :=
p∑

i=1

∂f

∂xi
ei =

[
∂f

∂x1
, · · · ,

∂f

∂xp

]T

.

◦ For k = 2, we dub ∇2f as the Hessian of f , i.e.,
[
∇2f

]
i,j

:= ∂2f
∂xi∂xj

.
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Gradients as linear approximations

A “Taylor” way of thinking about gradients:
Let Q ⊆ Rp. If f ∈ C1(Q), then u 7→ ⟨∇f(x), u⟩ is the unique linear function from Q to R such that

lim
u⇒0

|f(x + u) − f(x) − ⟨∇f(x), u⟩|
∥u∥

→ 0

Example
The gradient of f : x 7→ ∥x∥2

2 is
∇f(x) = 2x

Proof : ◦ To apply the Taylor way of thinking, we consider the following quantity:

f(x + u) − f(x) = ∥x + u∥2
2 − ∥x∥2

2 = ∥x∥2
2 + 2⟨x, u⟩ + ∥u∥2

2 − ∥x∥2
2

= 2⟨x, u⟩ + ∥u∥2
2

= ⟨2x, u⟩ + o(∥u∥2).

◦ Since the linear map is unique, we get that the gradient is ∇f(x) = 2x.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 42



To be or not to be differentiable

f(x) = x2 · sin(1/x), x � 0

f(x)

x

Thursday, May 22, 14

x

f(x)

f(x) = |x|

Wednesday, June 18, 14

Figure: (Left panel) ∞-times continuously differentiable function in R. (Right panel) Non-differentiable f(x) = |x| in R.
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Gradients of vector valued functions

Jacobian
When f : Rn ⇒ Rd is a vector valued function, the following d × n matrix J of partial derivatives[

Jf (x)
]

i,j
:=

∂fi

∂xj
(x)

is called the Jacobian of f at x.

Observations: ◦ The Jacobian is the transpose of the gradient, when f is real valued.

◦ Thinking in terms of Jacobians is really helpful when we need to use the chain rule.

Chain Rule via Jacobians
Let ◦ denote the functional composition: g ◦ f := g(f(x)). If g ◦ f is differentiable at x, then the following holds

Jg◦f (x) = Jg(f(x))Jf (x).

Hence, the chain rule, which is helpful in differentiating function compositions, can be related to a simple
product of Jacobian matrices.
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Example: Quadratic loss

Example
The gradient of the function h : x 7→ ∥Ax − b∥2

2 is given by the following expression:

∇h(x) = 2AT (Ax − b).

Proof: ◦ We apply the chain rule:
▶ The Jacobian of the affine function f : x 7→ Ax − b is Jf (x) = A.
▶ The gradient of g : x 7→ ∥x∥2

2 is ∇g(x) = 2x ⇒ Jg(x) = 2xT .
▶ Using the chain rule on the composition h = g ◦ f :

Jg◦f (x) = Jg(f(x))Jf (x)
= Jg(Ax − b)Jf (x)

= 2(Ax − b)T A.

◦ Since h is real valued, the Jacobian is a row vector, we obtain the gradient by transposing.
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Example: Logistic loss

Example
The gradient of the logistic loss f(x) = log(1 + exp(−b(aT x))) is given by the following expression:

∇f(x) = −b
exp(−b(aT x))

1 + exp(−b(aT x))
a.

Proof: ◦ f is a composition of the following functions:
▶ h(x) = aT x, whose Jacobian is Jh(x) = aT

▶ g(u) = log(1 + exp(−bu)), whose “1 × 1 Jacobian” is Jg(u) = −b
exp(−bu)

1+exp(−bu)
▶ By the chain rule:

Jf (x) = Jg(h(x)) · Jh(x)

= −b
exp(−b(aT x))

1 + exp(−b(aT x))
aT

◦ The gradient is simply the transpose of Jf (x).

Use Jacobians !
With Jacobians, differentiating function compositions is a direct mechanical process.
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A more complicated example here and another one at the advanced material!

