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Basic (parametric) statistics

Parametric estimation model
A parametric estimation model consists of the following four elements:
. A parameter space X C RP

. A parameter x, which is an element of the parameter space

. A class of probability distributions Py := {Px : x € X'}

. A sample (a;,b;), which follows the distribution b; ~ P

A W N =

€ Px

xf,a;

o Statistical estimation seeks to approximate the value of x5, given X, Py, and b

Definition (Estimator)

An estimator x* is a mapping that takes X', Px, (a;,b;)i=1,...,n as inputs, and outputs a value in X.

Observations: o The output of an estimator depends on the sample, and hence, is random.

o The output of an estimator is not necessarily equal to x.
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Estimation as an optimization problem

modeling |ndependency
(ai, bi)jmy —————P(bilai, x) ———— px(b) := | I P(bilai, %)
parameter x identical dist. !

Definition (Maximum-likelihood estimator)

A loss function L(-,-) can be related to the maximum-likelihood (ML) estimator as follows

XKAL € arg min {L(hx(a)7 b) = lOg px(b)} ’
xeX
where p, (-) denotes the probability density function or probability mass function of Px, for x € X.

M-Estimators
Roughly speaking, estimators can be formulated as optimization problems of the following form:
x* € arg min {F(x)},
xXEX

with some constraints X C RP. The term “M-estimator” denotes “maximum-likelihood-type estimator” [4].
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Regression estimators via probabilistic models

Basic regression model

Let x? € RP. Let aj,...,a, € R? be given vectors. The sample is given by b := (b1,...,bn) € B™ for some set

B, where each b; follows a distribution th,ai determined by x5 and a;, and b1,...,by are independent.

Examples

In the sequel, we will discuss the following statistical regression models with examples:

1. The Gaussian linear regression model is a regression model, where each b; is a Gaussian random variable
with mean <ai7 xh> and variance o2, for some o > 0.

2. The logistic regression model is a regression model, where each b; is a Bernoulli random variable with

P{bi=1}=1-P {bj=-1} = [1+exp (- <ai,xh>)]_1.

3. The statistical model for photon-limited imaging systems is a Poisson regression model, where each b; is a
Poisson random variable with mean <ai,xh>.
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Example I: Magnetic Resonance Imaging (MRI)

Fourier spectrum Measurement

Goal Imat(Ax?)| B
Produce a diagnostically meaningful MRI image X € C VP* VP,

A model for MRI

Denote x = vec(X!) € CP as the vectorized image. Let
A € CPXP as the discrete Fourier transform (DFT) matrix. An
MRI machine can produce samples as follows:

b:= Ax" + w e C?,
where w ~ CN(0,02I) is the complex Normal distributed noise,
and b is the measurement vector with the spectrum B € C VPX VP,

X4 Imat (L)

The ML Estimator

The ML estimator is the least squares estimator

Remarks:

o vec : RAXb 5 R4D s 3 Jinear operator vectorizing a matrix.
1 2 o mat : R%? — R4XD s the inverse operator of vec.

XK/”_ = XES = ATb = &g H;in {I;H b — Ax ”2 3L Cp} g o We display the element-wise magnitude of complex images | - |.

o To learn more on the physics behind MRI, visit

where At is the (pseudo-)inverse of A.

http://www.mriquestions.com.
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The ML estimator for MRI: An intuitive derivation

Gaussian linear model

Let x# € CP. Let b := Ax! + w € CP for the Discrete Fourier Transform (DFT) matrix A € CPXP, where w is
the complex Normal distributed noise with zero mean and covariance matrix o21.

The derivation: The probability density function p,(-) is given by

1 \? 1
e = (=5 ) exp (— 5 1b - Ax[3)
wo o
Therefore, the maximum likelihood (ML) estimator is defined as
* s 2 1 2 P
Xy = argmin { —log p, (b) = —plog(mo®) + ;H b—-Ax|5:x€CP;,
xX
which is equivalent to
* . 1 2 D
Xy = arg min ;||bfoH2:x€C .
xX

Observations: o The LS estimator is the ML estimator for the Gaussian linear model.

o As the DFT matrix is orthonormal, there is a unique solution.
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Accelerating MRI?

Goal
Produce a diagnostically meaningful MRI image X € C VP* VP,

A model for subsampled MRI

Let P € CVPX VP be a masking matrix that selects only a subset
Q with n < p elements, while padding zeros for the rest of p — n
elements. A basic subsampled MRI model is the following:

Bg := Pg O mat(Ax® + w),

where w ~ CN(0,021I) is the complex Normal distributed noise,
and by := vec(Bg) are the measurements in the Fourier domain.

