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Basic (parametric) statistics

Parametric estimation model
A parametric estimation model consists of the following four elements:

1. A parameter space X ⊆ Rp

2. A parameter x♮, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X }
4. A sample (ai, bi), which follows the distribution bi ∼ Px♮,ai

∈ PX

◦ Statistical estimation seeks to approximate the value of x♮, given X , PX , and b

Definition (Estimator)
An estimator x⋆ is a mapping that takes X , PX , (ai, bi)i=1,...,n as inputs, and outputs a value in X .

Observations: ◦ The output of an estimator depends on the sample, and hence, is random.

◦ The output of an estimator is not necessarily equal to x♮.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 34



Estimation as an optimization problem

(ai, bi)n
i=1

modeling−−−−−−−→
parameter x

P (bi|ai, x) independency−−−−−−−−→
identical dist.

px(b) :=
n∏

i=1

P (bi|ai, x)

Definition (Maximum-likelihood estimator)
A loss function L(·, ·) can be related to the maximum-likelihood (ML) estimator as follows

x⋆
ML ∈ arg min

x∈X
{L(hx(a), b) := − log px(b)} ,

where px(·) denotes the probability density function or probability mass function of Px, for x ∈ X .

M -Estimators
Roughly speaking, estimators can be formulated as optimization problems of the following form:

x⋆ ∈ arg min
x∈X

{F (x)} ,

with some constraints X ⊆ Rp. The term “M -estimator” denotes “maximum-likelihood-type estimator” [4].
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Regression estimators via probabilistic models

Basic regression model
Let x♮ ∈ Rp. Let a1, . . . , an ∈ Rp be given vectors. The sample is given by b := (b1, . . . , bn) ∈ Bn for some set
B, where each bi follows a distribution Px♮,ai

determined by x♮ and ai, and b1, . . . , bn are independent.

Examples
In the sequel, we will discuss the following statistical regression models with examples:

1. The Gaussian linear regression model is a regression model, where each bi is a Gaussian random variable
with mean

〈
ai, x♮

〉
and variance σ2, for some σ > 0.

2. The logistic regression model is a regression model, where each bi is a Bernoulli random variable with

P {bi = 1} = 1 − P {bi = −1} =
[
1 + exp

(
−
〈

ai, x♮
〉)]−1

.

3. The statistical model for photon-limited imaging systems is a Poisson regression model, where each bi is a
Poisson random variable with mean

〈
ai, x♮

〉
.
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Example I: Magnetic Resonance Imaging (MRI)

Goal
Produce a diagnostically meaningful MRI image X♮ ∈ C

√
p× √

p.

A model for MRI
Denote x♮ = vec(X♮) ∈ Cp as the vectorized image. Let
A ∈ Cp×p as the discrete Fourier transform (DFT) matrix. An
MRI machine can produce samples as follows:

b := Ax♮ + w ∈ Cp,

where w ∼ CN (0, σ2I) is the complex Normal distributed noise,
and b is the measurement vector with the spectrum B ∈ C

√
p× √

p.

The ML Estimator
The ML estimator is the least squares estimator

x⋆
ML = x⋆

LS = A†b = arg min
x

{1
p

∥ b − Ax ∥2
2 : x ∈ Cp

}
,

where A† is the (pseudo-)inverse of A.

Fourier spectrum Measurement
|mat(Ax♮)| |B|

⇓ ⇓

|X♮| |mat(x̂ML)|

Remarks:
◦ vec : Ra×b → Rab is a linear operator vectorizing a matrix.

◦ mat : Rab → Ra×b is the inverse operator of vec.

◦ We display the element-wise magnitude of complex images | · |.
◦ To learn more on the physics behind MRI, visit

http://www.mriquestions.com.
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The ML estimator for MRI: An intuitive derivation

Gaussian linear model
Let x♮ ∈ Cp. Let b := Ax♮ + w ∈ Cp for the Discrete Fourier Transform (DFT) matrix A ∈ Cp×p, where w is
the complex Normal distributed noise with zero mean and covariance matrix σ2I.

The derivation: The probability density function px(·) is given by

px(b) =
( 1

πσ2

)p

exp
(

−
1

σ2 ∥ b − Ax ∥2
2

)
.

Therefore, the maximum likelihood (ML) estimator is defined as

x⋆
ML = arg min

x

{
− log px(b) = −p log(πσ2) +

1
σ2 ∥ b − Ax ∥2

2 : x ∈ Cp
}

,

which is equivalent to

x⋆
ML = arg min

x

{1
p

∥ b − Ax ∥2
2 : x ∈ Cp

}
.

Observations: ◦ The LS estimator is the ML estimator for the Gaussian linear model.

◦ As the DFT matrix is orthonormal, there is a unique solution.
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Accelerating MRI?
Goal
Produce a diagnostically meaningful MRI image X♮ ∈ C

√
p× √

p.

A model for subsampled MRI
Let PΩ ∈ C

√
p× √

p be a masking matrix that selects only a subset
Ω with n ≤ p elements, while padding zeros for the rest of p − n
elements. A basic subsampled MRI model is the following:

BΩ := PΩ ⊙ mat(Ax♮ + w),

where w ∼ CN (0, σ2I) is the complex Normal distributed noise,
and bΩ := vec(BΩ) are the measurements in the Fourier domain.

The ML Estimator
Define the linear operator AΩ = vec ◦ PΩ ◦ mat ◦ A, where ◦ is
the composition operator. The ML estimator is given by

x⋆
ML = A†

ΩbΩ ∈ arg min
x∈Rp

{ 1
n

∥ bΩ − AΩx ∥2
2 : x ∈ Cp

}
,

where A† is the (pseudo-)inverse of A.

