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Survey responses

o A majority of respondents are familiar with Python.
> Most are comfortable with Jupyter notebooks.

> There is still some room to learn PyTorch.

How familiar are you with Jupyter notebooks ?

How familiar are you with the PyTorch module for Python?

Remark: o Homeworks will be given as Jupyter notebooks.
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Outline

> This lecture

1. Linear algebra: Norms, matrix norms, dual norms

2. Analysis: Continuity, Lipschitz continuity, differentiation

3. Convexity: Convex sets, convex functions, subdifferentials, L-Lipschitz gradient functions, strong convexity
4. Convergence rates and convergence plots

> Next lecture

1. Gradient descent methods
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Vector norms

Definition (Vector norm)

A norm of a vector in RP is a function || - || : RP» — R such that for all vectors x,y € RP and scalar A € R

(a) |Ix|| > 0O for all x € RP

(b) [|x]| = 0 if and only if x = 0
() Al = Al
(d) IIx+ vl < [l + Iyl
Observations: o There is a family of {4-norms parameterized by ¢ € [1, >0];
o For x € RP, the £4-norm is defined as ||x||q := ( le |:ci|‘1)1/q.
Example
(1) La-norm:  ||x]|2 := Zf:l z2  (Euclidean norm)
(2) fi-norm:  ||x||1 := Zle s (Manhattan norm)
(3) Loo-norm:  ||x||cc := max [z;| (Chebyshev norm)
i=1,..

°
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Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by
Ix + ¥yl < c(x]| + |lyll) for a constant ¢ > 1.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example
> The £4-norm is in fact a quasi norm when g € (0, 1), with ¢ = 2l/a 1.

> The total variation norm (TV-norm) defined (in 1D): [|x|Tv := ﬁ:ll |zi41 — x;] is a semi-norm since it
fails to satisfy (b); e.g., any x = ¢(1,1,...,1)T for ¢ # 0 will have ||x||Tv = 0 even though x # 0.

Definition (£p-"norm")
lIx]lo = limg—ollx[|§ = |{i : z; # 0}
Observations: o The £p-"norm” counts the non-zero components of x. Hence, it is not a norm.

o It does not satisfy the property (c) = it is also neither a quasi- nor a semi-norm.
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Vector norms contd.

Norm balls
Radius r ball in £4-norm: Bg(r) = {x €RP : ||x||q <7}

[[x]lo <2 £o.5-quasi norm ball £1-norm ball
£2-norm ball Lso-norm ball TV-semi norm ball

Table: Some norm balls in R®
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Vector norms contd.

Definition (Dual norm)

Let || - || be a norm in R?, then the dual norm denoted by || - ||* is defined:
x| = sup xTy, forall x eRP
llyll<1
Observations: o The dual of the dual norm is the original (primal) norm, i.e., ||x||** = ||x]|.
o The dual of || - ||q is || - || where p is such that % + % =1.

o Hélder's inequality: |xTy| < ||x||q|ly|lp, where p € [1,+0c0) and % + % =1.

o Cauchy-Schwarz is a special case of Hdlder's inequality (¢ = p = 2).

Example
i) |- |l2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|2 < 1} = ||z||2.
ii) || - [l1 is dual of || - ||, (and vice versa): sup{z’x | ||x|jcc < 1} = ||z|1.
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Matrix norms

o Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an n X p matrix is a map || - || : R®*P — R such that for all matrices A, B € R"*P and scalar A € R

(a) ||A]| > 0 for all A € R**P nonnegativity
(b) |JA]| =0 if and only if A =0 definitiveness
(©) IAAl = AllA] homogeniety
(d) JA+BJ| <|A| +|B] triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

(A, B) = trace (ABT) .
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Matrix norms contd.

o Similar to vector £,-norms, we have Schatten g-norms for matrices.
Definition (Schatten g-norms)
|A]lq := ( le (U(A)i)q)l/q, where a(A); is the 3" singular value of A.

Example (with 7 = min{n, p} and o; = o(A);)

™
AT =[A]« :Zai Etrace(\/ﬂ) (Nuclear/trace)
=1
T n P
IAlS  =llAllr =D @) = ,[D> D layl* (Frobenius)
i=1 i=1 j=1
A
IAIS =lA] = max {0} = maxl2X] (Spectral /matrix)
i=1,...,r x#0  ||x]|
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Matrix norms contd.