The ML Estimator

Define the linear operator A = vec o P o mato A, where o is
the composition operator. The ML estimator is given by

1
_ AT : 2,
XML = A, bg Eargf&g}{;\\bg —Aox||5 .XECP},

where At is the (pseudo-)inverse of A.
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Example Il: Breast Cancer Detection

Goal

Predict either b =1 or b = —1 given a.

Logistic regression [5]

a e T b1 Let x € RP. Let ay,...,a, € RP be given. The sample is given
by b:= (b1,...,bn) € {—1,1}", where each b; is a Bernoulli

random variable satisfying

w57 p b =1} =1 P (b = —1} = [1 +exp (= (as,x))] 7,

and b1, ...,by, are independent.

TIpIS.T

e by =1 c
a i s sz s en (" The ML Estimator
Jeci mmaseossoostosse ___ imussseossenseessece
The ML estimator is given by

n
X}y € argmin Z log [1 + exp (—b; (a;, x))] : x € RP
X

=1
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A statistical model for score-based classifiers — |

Score functions
For each (e.g., genome) sequence a, we can assign and compute a
score sx(a) € (—oo, 00):

T

e ———
e Example: a— sx(a)=x' a
b il LI LLLLLL =1 ~—
< - — il weights = importance of genes
Score functions can be more general than linear weighting.
20| 32,330,000 b(l :]
e ! A basic model for probabilities
We commonly use the logistic function
by =1 1
a”:‘:;:; 1773,5081 773, 600] 773, 700| 773,800 77 (ot asease) t— h(t) = .
e — 1+ exp(—t)

to transform sx(a) into a probability (e.g., of disease):

P(b = +1]a,x) = h(£1sx(a)) € (0,1).
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A statistical model for score-based classifiers — 11
o A visualization of the model for the conditional probability of disease given a

1

P(b=1|a,x) = 1+ exp(—sx(a))

iny

P(b = 1]a,x) > 0.5, if sx(a) is positive,
a ’ < 0.5, otherwise.

0.5 disease, if P(b=1]a,x) > 0.5,
ceresin Prediction = ¢ normal, if P(b=1]a,x) < 0.5.
uncertain, if P(b=1]a,x) = 0.5.
o-o-e -1 8 = = élscma -
Remark: o Score functions are more general

> Score functions are also used in generative modelling

> Causal estimation can be done with score functions [18] (Lecture 12)
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Logistic regression

Logistic regression

Let x! € RP. Let aj,...,a, € RP be given. The sample is given by b := (b1,...,bn) € {—1,1}", where each
b; is a Bernoulli random variable satisfying

Pibi=1}=1-P {bj =1} = [L +exp (=s,a(a:)] ",

and b1, ...,by, are independent.

The derivation: The probability mass function py(-) is given by
Pyc(b) = Iy [1+ exp (—bisys ()] 7"

Therefore, the maximum-likelihood estimator is defined as

n
Xy € argmin { —logp, (b) = Zlog [1+exp (—bisys(as))] : x €RP
xX

i=1

Observations: o xy, defines a linear classifier.
o For any new a;, i > n + 1, we can predict the corresponding b; via a simple rule.

o Predict b; =1 if <ai,xKAL> >0, and b; = —1 otherwise.
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Example Ill: Poisson imaging

Problem (Poisson observations)

Let x" € RP be an unknown vector. Let by, ..., by, be samples of independent random variables B, ..., By,
and each B; is Poisson distributed with parameter <ai7 xh>, where the vectors ay, . ..,a; are given. How do we
estimate x! given aj,...,a, and the measurement outcomes by, ...,b,7

Solution (ML estimator)
The ML estimator is given by

n
. 1
xjy, € arg min q — 3 [(@s,x) — bilog ((as,x)
=1

Remark

In confocal imaging, the linear vectors a; can be used to capture
the lens effects, including blur and (spatial) low-pass filtering (due
to the so-called numerical aperture of the lens).
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ML estimation in photon-limited imaging systems contd.

A statistical model of a photon-limited imaging system [1, 15]
Let x € RP. Let ay,...,a, € RP be given vectors. The sample is given by b := (b1,...,bn) € N, where each
b; is a Poisson random variable with mean <ai,xh> that denotes the number of detected photons, and

b1,...,by are independent.