Example
The gradient of f : x 7→ wT

2 σ(W1x + µ) is given by the following expression:

∇f(x) = Jf (x)T = WT
1 (σ′(W1x + µ) ⊙ w2),

where σ is a non-linear function that applies to each coordinate, and ⊙ denotes the component wise product.

Proof: ◦ We use the fact that f is a composition of the following functions:
▶ h(x) = W1x + µ, whose Jacobian is Jh(x) = W1.

▶ g(x) =

σ(x1)
...

σ(xn)

, whose Jacobian is Jg(x) = diag(σ′(x1), . . . , σ′(xn)).

▶ k(x) = wT
2 x whose Jacobian is Jk(x) = wT

2 .
▶ By the chain rule, we have that

Jf (x) = Jk(g(h(x))) · Jg(h(x)) · Jh(x)

= wT
2 · diag(σ′([W1x + µ]1), . . . , σ′([W1x + µ]n)) · W1.

◦ Simply transpose the Jacobian to get the gradient and use ⊙ to replace the diagonal matrix.
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Some reminders on sets
Definition (Closed set)
A set is closed if it contains all its limit points.

Definition (Open set)
A set is open if its complement is closed.

Definition (Closure of a set)
Let Q ⊆ Rp be a given open set, i.e., it contains a neighborhood of all its points. Then, the closure of Q,
denoted as cl(Q), is the smallest closed set in Rp that includes Q.

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cl(Q) (Right panel).
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Convexity of sets

Definition
▶ Q ⊆ Rp is a convex set if

∀x1, x2 ∈ Q ∀α ∈ [0, 1], αx1 + (1 − α)x2 ∈ Q.

▶ Q ⊆ Rp is a strictly convex set if

∀x1, x2 ∈ Q ∀α ∈ (0, 1), αx1 + (1 − α)x2 ∈ interior(Q).

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

x1

x2

↵x
1 +

(1�
↵)x

2

Monday, May 26, 14

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

▶ f is called concave, if −f is convex.

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

Figure: (Left) Non-convex (Middle) Convex (Right) Concave
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

Question: ◦ Can we extend f from Q to Rp preserving convexity?
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

Question: ◦ Can we extend f from Q to Rp preserving convexity?

Definition (Extended real-valued convex functions)

f(x) :=
{

f(x) if x ∈ Q
+∞ if otherwise

Recall, dom(f) = Q. If Q , Rp, extended f is never continuous, but it is l.s.c.
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

Proposition
Every ℓq-norm ∥ · ∥q (q ≥ 1) in Rp is convex.

Proof :
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

Proposition
Every ℓq-norm ∥ · ∥q (q ≥ 1) in Rp is convex.

Proof : ◦ Proof by intimidation.
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

Proposition
Every ℓq-norm ∥ · ∥q (q ≥ 1) in Rp is convex.

Proof : ◦ Kidding! By triangle inequality and homogeneity of the norm:

∥αx1 + (1 − α)x2∥q ≤ ∥αx1∥q + ∥(1 − α)x2∥q = α∥x1∥q + (1 − α)∥x2∥q , ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].
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Convexity of functions

Definition
Let Q be a convex set in Rp. A function f : Q → R is called convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2), ∀x1, x2 ∈ Q, ∀α ∈ [0, 1].

Example
Function Example Attributes

ℓq vector norms, q ≥ 1 ∥x∥2, ∥x∥1, ∥x∥∞ convex

ℓq matrix norms, q ≥ 1 ∥X∥∗ =
∑rank(X)

i=1
σi convex

Square root function
√

x concave
Max of convex functions maxi fi(x), fi convex convex
Min of concave functions mini fi(x), fi concave concave
Sum of convex functions

∑n

i=1
fi, fi convex convex

Logarithmic functions log (det(X)) concave, assumes X ≻ 0
Affine/linear functions

∑n

i=1
Xii both convex and concave

Eigenvalue functions λmax(X) convex, assumes X = XT
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Revisiting: Alternative definitions of function convexity II [2]
Recall, the epigraph of f : Q → R ∪ {+∞} is

epi(f) = {(x, u) ∈ Q × R : f(x) ≤ u} .