Definition (Operator norm)
The operator norm between ¢, and ¢, (1 < g,r < co0) of a matrix A is defined as

[Allg—r = sup [lAx]|

lIx]lg<1
Problem
Show that ||A|l2—2 = ||A]| i.e., 2 to ¢2 operator norm is the spectral norm.
Solution
|All22 = sup ||Ax|2 = sup [[USVTx|s (using SVD of A)
lIxll2<1 lIxll2<1
= sup ||ZVTx|2 (rotational invariance of || - ||2)
lIx]l2<1

= sup || Zzl2 (letting VTx = z)
llzll2<1

min(n,p)
= sup afzf = omax = ||A]| O
lzl<t \
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Matrix norms contd.

Other examples

> The ||A]lco—soo (norm induced by £oo-norm) also denoted ||A ||, is the max-row-sum norm:
P

|Alloo—oo = sup{[Axlloc | lxlloo < 1} = max " ay|.
1= “es

seeey

Jj=1

> The ||A|l1—1 (norm induced by ¢1-norm) also denoted ||A||1, is the max-column-sum norm:

n
1Al = sup(llAxily | Il <1} = max 3 oyl
s
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Matrix norms contd.
Matrix & vector norm analogy

Vectors | x[lx | ixll2 | [xlleo
Matrices [ [IX[.. [ [X[r | [XI]

Definition (Dual of a matrix)

The dual norm of A € R"*? is defined as

[|[A]* = sup {trace (ATX) [ 1X] < 1} .

Matrix & vector dual norm analogy

Vector primal norm [|x]|1 X||2 [l o0
Vector dual norm [1%]l 0o X||2 [ESIR
Matrix primal norm [1X][ X|| 11X]
Matrix dual norm [1X]| Xl [«
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A € R™*" is positive semidefinite (denoted A > 0) if x” Ax > 0 for all x # 0; while it is

positive definite (denoted A - 0) if x” Ax > 0.
Observations: o A > 0 iff all its eigenvalues are nonnegative i.e. A\pin(A) > 0.
o Similarly, A > 0 iff all its eigenvalues are positive i.e. Amin(A) > 0.
o A is negative semidefinite if —A > 0; while A is negative definite if —A > 0.

o Semidefinite ordering of two symmetric matrices, A and B: A > B if A—B > 0.

Example (Matrix inequalities)

1. fA>0and B>0,then A+B >0
.MfA>Band C>D,then A+ C>B+D
. fB<0then A+B <A
. If A >0and a >0, then A > 0
. If A >0, then A2 =0
. If A =0, then A= =0

S B W N
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Continuity in functions
Definition (Continuity)

Let f: Q — R where Q@ C RP. Then, f is a continuous function over its domain Q if and only if

lim f(x) = f(y), Vy€Q,

X—y

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain Q as f € C(Q).
Definition (Lipschitz continuity)

Let f: Q — R where Q@ C RP. Then, f is called Lipschitz continuous if there exists a constant value K > 0
such that the following holds

If(y) = f(x)| < Klly = x[l2, Vx, y€Q.
Observation: o “Small” changes in the input result into “small” changes in the function values.
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Continuity in functions
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Differentiability in functions

Definition (Differentiability)

Let @ C RP. A function f: Q@ — R is said to be k-times continuously differentiable on Q if all its partial
derivatives up to k-th order exist and are continuous over Q. Notation: f € Ck(Q).

o A key quantity is the gradient of the function f : Q — R, which we denote as V f (e; is the i-th unit vector):

P
of of of }T
\% = i = |7 s | -
f(X) — Bzie |:821 azp
_ 2 ; . 2 ._ _0%f
o For k = 2, we dub V= f as the Hessian of f, i.e., [V f]_ = 5
%] L30T
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Gradients as linear approximations

A “Taylor" way of thinking about gradients:
Let Q CRP. If f € C1(Q), then u s (Vf(x),u) is the unique linear function from Q to R such that

o W = £69 = (VI Wl
us30 [[all
Example
The gradient of f: x — |[|x||2 is
Vf(x)=2x
Proof : o To apply the Taylor way of thinking, we consider the following quantity:

Foetw) = £0x) = e+ ull3 = I3 = [l + 20, w) + a3 - [1x]3
= 20x,w) + ul3
= (2x,w) + o([Jull2).

o Since the linear map is unique, we get that the gradient is V f(x) = 2x.
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To be or not to be differentiable

f(z)

N

TN T T

Figure: (Left panel) co-times continuously differentiable function in R. (Right panel) Non-differentiable f(x) = || in R.
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Gradients of vector valued functions

Jacobian
When f: R® =33 R? is a vector valued function, the following d x n matrix J of partial derivatives
ofi
(1769, 7= 50

is called the Jacobian of f at x.
Observations: o The Jacobian is the transpose of the gradient, when f is real valued.
o Thinking in terms of Jacobians is really helpful when we need to use the chain rule.