The derivation: The probability mass function p,(-) is given by
Px(b) = T (b:) ™" exp (— (a7, x)) (@, %) .

Therefore, the maximum-likelihood estimator is defined as

n
Xy € argmin —logpy(b) = Z [log(b;!) + (ai,x) — b; log ((a;,x))] : x ERP 5 |
i=1
which is equivalent to
n
XL € argmin Z [(ai, x) — b; log ({(ai,x))] : x €ERP
i=1
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Example IV: Language model

what can | learn from the Mathematics of data lecture

A ics of Data" lects offer you valuable and skills related to the

mathematical foundations of data analysis and data science. Here are some key things you
can learn from such a lecture:

1. Statistical Concepts: You can learn about statistical techniques and concepts, including

ipt statistics, p ility distributions, hyps is testing, and analysis.
This knowledge is crucial for understanding and interpreting data.

2. Linear Algebra: You may gain insights into linear algebra, which is fundamental for tasks
like data transformation, dimensionality reduction, and working with matrices and vectors
commonly used in machine learning.

3. Caleulus: Depending on the lecture's depth, you might learn about calculus and how it
relates to optimization algorithms, gradient descent, and mathematical modeling of data
phenomena.

4 ility Theory: ing probability theory can help you model uncertainty and
make informed decisions based on data. Concepts like Bayes' theorem and conditional
probability are often covered.

o

Data Visualization: Many data-related lectures include topics on data visualization,
teaching you how to create meaningful graphs and charts to convey insights from data
effectively.

o

Data Modeling: You can learn about various data modeling techniques, including linear
models, logistic regression, and decision trees. These models are used for prediction and
classification tasks.

7. Machine Learning Foundations: If the lecture is more advanced, it may introduce yo

‘S Regenerate
machine learning concepts such as supervised learning, unsupervised learning, anc.

Send a message e
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Example IV: Language model

Definition (Language model [6])

Models that assign probabilities to sequences of words are called language models (LM).

o Given a sentence with T words: S = wi.7 = (w1, - ,wr), by chain rule of probability:

T
P(S) = P(wi.r) = P(w1)P(w2|w1)P(wsz|wy.2) - - - P(wr|wi.r—1) HP (we|wi:e—1)

Example
If S = wi.3 = 'happy new year’, then P(S) = P(happy)P(new|happy)P(year|happy new).

Remark: o Given a sentence, we usually need to tokenize it.
> In English, each token ~ each word, except for some cases, e.g., “New york” is a token.
> In some languages, e.g., Chinese or Japanese, there is no space between words.
> Hence, some sentence segmentation may be required to tokenize.

o We use a vector called embedding to represent each token in the token set, denoted by V.
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Language model as ML Estimator

The ML Estimator

Language model can be considered as an unsupervised ML estimator:

x{\y € arg min —log p, (S) = —log py (b1.7),
xeX
where p, (S) is the probability mass function with sentence S where the embedding is by.7 = (b1,...,br).
The derivation: o A neural network hx can be used to model such probability as follows:
T T
—logpx(b1.1) = —log H Px(bt|b1:t—1) | = Z (—log py(bt|b1:t—1))
t=1 t=1

T
Z —loghx(bi:¢— 1)[“bt”]) = cross-entropy loss.

Remark: o Given a sample in class k € [K], define the probability for each K classes as hx € RK.
o Then, the cross-entropy loss is defined as: L = — log h£§].
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M-estimator example |: Graphical model learning

a a; az az a4 s
d5¢ 4
as X =
ai
a2
Graphical model selection
Let X4 € SP*P, be a p X p positive-definite matrix. The sample is given by a1, ...,a, € RP, which are i.i.d.

++
random vectors with zero mean and covariance matrix (X“)_

An M-estimator for graphical model learning [12]
The following M-estimator has good statistical properties

X3 € argm)én {Tr (ﬁX) —logdet (X) : X € Ser}

where 35 is the empirical covariance matrix, i.e., 3 := (1/n) S _,a T [12].
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Graphical model learning contd.

Graphical model selection

Let X! ¢ Siﬁp be a symmetric positive-definite matrix. The sample is given by a,...,a, € RP, which are
—1i
i.i.d. random vectors with zero mean and covariance matrix (Xh) .