Definition
A function f : Q → R ∪ {+∞} is convex if its epigraph is a convex set.

x

f(x)

epi(f)

Monday, May 26, 14

Figure: Epigraph — the region in green above graph f .
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Revisiting: Alternative definition of function convexity III [2]

f(x)

x

f(y)

y

the function lies above all 
of its tangents

f(y) + hrf(y),x � yi

Definition
Let Q is a convex set in Rp. A function f ∈ C1(Q) is called convex on Q if for any x, y ∈ Q:

f(x) ≥ f(y) + ⟨∇f(y), x − y⟩.

Definition
A function f ∈ C1(Q) is called convex on Q if for any x, y ∈ Q:

⟨∇f(y) − ∇f(x), y − x⟩ ≥ 0.

⋆That is, if its gradient is a monotone operator.
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Revisiting: Alternative definition of function convexity IV [2]

Definition
Let Q is a convex set in Rp. A function f ∈ C2(Q) is called convex on Q if for any x ∈ Q:

∇2f(x) ⪰ 0.

Remarks: ◦ Geometrical interpretation: the graph of f has zero or positive (upward) curvature.
◦ However, this does not exclude flatness of f .

x

f(x)

Flatness

Upward curvature

Wednesday, June 18, 14
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Revisiting: Alternative definition of function convexity V [2]

Definition
Let Q is a convex set in Rp. A function f ∈ C2(Q) is called convex on Q if for any x ∈ Q, v ∈ Rp, the function
g(t) = f(x + tv) is convex on its domain {t|x + tv ∈ Q}.

Remarks: ◦ This approach allows us to check the convexity long 1-dimensional lines.
◦ This concept generalizes to self-concordant functions (advanced material).
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Strict convexity

Definition
A function f : Q → R ∪ {+∞} is called strictly convex on Q if

f(αx1 + (1 − α)x2) < αf(x1) + (1 − α)f(x2) ∀x1 x2 ∈ Q, ∀α ∈ (0, 1).

Theorem
If Q ⊂ Rp is a convex set and f : Rp → (−∞, +∞] is a proper and strictly convex function, then there exist at
most one minimizer of f over Q.

x

f(x)

x1 x2

f(x2)f(x1)

Set of minima

Monday, June 16, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.
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Subdifferentials and (sub)gradients in convex functions

Definition
Let f : Q → R ∪ {+∞} be a convex function. The subdifferential of f at a point x ∈ Q is defined by the set:

∂f(x) = {v ∈ Rp : f(y) ≥ f(x) + ⟨v, y − x⟩ for all y ∈ Q} .

Each element v of ∂f(x) is called subgradient of f at x.

Definition
Let f : Q → R ∪ {+∞} be a differentiable convex function. Then, the subdifferential of f at a point x ∈ Q
contains only the gradient, i.e., ∂f(x) = {∇f(x)}.

Remark: ◦ Subdifferential generalizes ∇ to nondifferentiable functions
f(x)

x
...

f(x) + hv1,y � xi

f(x) + hv2,y � xi

f(y)

y

Tuesday, May 27, 14

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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Generalized subdifferentials for nonconvex functions
Definition
Let f : Q → R ∪ {+∞} be a locally Lipschitz function. The Clarke subdifferential of f at a point x ∈ Q is
defined by the set:

∂Cf(x) = conv
({

v ∈ Rp :
∃xk → x, ∇f

(
xk
)

exists,
∇f
(

xk
)

→ v

})
.