Chain Rule via Jacobians
Let o denote the functional composition: go f := g(f(x)). If go f is differentiable at x, then the following holds

Jgor(x) = Ig(f(x))J f(x).

Hence, the chain rule, which is helpful in differentiating function compositions, can be related to a simple
product of Jacobian matrices.
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Example: Quadratic loss

Example

The gradient of the function h : x — ||Ax — b||§ is given by the following expression:

Vh(x) = 2AT (Ax — b).

Proof: o We apply the chain rule:
> The Jacobian of the affine function f: x — Ax — b is J5(x) = A.
> The gradient of g : x — ||x|2 is Vg(x) = 2x = J4(x) = 2xT.
> Using the chain rule on the composition h = g o f:
Jgor(x) = Jg(F(x) I (x)
= J4(Ax — b)I(x)
=2(Ax—-b)TA.

o Since h is real valued, the Jacobian is a row vector, we obtain the gradient by transposing.
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Example: Logistic loss

Example
The gradient of the logistic loss f(x) = log(1 + exp(—b(aTx))) is given by the following expression:

exp(~b(aTx))

Vi) = 7b1 +exp(—b(aTx))

Proof: o f is a composition of the following functions:
> h(x) = aTx, whose Jacobian is Jj (x) = aT
> g(u) = log(1 + exp(—bu)), whose “1 x 1 Jacobian” is J4(u) = —b%

> By the chain rule:
Jp(x) = Jg(h(x)) - In(x)
exp(—b(a’x))
1+ exp(—b(aTx))

o The gradient is simply the transpose of J ¢(x).

Use Jacobians !
With Jacobians, differentiating function compositions is a direct mechanical process.
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A more complicated example here and another one at the advanced material!
Example
The gradient of f : x — wQTcr(Wlx + p) is given by the following expression:

Vix)=J;(x)" = Wi (0/(Wix + p) O w2),

where o is a non-linear function that applies to each coordinate, and ® denotes the component wise product.

Proof: o We use the fact that f is a composition of the following functions:
> h(x) = W1ix + p, whose Jacobian is Jp(x) = Wi.
o(x1)
> g(x) = : , whose Jacobian is J4(x) = diag(c’(x1), ..., 0’ (xn)).
(%)

> k(x) = wlx whose Jacobian is Jy(x) = wl.
> By the chain rule, we have that
J5(x) = I (g(h(x))) - Ig(h(x)) - In(x)
= wj - diag(o’ ((Wix + p1),..., 0" ((Wix + pln)) - Wi
o Simply transpose the Jacobian to get the gradient and use ® to replace the diagonal matrix.
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Some reminders on sets

Definition (Closed set)

A set is closed if it contains all its limit points.

Definition (Open set)
A set is open if its complement is closed.

Definition (Closure of a set)

Let @ C RP be a given open set, i.e., it contains a neighborhood of all its points. Then, the closure of Q,
denoted as cl(Q), is the smallest closed set in RP that includes Q.

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cI(Q) (Right panel).
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Convexity of sets
Definition
> O C RP is a convex set if
Vx1,%X2 € Q@ Va€[0,1], axi+(1—a)x2 € Q.
> O C RP is a strictly convex set if

Vx1,%x2 € @ Va € (0,1), axi+ (1 — a)xz € interior(Q).

QQ} €T 2
X
O N
Q/Qé

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex
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Convexity of functions

Definition
Let Q be a convex set in RP. A function f: Q — R is called convex if

flaxi + (1 — a)x2) < af(x1) + (1 — a) f(x2), Vx1,x2 € Q, Va €[0,1].

> fis called concave, if —f is convex.

1) 1@

af(z) + (1 = a)f(xz)

flz)g

O §— f(aw, + (1 - a)zz)

T2 1 To g

azy + (1 - a)zy

Figure: (Left) Non-convex (Middle) Convex (Right) Concave
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Convexity of functions

Definition
Let Q be a convex set in RP. A function f: Q — R is called convex if

flaxi + (1 — a)x2) < af(x1) + (1 — a) f(x2), Vx1,x2 € Q, Va €[0,1].

Question: o Can we extend f from Q to RP preserving convexity?
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Convexity of functions

Definition

Let Q be a convex set in RP. A function f: Q — R is called convex if

flaxi + (1 — a)x2) < af(x1) + (1 — a) f(x2), Vx1,x2 € Q, Va €[0,1].

Question: o Can we extend f from Q to RP preserving convexity?