The derivation: The probability density function px (+) is given by

px(ai,...,an) =1, [(2#)”’/2 det (X’1)71/2 exp (—éaiTXaiﬂ

= (27) ~"P/2 det(X)™/? exp f% Z (al-TXai)
i=1

Therefore, the ML estimator is defined as
X € argn;in {—&—% log(27) — glogdet (X) + gTr (fJX) X € Si+} ,
which is equivalent to the M-estimator X7 .

Observation: o The M-estimator becomes the ML estimator when a;’s are Gaussian random vectors.

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 34



M-estimator example Il: Gaussian process regression

Initial hyperparameter Optimized hyperparameter

—— Real function —— Real function
-3 Functions drawn from kernel -3 Functions drawn from kernel

G w2 o4 @ o 1o T B )
) a
Above image is taken from [13].

o A Gaussian process (GP) is a stochastic process, which we will denote by
f(a) ~ GP(p(a), K (a,a")),

where p(a): RP — R is the mean of the GP and K(a,a’): RP X R? — R a covariance function or kernel.

An M-estimator for kernel hyperparameters tuning [11]
Let b1, ...,bn € R be the noisy targets, and aj,...,a, € RP be the training data points. The maximume-likelihood
estimator, given the Gaussian process GP(u(a), Kx (a,a’)) parameterized by X € R™, satisfies the following:

n

. 1 -
X}y € arg sl logdet(Kx (A, A)) + -~ Z ((bl — #(ai))Tle(ai, a;)(b; — ,u(ai)))
i=1
where [Kx (A, A)];; = Kx(a;,a;) and Kx € SX™.
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Kernel hyperparameters learning contd.

Kernel hyperparameter tuning

Let b1, ...,bn € R be the noisy targets, aj,...,an € RP be the training data points and Kx be a chosen kernel
(cf., see commonly used kernels in Supplementary Lecture Kernel Methods), as parameterized by X € R™.

The derivation: The probability density function pg(-) is given by

1 _
px(b1, - bu) =TI, |(2m) /2 det(Kae (4, A)) /2 exp (=5 (b1 = ) K (0 = ) ) |
. . 1+ _
= (2m)7""/? det (Kx (4, 4)) " exp |~ D i ) TR (b — i) |
i=1
where u; = p(a;) and K;;( = Ky !(a;,a;) for brevity. Taking the logarithm, we have

n

np n 1 _
log p(y|A, X) = -5 log(27) — 5 logdet(Kx (A, A)) — 3 Z(bl — ,uZ)KZ)l((b, — i),
i=1

constant model complexity

mismatch between prior and data

which is equivalent to our estimator X7 .

MGGl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 34 EPFL



M-estimator example Ill: (Stylized) Density estimation

Definition (Density estimation—informal)

\(\ ﬁ /% Density estimation is concerned about estimating an underlying

probability density function from observed data points (e.g., graphs).

—_—
Distance metrics
. The distance, d(-,-), could be any distance measure between two
@ distributions, such as the 1-Wasserstein distance seen in lecture 1.
\" d(Pa, Px) < d(Pas Px, )

An M-estimator for learning density estimation

Let a1,...,a, € RP be our training samples, drawn from a known distribution a ~ p, and let p, be a
distribution to be learned, and d(-, -) the distance we are using, our M-estimator satisfies:

Xy € argmind(py, Px)
X

where p, is the true data distribution.

Challenge: 0 pg is not known: Plugging in an empirical estimate can drastically change the above problem.
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* M-estimator example 1V: Google PageRank
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The general formulation: Least-squares

Optimization formulation (Least-squares estimator)
1 2
min —||b — Ax|3,
€rd 2
f(x)

M
where x =r, b = [lr]l} , A= [ ol ]lILT} , d =n in Google PageRank problem.
n 2n

Linear regression problem
Let x¥ € R? and A € R?Xd (full column rank). Goal: estimate x4, given A and

b:Axh+w,

where w denotes unknown noise.
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A unifying perspective for generalized linear models

ML estimator for generalized linear models

The ML estimators for the class of models seen so far are closely related to the ' /
so-called generalized linear models. The ML estimator for the generalized linear v
models can be written as R ."
d
1w ‘
Xy € arg min ¢ — E [p({ai,x)) — b; (a;,x)] p - o f}
xXERP n
i=1 ';’
Examples: X /:J
1. ¢(u) = u?/2 results in the ML estimator for linear regression /
2. ¢(u) = log(1 + exp(u)) results in the ML estimator for logistic regression /
3. ¢(u) = exp(u) results in the ML estimator for Poisson regression e e, e
LS