Remarks: ◦ For convex functions, the Clarke subdifferential reduces to subdifferential.
◦ If x⋆ is a local minimum of f , then 0 ∈ ∂Cf(x⋆).

x

f(x)

<latexit sha1_base64="uS8Ix/locdCZhP6sBvlrE95p3zc="></latexit>

f(x) =

(
x + 3 if x  �3

ReLU(x, 0) if x > �3

Figure: The Clarke subdifferential at −3 and 0: ∂C f(−3) = ∂Cf(0) = [0, 1]. Non-subdifferentiability at −3 and 0.
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Heads up: Be careful with automatic differentiation!

Example (Simple)
The gradient of the function f : x 7→ ReLU(x) − ReLU(−x) = x at 0 is given by g(0) = 1.

Remark: ◦ Subdifferentials are tricky business!

◦ Automatic differentiation can be wrong [3]!

◦ We will revisit when we discuss the Moreau-Rockafellar’s decomposition theorem.

x

f(x)

Figure: (Left panel) ReLU function. (Right panel) Calculation of g(0) in PyTorch.
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L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient convex functions)
Let f : Q → R be differentiable and convex, i.e., f ∈ F1(Q). Then, f has a Lipschitz gradient if there exists
L > 0 (the Lipschitz constant) such that ∥∇f(x) − ∇f(y)∥2 ≤ L∥x − y∥2, ∀x, y ∈ Q.

Proposition (L-Lipschitz gradient convex functions)
f ∈ F1(Q) has L-Lipschitz gradient if and only if the following function is convex:

h(x) =
L

2
∥x∥2

2 − f(x) ∀x ∈ Q.

Definition (Class of 2-nd order Lipschitz functions)
The class of twice continuously differentiable functions f on Q with Lipschitz continuous Hessian is denoted as
F2,2

L (Q) (with 2 → 2 denoting the spectral norm)

∥∇2f(x) − ∇2f(y)∥2→2 ≤ L∥x − y∥2, ∀x, y ∈ Q,

Remark: ◦ F l,m
L : functions that are l-times differentiable with m-th order Lipschitz property.
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Example: Logistic regression

Problem (Logistic regression)
Given a sample vector ai ∈ Rp and a binary class label bi ∈ {−1, +1} (i = 1, . . . , n), we define the conditional
probability of bi given ai as:

P(bi|ai, x♮, µ) ∝ 1/(1 + e−bi(⟨x♮,ai⟩+µ)),

where x♮ ∈ Rp is some true weight vector, µ ∈ R is called the intercept. How to estimate x♮ given the sample
vectors, the binary labels, and µ?

Optimization formulation

min
x∈Rp

1
n

n∑
i=1

log(1 + exp(−bi(aT
i x + µ)))︸                                                 ︷︷                                                 ︸

f(x)

Structural properties
Let A = [a1, . . . , an]T (design matrix), then f ∈ F2,1

L , with L = 1
4 ∥AT A∥
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µ-strongly convex functions

Definition
A function f : Q → R ∪ {+∞} , Q ⊆ Rp is called µ-strongly convex on its domain if and only if for any
x, y ∈ Q and α ∈ [0, 1] we have:

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) −
µ

2
α(1 − α)∥x − y∥2

2.

The constant µ is called the convexity parameter of function f .

▶ The class of k-differentiable µ-strongly functions is denoted as Fk
µ(Q).

▶ Strong convexity ⇒ strict convexity, BUT strict convexity ⇏ strong convexity

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

µ

2
↵(1 � ↵)kx1 � x2k2

2

n

Thursday, May 29, 14

Figure: (Left) Convex (Right) Strongly convex
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Alternative: µ-strongly convex functions

Definition
A convex function f : Q → R is said to be µ-strongly convex if

h(x) = f(x) −
µ

2
∥x∥2

2

is convex, where µ is called the strong convexity parameter.

▶ The class of k-differentiable µ-strongly functions is denoted as Fk
µ(Q).

▶ Non-smooth functions can be µ-strongly convex: e.g., f(x) = ∥x∥1 + µ
2 ∥x∥2

2.