Definition (Extended real-valued convex functions)

£ ::{ f(x) ifxeQ

+oo if otherwise

Recall, dom(f) = Q. If Q # RP, extended f is never continuous, but it is |.s.c.
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Convexity of functions

Definition

Let Q be a convex set in RP. A function f: Q — R is called convex if

flaxi + (1 — a)x2) < af(x1) + (1 — a) f(x2), Vx1,x2 € Q, Va €[0,1].

Proposition

Every £g-norm || - |lq (¢ > 1) in R is convex.

Proof :
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Convexity of functions

Definition

Let Q be a convex set in RP. A function f: Q — R is called convex if

flaxi + (1 — a)x2) < af(x1) + (1 — a) f(x2), Vx1,x2 € Q, Va €[0,1].

Proposition
Every £g-norm || - |lq (¢ > 1) in R is convex.
Proof : o Proof by intimidation.
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Convexity of functions

Definition

Let Q be a convex set in RP. A function f: Q — R is called convex if

flaxi + (1 — a)x2) < af(x1) + (1 — a) f(x2), Vx1,x2 € Q, Va €[0,1].

Proposition
Every Lq-norm || - |lq (¢ > 1) in R is convex.
Proof : o Kidding! By triangle inequality and homogeneity of the norm:

llaxi + (1 = a)xzllg < flaxillq + [|(1 — a)x2llg = alxillq + (1 = a)llx2lq, VX1, %2 € Q, Var € [0,1].
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Convexity of functions

Definition

Let Q be a convex set in RP. A function f: Q — R is called convex if

Example

flaxi + (1 — a)x2) < af(x1) + (1 — @) f(x2),

Vx1,%2 € Q, Va € [0,1].

Function

Example

Attributes

£4 vector norms, g > 1
£q matrix norms, ¢ > 1
Square root function
Max of convex functions
Min of concave functions
Sum of convex functions
Logarithmic functions
Affine/linear functions

Eigenvalue functions

lI¢ll2, [l 1]l o

X, =>4 o
VT
max; f;(x), fi convex
min; f;(x), fi concave
Z:;l fi, fi convex
log (det(X))
::1 Xii
)‘maX(X)

convex
convex
concave
convex
concave
convex
concave, assumes X > 0

both convex and concave

convex, assumes X = xT
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Revisiting: Alternative definitions of function convexity Il [2]
Recall, the epigraph of f: Q@ — RU {400} is
epi(f) = {(x,u) € QX R: f(x) <u}.

Definition
A function f: Q@ — RU {400} is convex if its epigraph is a convex set.

Tf(x)

Figure: Epigraph — the region in green above graph f.
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Revisiting: Alternative definition of function convexity 111 [2]

fx)

the function lies above all

/ of its tangents

Y o i+ (Viy).x-y) X

Definition
Let Q is a convex set in RP. A function f € Cl(Q) is called convex on Q if for any x, y € Q:

f(x) > f(y) +(VI(y), x=y).

Definition
A function f € Cl(Q) is called convex on Q if for any x, y € Q:
(VIf(y) = Vf(x), y—x)=>0.

*That is, if its gradient is a monotone operator.
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Revisiting: Alternative definition of function convexity IV [2]

Definition
Let Q is a convex set in RP. A function f € C2(Q) is called convex on Q if for any x € O:
V2 f(x) = 0.
Remarks: o Geometrical interpretation: the graph of f has zero or positive (upward) curvature.

o However, this does not exclude flatness of f.

f ()

\ Upward curva’rurcy/
<\// 7

Flatnegg

xT
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Revisiting: Alternative definition of function convexity V [2]

Definition
Let Q is a convex set in RP. A function f € C2(Q) is called convex on Q if for any x € Q, v € RP, the function
g(t) = f(x + tv) is convex on its domain {t|x + tv € Q}.

Remarks: o This approach allows us to check the convexity long 1-dimensional lines.

o This concept generalizes to self-concordant functions (advanced material).
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Strict convexity
Definition
A function f: Q - RU {+oo} is called strictly convex on Q if

flaxi + (1 —a)x2) < af(x1) + (1 —a)f(x2) Vxix2€Q, Vaec(0,1).

Theorem
If ©Q C RP is a convex set and f: RP — (—oo, +00] is a proper and strictly convex function, then there exist at
most one minimizer of f over Q.

f(x) f(z)
Set of minima ofin) e
/ _______ 0 f(x2)
[l T(a) 18 (—Ef(ru.Jr(l—n),t;)
'T'l rT'2 T 1 A T2 g
azy £ (1 - a)zs

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.
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Subdifferentials and (sub)gradients in convex functions

Definition

Let f: Q@ - RU{+oo} be a convex function. The subdifferential of f at a point x € Q is defined by the set:
Of(x) ={veR” : f(y) = f(x)+ (v, y—x) forally € Q}.