A surprise [2]

Estimators for generalized linear models are equivalent up to a scaling constant. In the figure, the data is
generated data with respect to the logistic model, parameterized by x%. Observe the scatter plot between the
coefficients of the true parameters x4 and of the least squares (LS) M-estimator x[s-

Remark: o Model-mismatch may be not too severe!
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Role of computation

Observations: © The estimator x*'s performance, e.g., || x* — %I |I2, depends on the data size n.

o Evaluating || x* — x || is not enough for evaluating the performance of a Learning Machine

> We can only numerically approximate the solution of

x* € arg min {F(x)}.
xERP
o We use algorithms to numerically approximate x*.

Practical performance
Denote the numerical approximation by an algorithm at time t by xt.

The practical performance at time t using n data samples is determined by

It = x*[|2 < ||x" —x* || +[Ix* —x* |13,
N ——

&(t,n) e(t) e(n)

where £(n) denotes the statistical error, €(t) is the numerical error, and &(¢,n)
denotes the total error of the Learning Machine.
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Peeling the onion

Models

Practical performance

d(ht, h°) <
N~

E(t,n)

Let d(-,-) : H°® x H° — RT be a metric in an extended function space
H° that includes H; i.e., H C H°. Let

1.
2. h% € H be the solution under the assumed function class H C H°
3.
4

. ht € H be the numerical approximation of the algorithm at time ¢

h° € H° be the true, expected risk minimizing model

h* € H be the estimator solution

d(h', k%) + d(h*,h%) +d(h%,R°),
SN—— N~

optimization error  statistical error model error

where £(¢,n) denotes the total error of the Learning Machine. We can try to

1. reduce the optimization error with computation

2. reduce the statistical error with more data samples, with better estimators, and with prior information

3. reduce the model error with flexible or universal representations
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Estimation of parameters vs estimation of risk

Nomenclature

Rn ()

R(")

R(x%) — R(x°)

R(x*) — R(x%)

Supyex | R(%) — Rn(x)]
Ry (xt) — Ry (x*)

training error

test error

modeling error
excess risk
generalization error
optimization error
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Recall the general setting

Let R(hx) = EL(hx(a),b) be the risk function and

Rn(hx) = % E?Zl L(hx(a;),b;) be the empirical estimate.
Let X C X° be parameter domains, where X is known. Define

1. x° € argmin, ¢ yo R(hx): true minimum risk model

. xb € argmin, ¢  R(hx): assumed minimum risk model

i

. x": numerical approximation of x* at time ¢

2
3. x* € argmin, ¢y Rn(hx): ERM solution
4

X—=>X° nt pt

Training error N Y

Excess risk S N

Generalization error Ve ¢ Va

Modeling error N\ = “

Time a a v
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Peeling the onion (risk minimization setting)

Models

Let X C X° be parameter domains, where X is known. Define
1. x° € argmin, ¢ yo R(hx): true minimum risk model

2. xb € argminy .y R(hx): assumed minimum risk model

3. x* € argmin, ¢y Rn(hx): ERM solution

4

. x%: numerical approximation of x* at time ¢

Practical performance

R(x?) — R(x°) € Rn(x?) — Rp(x*) 42 sup |R(x) — Rn(x)| + R(xh) — R(x°)
xEX N———

&(t,n) optimization error model error
generalization error

where £(,n) denotes the total error of the Learning Machine. We can try to
1. reduce the optimization error with computation
2. reduce the generalization error with regularization or more data

3. reduce the model error with flexible or universal representations
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How does the generalization error depend on the data size and dimension?

R(x") — R(x°) < Rn(x") — Rn(x*) +2 sup |R(x) — Rn(x)| + R(x") — R(x°)
xeX N— ——~

&(t,n) optimization error N~ — model error
generalization error

Theorem ([8])

Let hx : RP — R, hx(a) = xTa and let L(hx(a),b) = max(0,1 — b-xTa) be the hinge loss. Let
X = {x €RP: ||x|]| < A\}. Suppose that ||a|| < /p almost surely (boundedness).