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

µ

2
↵(1 � ↵)kx1 � x2k2

2

n

Thursday, May 29, 14

Figure: (Left) Convex (Right) Strongly convex
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q). Then, f is µ-strongly convex
function if and only if

∇2f(x) ⪰ µI, ∀x ∈ Rp.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q). Then, f is µ-strongly convex
function if and only if

∇2f(x) ⪰ µI, ∀x ∈ Rp.

Example (Toy example)
Consider the quadratic function f(x) = 1

2 ∥x∥2
2. Then, f is a

µ-strongly convex since ∇2f(x) = I =⇒ µ = 1.

x

f(x)

f(x) =
1

2
x2

Wednesday, June 18, 14

Figure: Toy example for µ-strongly convex
functions.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q). Then, f is µ-strongly convex
function if and only if

∇2f(x) ⪰ µI, ∀x ∈ Rp.

Example (Overdetermined least squares)
Consider an overdetermined linear system of equations
b = Ax♮ + w where A ∈ Rn×p is a full column-rank matrix and
x♮ is unknown. Assume that AT A ⪰ ρI, ρ > 0 and let
f(x) = 1

2 ∥b − Ax∥2
2. Then, f is a µ-strongly convex function, i.e.,

f ∈ F2
µ(Rp) since:

∇2f(x) = AT A where AT A ⪰ ρI =: µI.

= +

n � p

n ⇥ p

x\

Ab w

Wednesday, July 2, 14

Figure: Overdetermined system of linear
equations.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q). Then, f is µ-strongly convex
function if and only if

∇2f(x) ⪰ µI, ∀x ∈ Rp.

Example (Trivial)
Any linear function f(x) = cT x + β ∈ F1

µ(Rp) for µ = 0 since

∇f(x) = c and ∇2f(x) = 0.

x

f(x)

�
Constant slope

Wednesday, June 18, 14

Figure: Counterexample for µ-strongly
convex functions.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q). Then, f is µ-strongly convex
function if and only if

∇2f(x) ⪰ µI, ∀x ∈ Rp.

Lemma
A continuously differentiable function f belongs to F1

µ(Q) if there exists a constant µ > 0 such that for any
x, y ∈ Q, we have:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ +
µ

2
∥y − x∥2

2

Lemma
Let f be continuously differentiable. The following condition, holding for all x, y ∈ Q ⊆ Rp, is equivalent to
inclusion that f is µ-strongly convex function:

⟨∇f(x) − ∇f(y), x − y⟩ ≥ µ∥x − y∥2
2.
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L-smooth, µ-strongly convex functions

Definition
Let f : Q → R, Q ⊆ Rp be a continuously differentiable function. Then, f is both µ-strongly and L-smooth
convex function if for any x, y ∈ Q, we have:

µ

2
∥y − x∥2

2 ≤ f(y) − f(x) − ⟨∇f(x), y − x⟩ ≤
L

2
∥y − x∥2

2

for constants 0 < µ ≤ L. We denote that f ∈ F1,1
µ,L(Q). If f is twice differentiable, an equivalent condition is

µI ⪯ ∇2f(x) ⪯ LI.
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L-smooth, µ-strongly convex functions

Definition
Let f : Q → R, Q ⊆ Rp be a continuously differentiable function. Then, f is both µ-strongly and L-smooth
convex function if for any x, y ∈ Q, we have:

µ

2
∥y − x∥2

2 ≤ f(y) − f(x) − ⟨∇f(x), y − x⟩ ≤
L

2
∥y − x∥2

2

for constants 0 < µ ≤ L. We denote that f ∈ F1,1
µ,L(Q). If f is twice differentiable, an equivalent condition is

µI ⪯ ∇2f(x) ⪯ LI.