Each element v of 0f(x) is called subgradient of f at x.

Definition

Let f: ©Q - RU {400} be a differentiable convex function. Then, the subdifferential of f at a point x € Q
contains only the gradient, i.e., 9f(x) = {Vf(x)}.

Remark: o Subdifferential generalizes V to nondifferentiable functions

Fx) + {va,y = x) X

G0+ (V)Y - x) X

S y
Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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Generalized subdifferentials for nonconvex functions

Definition
Let f: Q@ - RU{+oo} be a locally Lipschitz function. The Clarke subdifferential of f at a point x € Q is

defined by the set:
Ixk — x, Vf (xF) exists,
Oc f(x) = conv <{V€Rp : v (xk) —>v( ) .

Remarks: o For convex functions, the Clarke subdifferential reduces to subdifferential.

o If x* is a local minimum of f, then 0 € J¢ f(x*).

f(x)

x+3 ifo<-3
)= {RnLU(.Iu 0) ife>-3

-3 0| x

Figure: The Clarke subdifferential at —3 and 0: d¢ f(—3) = d¢ f(0) = [0, 1]. Non-subdifferentiability at —3 and 0.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 42



Heads up: Be careful with automatic differentiation!

Example (Simple)

The gradient of the function f : z — ReLU(z) — ReLU(—z) = z at 0 is given by g(0) = 1.
Remark: o Subdifferentials are tricky business!

o Automatic differentiation can be wrong [3]!

o We will revisit when we discuss the Moreau-Rockafellar's decomposition theorem.

f(z)
N .
o) =ReLU(z) 1mport torch
X = torch.tensor([0.], requires_grad=True)
f = torch.nn.ReLU()(x) - torch.nn.ReLU() (-x)
T f.backward()
f(z) = ~ReLU(~z) print(x.grad)
~

tensor([0.])

Figure: (Left panel) ReLU function. (Right panel) Calculation of g(0) in PyTorch.
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L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient convex functions)

Let f: @ — R be differentiable and convex, i.e., f € J—'l(Q). Then, f has a Lipschitz gradient if there exists
L > 0 (the Lipschitz constant) such that |V f(x) — Vf(y)ll2 < L||x — yll2, Vx,y € Q.

Proposition (L-Lipschitz gradient convex functions)

f € FY(Q) has L-Lipschitz gradient if and only if the following function is convex:

he) = S IIxI3 - fG) Vx € Q

Definition (Class of 2-nd order Lipschitz functions)

The class of twice continuously differentiable functions f on Q with Lipschitz continuous Hessian is denoted as
]—'i‘Q(Q) (with 2 — 2 denoting the spectral norm)

IV2f(x) = V2 f(¥)ll2m2 < Lix —yll2, ¥x,y €Q,

Remark: o ]—'lL’m: functions that are I-times differentiable with m-th order Lipschitz property.
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Example: Logistic regression

Problem (Logistic regression)

Given a sample vector a; € RP and a binary class label b; € {—1,+1} (i =1,...,n), we define the conditional
probability of b; given a; as:
P(bifas, %, ) oc 1/(1 + e (05 i) )y,

where x € RP is some true weight vector, j1 € R is called the intercept. How to estimate x! given the sample
vectors, the binary labels, and p?

Optimization formulation

n
1 T
’Zlélﬁzln - E log(1 + exp(—b;(a; x + p)))
i=1

F(x)

Structural properties
Let A = [a1,...,a,]T (design matrix), then f € ]-'2’1, with L = L|ATA|
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u-strongly convex functions

Definition
A function f: Q@ - RU{+o0},Q C RP is called p-strongly convex on its domain if and only if for any
x, y € Q and a € [0,1] we have:

Floox + (1= a)y) < af () + (1 = @)f(y) = Sa(l - a)lx - y[3.

The constant p is called the convexity parameter of function f.
> The class of k-differentiable p-strongly functions is denoted as fﬁ(Q).
> Strong convexity = strict convexity, BUT strict convexity = strong convexity

f(=) f(@)

af(z1) + (1 - a)f(a2) af(ar) +(1—a)f(x2)

f f(z2)

%u(l —a)flay — 23

O §— f(ax: + (1 - a)as)

T A rag z1 A Z2 g
axy + (1 — )z azy + (1 — a)xs

Figure: (Left) Convex (Right) Strongly convex
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Alternative: p-strongly convex functions

Definition
A convex function f: Q — R is said to be p-strongly convex if

h(x) = £() = SlIxI3

is convex, where p is called the strong convexity parameter.