Roughly speaking, with some probability that we can control, the following holds:

sup [R() =~ Rn(39)| = O (/2
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A Time-Data conundrum — |

A computational dogma

Running time of a learning algorithm increases with the size of the data.
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A Time-Data conundrum — |

A computational dogma

Running time of a learning algorithm increases with the size of the data.

o Misaligned goals in the statistical and optimization disciplines

Discipline Goal Metric
Optimization | reaching numerical e-accuracy | [[xF — x*[| <e
Statistics learning e-accurate model [x* —xF[[<e

o Main issue: ¢ and £ are NOT the same but should be treated jointly!
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Data as a computational resource

t
A stylized formalization of the time-data tradeoff
The goals of optimization and statistical modeling are tightly connected: _g
[3E ) — x| < IO —x*|| + Ix* = x| < &, n), =
~ ——  ~——— E
€: needs “time” t  e: needs “data’"n 2
x1: true model in RP 2
&(t,n):  actual model precision at time ¢ with n samples 3\
\statistical lowerbound n
Remark: o The Time-Data Trade-off supplementary lecture provides details for sparse recovery.
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Wrap up!

> Lecture 3 on Friday at CM 11

> Handout 1 (self-study)
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*Modeling Google PageRank

s . . 1,106,671,903
o Transition matrix for world wide web: Currently, there are around 1.1 billion websites in the World. 18% of

these websites are active, 82% are inactive.

C11 C12 ce Cln

webses e
created every hour

websites e sctve websies

creatod evory day

201,898,446 ‘ 252,000 ‘ 10,500

Cc21 C22 .. C2n
3 ‘2,0000

175
E - ‘ ™ ‘ s

credit: https://siteefy.com/how-many-websites-are-there/

Cnl €Cn2 ... Cnn circa September 05, 2023
o Zi:l cij =1, Vj€{1,2,...,n} (n~ 1.1billion)

o Estimated memory to store E : 1010 GB!
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*Modeling Google PageRank

1,097,398,145

o Transition matrix for world wide web:

Currently, there are around 1.1 billion websites in the Word. 18% of
these websites are active, 82% are inactive.

c11 €12 ... Cln 1000
e vy

pr—— new website a0

created overy day

193,527,411 ‘ 252,000

Cc21 Cc22 e C2n,

E= 175 3 2,000+
- new websites are new websites are.

e it by o

credit: https://siteefy.com/how-many-websites-are-there/

Cnl Cn2 e Cnn circa June 30, 2024
o ijl ci; =1, Vj€e{L,2,...,n} (n~ 1.1billion)

o Estimated memory to store E : 1010 GB!
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*Modeling Google PageRank

s . . ) 1,097,398,145
o Transition matrix for world wide web: Currently, there are around 1.1 billion websites in the World. 18% of

these websites are active, 82% are inactive.

C11 c12 ce Cln
193,527,411 252,000
crested overy day
Cc21 C22 .. C2n
175 3
E= e e
credit: https://siteefy.com/how-many-websites-are-there/
Cnl Cn2 ... Cnn circa June 30, 2024

o ijl ci; =1, Vj€e{L,2,...,n} (n~ 1.1billion)

o Estimated memory to store E : 1010 GB!

o A bit of mathematical modeling:

> rf : Probability of being at node i at k" state. Let us define a state vector r¥ = [rl , ré, RO 44

> Multiplying r* by E takes one random step along the edges of the graph:

n
= E cijr? = (Er%);,
Jj=1

since ¢;; = P(i|j) (by the law of total probability).
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*Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r* after an infinite number of random steps.

o Disconnected web: Initial state vector affects the ranking vector.
A solution: Model the event that the surfer quits the current webpage to open another.

11 ... 1

1
B=|: : . | ==11"T

o Sink nodes: Column of zeros in E, moves r to 0!

A solution: Create artifical links from sink nodes to all the nodes.

A = 1 if i" node is a sink node,
T 0 otherwise.
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*Optimization formulation of Google PageRank

o Define the pagerank matrix M as

1
M=(1-p)(E+ ;1,\T) + pB.

M is a column stochastic matrix.

Problem Formulation

o We characterize the solution as
o Mr* =r*.
o r* is a probability state vector:
n

r; > 0, Zri:

=1

o Find r > 0 such that Mr =r and 1 'r = 1.
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*Optimization formulation of Google PageRank

o Define the pagerank matrix M as

1
M=(1-p)(E+ ;1,\T) + pB.

M is a column stochastic matrix.

Problem Formulation

o We characterize the solution as
o Mr* =r*.

o r* is a probability state vector:
n

r; >0, Z” =1.
i=1

o Find r > 0 such that Mr =r and 1 'r = 1.