Example
Consider an linear system of equations b = Ax♮ where µI ⪯ AT A ⪯ LI. Let f(x) = 1

2 ∥b − Ax∥2
2. Then, f is

both µ-strongly convex and L-smooth function, i.e., f ∈ F2,1
µ,L(Rp) since:

∇2f(x) = AT A where µI ⪯ AT A ⪯ LI.
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L-smooth, µ-strongly convex functions

Definition
Let f : Q → R, Q ⊆ Rp be a continuously differentiable function. Then, f is both µ-strongly and L-smooth
convex function if for any x, y ∈ Q, we have:

µ

2
∥y − x∥2

2 ≤ f(y) − f(x) − ⟨∇f(x), y − x⟩ ≤
L

2
∥y − x∥2

2

for constants 0 < µ ≤ L. We denote that f ∈ F1,1
µ,L(Q). If f is twice differentiable, an equivalent condition is

µI ⪯ ∇2f(x) ⪯ LI.

Observations: ◦ Both µ and L show up in convergence rate characterization of algorithms

◦ Unfortunately, µ, L are usually not known a priori...

◦ When they are known, they can help significantly (even in stopping algorithms)
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Convergence rates
Definition (Convergence of a sequence)
The sequence u1, u2, ..., uk, ... converges to u⋆ (denoted limk→∞ uk = u⋆), if

∀ ε > 0, ∃ K ∈ N : k ≥ K ⇒ ∥uk − u⋆∥ ≤ ε

Convergence rates: the “speed" at which a sequence converges
▶ sublinear: if there exists c > 0 such that

∥uk − u⋆∥ = O(k−c)

▶ linear: if there exists α ∈ (0, 1) such that

∥uk − u⋆∥ = O(αk)
▶ Q-linear: if there exists a constant r ∈ (0, 1) such that

lim
k→∞

∥uk+1 − u⋆∥
∥uk − u⋆∥

= r

▶ superlinear: if r = 0, we say that the sequence converges superlinearly.

▶ quadratic: if there exists a constant µ > 0 such that limk→∞
∥uk+1−u⋆∥
∥uk−u⋆∥2 = µ
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Example: Convergence rates

Examples of sequences that all converge to u⋆ = 0:

▶ Sublinear: uk = 1/k

▶ Linear: uk = 0.5k

▶ Superlinear: uk = k−k

▶ Quadratic: uk = 0.52k
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Wrap up!

◦ Next handout will have rate examples!

◦ See advanced material for material beyond convexity!
▶ Star-convexity
▶ Invexity

◦ Lecture on Monday!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 42



⋆Jacobian of the self-attention module [5]

Example
We consider the Jacobian of f : X 7→ σs

(
XW⊤

QWKX⊤
)

XW⊤
V , where σs is row-wise softmax, X ∈ Rds×d,

WQ, WK , WV ∈ Rdm×d, f(X) ∈ Rds×dm .

▶ Define βi := σs

(
X(i,:)W⊤

QWKX⊤
)⊤

∈ Rds We can reformulate the definition above as:

f(X) =

β⊤
1
...

β⊤
ds

XW⊤
V .

▶ By the product rule:

∂f(X)
∂X(p,k) =


∂β⊤

1
∂X(p,k)

...
∂β⊤

ds

∂X(p,k)

XW⊤
V +

β⊤
1
...

β⊤
ds

 ∂(XW⊤
V )

∂X(p,k) . (1)
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⋆Jacobian of self-attention module [5]

▶ Suppose β = Softmax(u) ∈ Rds , then ∂β
∂u = diag(β) − ββ⊤. This is because:

▶ We can reformulate β as: β =


exp (u(1))∑ds

i=1
exp (u(i))

.

.

.
exp (u(ds))∑ds

i=1
exp (u(i))

 .

▶ Thus

∂β(j)

∂u(k) =

∂
exp (u(j))∑ds

i=1
exp (u(i))

∂u(k) =


− exp (u(j))−exp (u(k))

(
∑ds

i=1
exp (u(i)))2

if j , k

exp (u(k))
∑ds

i=1
exp (u(i))−(exp (u(k)))2(∑ds

i=1
exp (u(i))

)2 if j = k

=
{

−β(j)β(k) if j , k

β(k) − β(j)β(k) if j = k
.