> The class of k-differentiable p-strongly functions is denoted as ]—'Zf(Q).

> Non-smooth functions can be p-strongly convex: e.g., f(x) = ||x||1 + %||x||2

f(z)

af(z) + (1 - a)f(xz)

O € f(aw1 + (1 - a)zz)

5-
f(@)
af(@) + (1 - a)f(x)

_____ ,:f(@)

O € f(om + (1 - a)r)

1 A T2 g 1
azy + (1 —a)ry

T2
az; + (1 - a)es

Figure: (Left) Convex (Right) Strongly convex
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Properties of u-strongly convex functions

Lemma

Let f: Q —+ R, Q C RP be a twice differentiable convex function, i.e., f € fQ(Q). Then, f is u-strongly convex
function if and only if

V2f(x) = pl, Vx €RP.
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Properties of u-strongly convex functions

Lemma

Let f: Q —+ R, Q C RP be a twice differentiable convex function, i.e., f € fQ(Q). Then, f is u-strongly convex
function if and only if

V2f(x) = pl, Vx €RP.

Example (Toy example) 1

Consider the quadratic function f(x) = %HxH% Then, fis a
p-strongly convex since V2f(x) =1 =— pu=1.

Figure: Toy example for p-strongly convex
functions.
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Properties of u-strongly convex functions

Lemma

Let f: Q —+ R, Q C RP be a twice differentiable convex function, i.e., f € fQ(Q). Then, f is u-strongly convex

function if and only if

V2f(x) = pl, Vx €RP.

Example (Overdetermined least squares)

Consider an overdetermined linear system of equations
b = Ax! + w where A € R"X? is a full column-rank matrix and
x is unknown. Assume that ATA > pI,p > 0 and let

1

f(x) = 5llb— Ax||3. Then, f is a p-strongly convex function, i.e.,

[ € F2(RP) since:

V2f(x) = ATA where ATA > pI =: ul.
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Properties of u-strongly convex functions

Lemma

Let f: Q —+ R, Q C RP be a twice differentiable convex function, i.e., f € fQ(Q). Then, f is u-strongly convex
function if and only if

V2f(x) = pl, Vx €RP.

f(z)
Example (Trivial)
Any linear function f(x) = ¢Tx + 8 € F,.(RP) for u = 0 since 8 Constant s[ope
Vf(x)=c and V2f(x)=0.
x

Figure: Counterexample for pu-strongly
convex functions.
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Properties of u-strongly convex functions

Lemma

Let f: Q —+ R, Q C RP be a twice differentiable convex function, i.e., f € .7:2(Q). Then, f is u-strongly convex
function if and only if

V2f(x) = pl, Vx €RP.

Lemma

A continuously differentiable function f belongs to F, }L(Q) if there exists a constant y > 0 such that for any
X,y € Q, we have:

F9) 2 69 + (V). y = %) + Sy — I3

Lemma

Let f be continuously differentiable. The following condition, holding for all x,y € Q C RP, is equivalent to
inclusion that f is u-strongly convex function:

(VF(x) = VI(y),x—y) > pllx—yl3.
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L-smooth, p-strongly convex functions

Definition
Let f: Q@ — R, Q C RP be a continuously differentiable function. Then, f is both pu-strongly and L-smooth
convex function if for any x,y € Q, we have:

o L
Elly = xI13 < £) = 769 = (VF ),y = %) < Sy =13
for constants 0 < pu < L. We denote that f € F‘lt’lL(Q). If f is twice differentiable, an equivalent condition is

pI 2 V2 f(x) = L1
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L-smooth, p-strongly convex functions
Definition

Let f: Q@ — R, Q C RP be a continuously differentiable function. Then, f is both pu-strongly and L-smooth
convex function if for any x,y € Q, we have:

o L
Elly = xI13 < £) = 769 = (VF ),y = %) < Sy =13
for constants 0 < pu < L. We denote that f € F‘lt’lL(Q). If f is twice differentiable, an equivalent condition is

pI 2 V2 f(x) = L1

Example

Consider an linear system of equations b = Ax% where uI < ATA < LI Let f(x) = 1||b — Ax||3. Then, f is
both p-strongly convex and L-smooth function, i.e., f € ]-'i’lL(Rp) since:

V2f(x) = ATA where ul < ATA < LI
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L-smooth, p-strongly convex functions
Definition