Optimization formulation

min {f(x) = %”MX—X”Q + %(]lTx— 1)2}.

xERM
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*Checking the fidelity

o Given an estimator x* € arg minyec x {F(x)}, we need to address two key questions:

1. Is the formulation reasonable?
2. What is the role of the data size?
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*Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion or a (pseudo)metric d(x*,x%) that should be small if x* = x1.

2. Show that d is actually small in some sense when some condition is satisfied.

Example

Take the £o-error d(x*,x%) := || x* — x7||2 as an example. Then we may verify the fidelity via one of the
following ways, where € denotes a small enough number:

1. E[d
P (

V/n(x* — x1) converges in distribution to A/(0,I) (asymptotic normality),

. (x*,xh))] < & (expected error),

2. P (d(x*,xb) > t) < e for any ¢t > 0 (consistency),
3.
4. /n(x* —x%) converges in distribution to A'(0,I) in a local neighborhood (local asymptotic normality).

if some condition is satisfied. Such conditions typically revolve around the data size.
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*Approach 1: Expected error

Gaussian linear model

Let x! € RP and let A € R"*P. The samples are given by b = Ax! + w, where w is a sample of a Gaussian
random vector w ~ N (0, o2T).

What is the performance of the ML estimator

* . _ 219
XML Eargfel}énp{ub Ax||2}.

Theorem (Performance of the LS estimator [9])

If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if
n > p+ 1, then

Efl|xt, —xt|2] = —2—62 5 0as 2 = oo
ML 2

p—1 p
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*Approach 2: Consistency

Covariance estimation

Let x1,...,Xn be samples of a Gaussian random vector with zero mean and some unknown positive-definite
covariance matrix X € RPXP.

What is the performance of the M-estimator £* := (@*) ™!, where

n

1
®y. € arg min - E [7 log det (®) + x?@xi:l ?
©csh n
++ =1

> If y = g(x), for some g, then $m = g(XwmL). This is called the functional invariance property of ML
estimators.

Theorem (Performance of the ML estimator [12])
Suppose that the diagonal elements of > are bounded above by k > 0, and each X;/ (Eh) ~is Gaussian

P

with a scale parameter c. Then

({leaa), - ).,

for all t € (0,8k (14 4c?)).

nt?
>t <4 - | > 0asn —
}) = EXP[ 128(1+4cz)ﬁ2} e
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*Approach 3: Asymptotic normality

Logistic regression

Let x4 € RP, and let a1,...,a, € RP. Let by, ..., b, be samples of independent random variables By, ..., By.
Each random variable B; takes values in {—1, 1} and follows

P({B; =1}) := £;(x4) = [1 + exp (— <ai,xh>)] - (i-e., the logistics loss).
o What is the performance of the ML estimator

n

. . 1

Xy € arg min  —— Zlog [, =134:(%) + I{p,—0y (1 — £i(x))] = ——fn(x) 7
i=1
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*Approach 3: Asymptotic normality

Theorem (Performance of the ML estimator [3] (*also valid for generalized linear models))
The random variable J (x%)~1/2 (x;/”_ - xh) converges in distribution to N'(0,T) if Amin(J(x%)) — oo and

max {[| J(x%) 72T (x)I(x") T2 —T|lamz : [ I (x —xF) [l < 6} =0 (1)
xERP
for all 6 > 0 as n — oo, where J(x) := —E [V2 fn(x)} is the Fisher information matrix.

Observations: o Roughly speaking, assuming that p is fixed, we have the following

. The condition (1) means that J(x) ~ J(x") for all x in a neighborhood N,; () of x.

N, (6) becomes larger with increasing n.

I(E) 172 (g — xE) |13 ~ T (D) = .

N N

-l xf, — x? |3 decreases at the rate Amin(J(x#)) ™! — 0 asymptotically.
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*Approach 4: Local asymptotic normality

Remarks: o In general, the asymptotic normality does not hold even i.i.d. case
o We may have the local asymptotic normality (LAN).