▶ Thus
∂β

∂u
= diag(β) − ββ

⊤
. (2)
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⋆Jacobian of self-attention module [5]

▶ Then we can calculate the term ∂βi

∂X(p,k) for i ∈ [ds] in the first part of Eq. (1).

∂βi

∂X(p,k) =
(

diag(βi) − βiβ
⊤
i

) ∂

(
XW⊤

KWQX(i,:)⊤
)

∂X(p,k)

=
(

diag(βi) − βiβ
⊤
i

)(
epe⊤

k W⊤
KWQX(i,:)⊤

+ XW⊤
KWQekδip

)
,

(3)

where ep is the pth canonical basis vector of Rds , ek is the kth canonical basis vector of Rd.
▶ Next, let’s consider the second term in Eq. (1):

∂(XW⊤
V )

∂X(p,k) = epe⊤
k W⊤

V . (4)

▶ Lastly, substituting Eq. (3) and Eq. (4) into Eq. (1):

∂f(X)
∂X(p,k) =


(

diag(β1) − β1β⊤
1
)(

epe⊤
k W⊤

KWQX(1,:)⊤ + XW⊤
KWQekδ1p

)
...(

diag(βds
) − βds

β⊤
ds

)(
epe⊤

k W⊤
KWQX(ds,:)⊤ + XW⊤

KWQekδdsp

)
XW⊤

V +

β⊤
1
...

β⊤
ds

 epe⊤
k W⊤

V .
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State Space Model (SSM)
◦ A state space model represents a system based on a set of first-order differential equations.

◦ State equation is given by ẋ = f(x, u), where

▶ x ∈ Rp is the state vector,

▶ u ∈ Rn is the input vector,

▶ f is a (potentially nonlinear) function.

◦ Output equation is given by y = g(x, u), where

▶ y ∈ Rd is the output vector.

▶ g is a function.

◦ For linear systems, the state equation and output equation are given by

ẋ = Ax + Bu
y = Cx + Du

where
▶ A ∈ Rp×p is the state matrix.
▶ B ∈ Rp×n is the input matrix.

▶ C ∈ Rd×p is the output matrix.
▶ D ∈ Rd×n is the feedthrough matrix.
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Jacobian of SSM

Example
Consider a nonlinear system θ̈ = − sin(θ) + u. Define x1 = θ̇ and x2 = θ̈. Then it can be written as an SSM:

ẋ =
[

ẋ1
ẋ2

]
=
[

x2
− sin(x1) + u

]
y = x1

▶ Jacobian Matrices:
▶ A = ∂f

∂x =
[

0 1
− cos(x1) 0

]
▶ B = ∂f

∂u =
[

0
1

] ▶ C = ∂g
∂x =

[
1 0

]
▶ D = ∂g

∂u = 0

▶ The nonlinear system can be approximated by a linear system. Given an equilibrium point (x0, u0), the
linearized state and output equations are given by:

δẋ ≈ A|(x0,u0) δx + B|(x0,u0) δu

δy ≈ C|(x0,u0) δx + D|(x0,u0) δu

where δx and δu represent small changes around (x0, u0) . Note that ẋ = δẋ since x0 is a constant.
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Convex hull
Definition (Convex hull)
Let Q ⊆ Rp be a set. The convex hull of Q, i.e., conv(Q), is the smallest convex set that contains Q.

Definition (Convex hull of points)
Let Q ⊆ Rp be a finite set of points with cardinality |Q|. The convex hull of Q is the set of all convex
combinations of its points, i.e.,

conv(Q) =

{ |Q|∑
i=1

αixi :
|Q|∑
i=1

αi = 1, αi ≥ 0, ∀i, xi ∈ Q

}
.

Q

Tuesday, June 17, 14

conv(Q)

Tuesday, June 17, 14

Figure: (Left) Discrete set of points Q. (Right) Convex hull conv(Q).
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⋆Star convex sets

Definition
Q ⊆ Rp is a star-shaped set if there exists a x1 ∈ Q such that

∀x2 ∈ Q ∀α ∈ [0, 1], αx1 + (1 − α)x2 ∈ Q.