Let f: Q@ — R, Q C RP be a continuously differentiable function. Then, f is both pu-strongly and L-smooth
convex function if for any x,y € Q, we have:

o L
Elly = xI13 < £) = 769 = (VF ),y = %) < Sy =13
for constants 0 < pu < L. We denote that f € F‘lt’lL(Q). If f is twice differentiable, an equivalent condition is

pI 2 V2 f(x) = L1

Observations: o Both p and L show up in convergence rate characterization of algorithms
o Unfortunately, p, L are usually not known a priori...

o When they are known, they can help significantly (even in stopping algorithms)
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Convergence rates
Definition (Convergence of a sequence)

1 5,2 k

The sequence u'l, u?,...,u”, ... converges to u* (denoted limy_, ., uf = u*), if

Ve>0,3KeN:k>K=|uf—u*|<e

Convergence rates: the “speed” at which a sequence converges
> sublinear: if there exists ¢ > 0 such that

[u* —u*|| = Ok~
> linear: if there exists o € (0, 1) such that

[u* —u*|| = O(a¥)
> Q-linear: if there exists a constant r € (0,1) such that

o s
k—oo ||uf —u*|

> superlinear: if r = 0, we say that the sequence converges superlinearly.

kE+1_ _ x
> quadratic: if there exists a constant p > 0 such that limy_, o W =pu
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Example: Convergence rates

Examples of sequences that all converge to u*

> Sublinear: u* = 1/k

> Linear: u* = 0.5%

> Superlinear: u* = k—F
; k 2k
» Quadratic: u® = 0.5
. CONVERGENCE RATES , CONVERGENCE RATES ) CONVERGENCE RATES
10 10 10 =~
v SUPERLINEAI DN UADRATIC
102 \-\ 102 | 102 . \\
“ \‘ \s\
107 107 \ 107 A S
| '
10° 10 \ 107 . | *
“l “ \\\
107 10 L 10 Y *
107 INEAR 10 N -0 : A
10° 10" 10% 107 10 20 30 40 07 2 4 6 8 10
Tteration (k) Tteration (k) Tteration (k)
ons@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch
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Wrap up!

o Next handout will have rate examples!

o See advanced material for material beyond convexity!
> Star-convexity

> Invexity

o Lecture on Monday!
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*Jacobian of the self-attention module [5]
Example
We consider the Jacobian of f : X — o (XWTWKXT) XW/,

Q v
Wo, Wi, Wy € RImXd, f(X) € RsXdm

. T
> Define 8, := o5 (X(“)WngXT) € R% We can reformulate the definition above as:

Bl
fX)=1| 1 | XWy.
Bi.
> By the product rule:
o8] 8T
X (p,k) 1
of(X) . T IXWy,)
I : XW,, + Aol
X (p.k) . 0X (p.k)
984, B,
ax(p.k) °
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*Jacobian of self-attention module [5]

> Suppose 8 = Softmax(u) € R%s, then g—ﬁ = diag(8) — BB . This is because:

exp (u(1))
S )
> We can reformulate 8 as: B8 =

exp (u(ds))

2o e )

> Thus
;Xp(u(J)) : — exp S;(j))—epr(u(k)) %k
pp» DT emw®) <Zi:1exp;u<’>>>2 .
uk) ENO) - exp<u<k>>z_jlexp (w(D) = (exp (u(k)))?2 .
v N2 iy =
(X2, e )
_ —/B(j)ﬁ(k) ifj#k
- B(k) _ ﬁ(j)ﬁ(k) ifj=k
» Thus
B .
oo = diag(8) — BB )
u
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*Jacobian of self-attention module [5]

> Then we can calculate the term for i € [ds] in the first part of Eq. (1).

ax(p k)

9B,
0X (p.k)

P i) T
)d(xw;me» )

- (diag(ﬂi) — BB 95X (p:k)

— (diag(8,) ~ 587 ) (erel WEWQX) 4 XW L Woerds ),

where e, is the pth canonical basis vector of R%s ey is the kth canonical basis vector of R%.
> Next, let's consider the second term in Eq. (1):
OXW) T
7BX(P*’“) epe, W
> Lastly, substituting Eq. (3) and Eq. (4) into Eq. (1):

(diag(8,) — 8187 ) (epek WL WX " +xw,T<wQek51p)
AUfX) _
X XWy +
(diag(ﬁds)fﬁdsﬂ;{s) (epek WTW X (ds) " +XW}WQek5d5p)
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State Space Model (SSM)
o A state space model represents a system based on a set of first-order differential equations.
o State equation is given by x = f(x,u), where
> x € RP is the state vector,
> u € R" is the input vector,
> fis a (potentially nonlinear) function.
o Output equation is given by y = g(x, u), where
> y € R is the output vector.
> g is a function.