ML estimation with i.i.d. samples

Let b1,...,bn be independent identically distributed samples of a random variable B, whose probability density
function is known to be in the set {px(b) : x € X'} with some X C RP.

o What is the performance of the ML estimator
1 n
Xy € arg rr(lgin —= E log [px (b:)] p?
X

X n
i=1
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*Approach 4: Local asymptotic normality

Theorem (Performance of the ML estimator (cf. [7, 14] for details))
Under some technical conditions, the random variable \/ﬁJ_l/2 (x;/,L — xb) converges in distribution to
N(0,1), where J is the Fisher information matrix associated with one sample, i.e.,

J:=-E [Vi log [px(B)}] ’

x=x1 "

Observations: o Roughly speaking, assuming that p is fixed, we can observe that
>l VI T2 (G — xF) |3~ Tr (1) = p,

> |l — %" 15 = 0(1/n).
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*Minimax performance

Remarks: o So far, we have focused on how good an estimator is as a function of data size.

o Now, we derive a fundamental limitation on the performance, posed by the model.

Definition (Minimax risk)

For a given loss function d(x,x") and the associated risk function R(X,x) := E[d(X,x)], the minimax risk is
defined as
Rminmax := minmax {R(X, %)},
X XEX

where X denotes the parameter space.

A game theoretic interpretation:

> Consider a statistician playing a game with Nature.

> Nature is malicious, i.e., Nature prefers high risk, while the statistician prefers low risk.
> Nature chooses an x! & X, and the statistician designs an estimator X.
>

The best the statistician can choose is the minimax strategy, i.e., the estimator Xminmax such that it
minimizes the worst-case risk.

> The resulting worst-case risk is the minimax risk.
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*An information theoretic approach

We choose R(%k,x1) := || % — xI ||2 to illustrate the idea. Generalizations can be found in [16, 17].
There are two key concepts.

*First step: transformation to a multiple hypothesis testing problem

Let Xfinite be a finite subset of the original parameter space X'. Then we have

R e — mm max {R(X,x)} > min max {R(X,x)},
XEX XE Xfinite XE Xfinite

*Second step: randomizing the problem

Let P be a probability distribution on Xjite, and suppose that x is selected randomly following P. Then we have

min  max {R(X,x)} > min {Ep [ x,xh)] }

X E Xfinite X € Xfinite XE Xfinite
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*An information theoretic approach contd.

Suppose we choose the subset Xjinie such that for any x,y € Xiinite, X £y,
” X—-Yy HQ > dmin

with some dpyin > 0. Then we have

Ruminmax > _min  {Bp [R(%,x%)] } >

X E Xfinite dminP ()A( * zh) .

1
2

What remains is to bound the probability of error, P (fc #* x”).
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*An information theoretic approach contd.

A very useful tool from information theory is Fano's inequality.
Theorem (Fano's inequality)
Let X and Y be two random variables taking values in the same finite set X. Then
HX|Y)<hP(X#Y))+P(X #Y)log(|X|—-1),
where H(X|Y') denotes the conditional entropy of X givenY, defined as
H(X|Y) = Ex,y [~ log (B (X|Y))],

and
h(z) := —zlogz — (1 — z)log(l — z) < log?2

for any x € [0, 1].
Applying Fano's inequality to our problem with some simplifications, we obtain the following fundamental limit.

Corollary

5 1 5
P (x + xh) > EA (H(xh‘x) — log 2) .
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*An information theoretic approach contd.

Theorem ([17])

If there exists a finite subset Xy Of the parameter space X such that for any x1,X2 € X finite , X1 # X2,

” X1 — X2 ”2 > dmin

dP
D(Pxy [Px, ) := /log( X1> dPx; <1
dPx,

with some r > 0, where Px denotes the probability distribution of the observations when x = x for any

X € Xfinite. Then
dmin (1 r+log2>

with some dpin > 0 and!

Rminmax Z 2

In | Xfinitel

Proof.

Combine the results in previous slides, and take P to be the uniform distribution on Xgnice.

'The function D (P||Q) is called the Kullback-Leibler divergence or the relative entropy between probability distributions P and Q.
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*Example

Problem (Gaussian linear regression on the ¢;-ball)

Let A € R"%P and let x¥ € RP. Define y = AxB +w, where w ~ ./\/’(07 021) with some o > 0. It is known that
xi € X :={x: | x|l1 £ R}. What is the minimax risk Rminmax with respect to R(X,x%) := E [|| % — xf ||2] ?

Theorem ([10])

Suppose the £2-norm of each column of A is less than or equal to \/n and some technical conditions are
satisfied. Then with high probability,

Inp
Rminmax = coR T

with some ¢ > 0.

Bound the minimax risk from above

> The worst-case risk of any explicitly given estimator is an upper bound of Rminmax-

> |If the upper bound equals O (lower bound), then ©( lower bound ) is the optimal minimax rate. For
example, the result of the theorem above is optimal [10].
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