<latexit sha1_base64="ySiXTfHBWirPOeIw6lMlkAh+kd4=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiG5cV7AM6Q8mkmTY0kxmSjFiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtMbnO/+8iU5rF8MNOE+REZSR5ySoyVPC8iZhyE2dNs4A6qNafuzIFXiVuQGhRoDapf3jCmacSkoYJo3XedxPgZUYZTwWYVL9UsIXRCRqxvqSQR0342zzzDZ1YZ4jBW9kmD5+rvjYxEWk+jwE7mGfWyl4v/ef3UhNd+xmWSGibp4lCYCmxinBeAh1wxasTUEkIVt1kxHRNFqLE1VWwJ7vKXV0nnou5e1hv3jVrzpqijDCdwCufgwhU04Q5a0AYKCTzDK7yhFL2gd/SxGC2hYucY/gB9/gAtTpHJ</latexit>x1
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Figure: Example of a star-shaped but not convex set.
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⋆Star convexity

Definition
A function f : Q → R ∪ {+∞} is called star-convex on Q if there exists a global minimum x⋆ ∈ Q such that

f(αx⋆ + (1 − α)x) ≤ αf(x⋆) + (1 − α)f(x) ∀x ∈ Q, ∀α ∈ [0, 1].

Remarks: ◦ Any convex function is star-convex.
◦ Star-convexity can be viewed as convexity between any point x and a global minimum x⋆.
◦ Allows the negative gradient −∇f(x) to the desired minimization direction.
◦ Consider the following objective function:

min
x

f(x) :=
1
n

(
n∑

i=1

|bi − ⟨ai, x⟩ |q
)1/q

.

▶ Star-convex for any real number q when n ≤ p.
▶ Convex for q ≥ 1.
▶ (q = 1): the least-absolute deviation estimator. (q = 2): the least-squares estimator.
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⋆Invex function

Definition
Let Q be an open set in Rp. A differentiable function f : Q → R is called invex if there exists a function
η : Q × Q → Rp such that

f(x) ≥ f(y) + ⟨∇f(y), η(x, y)⟩, ∀x, y ∈ Q.

Remarks: ◦ Any convex function is invex function: η(x, y) = x − y.
◦ Any local minima in an invex function is global minima!

Proof : ◦ Suppose x⋆ is a local minimum, then ∇f(x⋆) = 0. By the definition above, we have

f(x) ≥ f(x⋆) + ⟨0, η(x, y)⟩ = f(x⋆), ∀x ∈ Q.

◦ ⇒ x⋆ is also a global minimum.

Example (Causality via directed acyclic graph (DAG) learning [1])
For any s > 0, define fs : {X ∈ Rd×d | s > ρ(X ◦ X)} → R as fs(X) def= − log det(sI − X ◦ X) + d log s,
where ◦ is the Hadamard product, ρ(·) is the spectral radius, and X is the graph weighted adjacency matrix.
▶ Then, fs is an invex function. fs(X) ≥ 0 with fs(X) = 0 if and only if X is a DAG.
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⋆Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)
A convex function φ : R→ R is self-concordant if

|φ′′′(t)| ≤ 2φ′′(t)3/2, ∀t ∈ R.

Affine Invariance of self-concordant functions
Let φ̃(t) = φ(αt + β) where α , 0. Then, φ̃ is self-concordant iff φ is.

Important remarks of self-concordance
1. Generalize to higher dimension: A convex function f : Rn → R is said to be (standard) self-concordant if

|φ′′′(t)| ≤ 2φ′′(t)3/2, where φ(t) := f(x + tv) for all t ∈ R, x ∈ dom f and v ∈ Rn such that
x + tv ∈ dom f .

2. Affine invariance still holds in high dimension.
3. Self-concordant functions are efficiently minimized by the Newton method and its variants.
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