o For linear systems, the state equation and output equation are given by

x = Ax + Bu
y =Cx+ Du
where
> A € RPXP js the state matrix. > C € R4*P s the output matrix.
> B € RPX™ is the input matrix. > D € R%X" is the feedthrough matrix.
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Jacobian of SSM

Example
Consider a nonlinear system = — sin(f) + u. Define x1 = 6 and x2 = 6. Then it can be written as an SSM:
. X1 X2
X = . = .
X9 —sin(x1) +u
y=x1
> Jacobian Matrices:
> _af _ 0 1
A=gx= — cos(x1) O} ’C:%‘Z:[l 0]
d
-3 |f] > D=9 -0

> The nonlinear system can be approximated by a linear system. Given an equilibrium point (x0,ug), the
linearized state and output equations are given by:

% ~ Al(xo,uo) ox + B‘(xo,uo) du

oy ~ C‘(xo,uo) ox + D|(x07u0) ou

where dx and du represent small changes around (xg,ugp) . Note that x = 0% since x¢ is a constant.
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Convex hull

Definition (Convex hull)

Let @ C R? be a set. The convex hull of Q, i.e., conv(Q), is the smallest convex set that contains Q.

Definition (Convex hull of points)

Let © C R? be a finite set of points with cardinality |Q|. The convex hull of Q is the set of all convex
combinations of its points, i.e.,

lions@epfl

ko] Q|
conv(Q) = Zaixi g Zai =1, a; >0,Vi, x; € Q
i=1 i=1
(<]
o
o
-] o
(<] (<]
° Q

Figure: (Left) Discrete set of points Q. (Right) Convex hull conv(Q).
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*Star convex sets

Definition
Q C RP is a star-shaped set if there exists a x; € Q such that

Vx2 € Q Vael0,1], axi+(1—a)xs € Q.

Figure: Example of a star-shaped but not convex set.
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*Star convexity
Definition
A function f: Q — RU {400} is called star-convex on Q if there exists a global minimum x* € Q such that

flax* + (1 —a)x) < af(x*)+ (1 —a)f(x) VxeQ, Vael01l].

Remarks: o Any convex function is star-convex.
o Star-convexity can be viewed as convexity between any point x and a global minimum x*.
o Allows the negative gradient —V f(x) to the desired minimization direction.

o Consider the following objective function:

mlnf ZV) (ai,x) [

1/q

> Star-convex for any real number ¢ when n < p.
> Convex for ¢ > 1.

> (g =1): the least-absolute deviation estimator. (¢ = 2): the least-squares estimator.
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*Invex function

Definition

Let Q be an open set in RP. A differentiable function f: Q — R is called invex if there exists a function
n: QX Q — RP such that

f(x) > f(y) +(VI(¥), n(x,y)), Vx, y€Q.

Remarks: o Any convex function is invex function: n(x,y) =x —y.

o Any local minima in an invex function is global minima!

Proof : o Suppose x* is a local minimum, then V f(x*) = 0. By the definition above, we have
fx) = f(x) + (0, n(x,y)) = f(x*), Vx€Q.
o = x* is also a global minimum.

Example (Causality via directed acyclic graph (DAG) learning [1])

For any s > 0, define f* : {X € R¥%4 | s > p(X 0 X)} » R as f*(X) = —logdet(sI — X o X) + dlogs,
where o is the Hadamard product, p(-) is the spectral radius, and X is the graph weighted adjacency matrix.

> Then, f% is an invex function. f*(X) > 0 with f(X) = 0 if and only if X is a DAG.
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*Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)

A convex function ¢ : R — R is self-concordant if

" (B < 20" (82, VteR.
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*Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)

A convex function ¢ : R — R is self-concordant if

" (B < 20" (82, VteR.

Affine Invariance of self-concordant functions
Let ¢(t) = p(at + B) where a # 0. Then, ¢ is self-concordant iff ¢ is.
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*Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)

A convex function ¢ : R — R is self-concordant if

" (B < 20" (82, VteR.

Affine Invariance of self-concordant functions
Let ¢(t) = p(at + B) where a # 0. Then, @ is self-concordant iff ¢ is.

Important remarks of self-concordance

1. Generalize to higher dimension: A convex function f : R™ — R is said to be (standard) self-concordant if
| ()] < 29" (t)3/2, where p(t) := f(x +tv) for all t €R, x € dom f and v € R™ such that
x +tv € dom f.

2. Affine invariance still holds in high dimension.

3. Self-concordant functions are efficiently minimized by the Newton method and its variants.
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