Fourier spectrum Measurement
|mat(Ax♮)| |BΩ|

⇓ ⇓

|X♮| |mat(x⋆
ML)|
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Example II: Breast Cancer Detection

b1 = 1

b2 = 1

bn = �1

(disease)

(disease)

(not disease)

a1

a2

an

Goal
Predict either b = 1 or b = −1 given a.

Logistic regression [5]
Let x♮ ∈ Rp. Let a1, . . . , an ∈ Rp be given. The sample is given
by b := (b1, . . . , bn) ∈ {−1, 1}n, where each bi is a Bernoulli
random variable satisfying

P {bi = 1} = 1 − P {bi = −1} =
[
1 + exp

(
−
〈

ai, x♮
〉)]−1

,

and b1, . . . , bn are independent.

The ML Estimator
The ML estimator is given by

x⋆
ML ∈ arg min

x

{
n∑

i=1

log [1 + exp (−bi ⟨ai, x⟩)] : x ∈ Rp

}
.
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A statistical model for score-based classifiers – I

b1 = 1

b2 = 1

bn = �1

(disease)

(disease)

(not disease)

a1

a2

an

Score functions
For each (e.g., genome) sequence a, we can assign and compute a
score sx(a) ∈ (−∞, ∞):

Example: a 7→ sx(a) = x⊤︸︷︷︸
weights = importance of genes

a

Score functions can be more general than linear weighting.

A basic model for probabilities
We commonly use the logistic function

t 7→ h(t) :=
1

1 + exp(−t)
.

to transform sx(a) into a probability (e.g., of disease):

P (b = ±1|a, x) = h(±1sx(a)) ∈ (0, 1).
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A statistical model for score-based classifiers – II
◦ A visualization of the model for the conditional probability of disease given a

P (b = 1|a, x) =
1

1 + exp(−sx(a))

uncertain

diseasenormal

P (b = 1|a, x)
{

> 0.5, if sx(a) is positive,

≤ 0.5, otherwise.

Prediction =


disease, if P (b = 1|a, x) > 0.5,

normal, if P (b = 1|a, x) < 0.5.

uncertain, if P (b = 1|a, x) = 0.5.

Remark: ◦ Score functions are more general
▶ Score functions are also used in generative modelling
▶ Causal estimation can be done with score functions [18] (Lecture 12)
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Logistic regression

Logistic regression
Let x♮ ∈ Rp. Let a1, . . . , an ∈ Rp be given. The sample is given by b := (b1, . . . , bn) ∈ {−1, 1}n, where each
bi is a Bernoulli random variable satisfying

P {bi = 1} = 1 − P {bi = −1} = [1 + exp (−sx♮ (ai))]−1 ,

and b1, . . . , bn are independent.

The derivation: The probability mass function px(·) is given by

px(b) = Πn
i=1 [1 + exp (−bisx♮ (ai))]−1 .

Therefore, the maximum-likelihood estimator is defined as

x⋆
ML ∈ arg min

x

{
− log px(b) =

n∑
i=1

log [1 + exp (−bisx♮ (ai))] : x ∈ Rp

}
.

Observations: ◦ x⋆
ML defines a linear classifier.

◦ For any new ai, i ≥ n + 1, we can predict the corresponding bi via a simple rule.
◦ Predict bi = 1 if

〈
ai, x⋆

ML

〉
≥ 0, and bi = −1 otherwise.
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Example III: Poisson imaging

Problem (Poisson observations)
Let x♮ ∈ Rp be an unknown vector. Let b1, . . . , bn be samples of independent random variables B1, . . . , Bn,
and each Bi is Poisson distributed with parameter

〈
ai, x♮

〉
, where the vectors a1, . . . , ai are given. How do we

estimate x♮ given a1, . . . , an and the measurement outcomes b1, . . . , bn?

Solution (ML estimator)
The ML estimator is given by

x⋆
ML ∈ arg min

x∈Rp

{
1
n

n∑
i=1

[⟨ai, x⟩ − bi log (⟨ai, x⟩)]

}
.

Remark
In confocal imaging, the linear vectors ai can be used to capture
the lens effects, including blur and (spatial) low-pass filtering (due
to the so-called numerical aperture of the lens).

Confocal imaging
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ML estimation in photon-limited imaging systems contd.

A statistical model of a photon-limited imaging system [1, 15]
Let x♮ ∈ Rp. Let a1, . . . , an ∈ Rp be given vectors. The sample is given by b := (b1, . . . , bn) ∈ Nn, where each
bi is a Poisson random variable with mean

〈
ai, x♮

〉
that denotes the number of detected photons, and

b1, . . . , bn are independent.

The derivation: The probability mass function px(·) is given by

px(b) = Πn
i=1(bi!)−1 exp (− ⟨ai, x⟩) ⟨ai, x⟩bi .

Therefore, the maximum-likelihood estimator is defined as

x⋆
ML ∈ arg min

x

{
− log px(b) =

n∑
i=1

[log(bi!) + ⟨ai, x⟩ − bi log (⟨ai, x⟩)] : x ∈ Rp

}
,

which is equivalent to

x⋆
ML ∈ arg min

x

{
n∑

i=1

[⟨ai, x⟩ − bi log (⟨ai, x⟩)] : x ∈ Rp

}
.
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Example IV: Language model
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Example IV: Language model

Definition (Language model [6])
Models that assign probabilities to sequences of words are called language models (LM).

◦ Given a sentence with T words: S = w1:T = (w1, · · · , wT ), by chain rule of probability:

P (S) = P (w1:T ) = P (w1)P (w2|w1)P (w3|w1:2) · · · P (wT |w1:T −1) =
T∏

t=1

P (wt|w1:t−1)

Example
If S = w1:3 = ’happy new year’, then P (S) = P (happy)P (new|happy)P (year|happy new).

Remark: ◦ Given a sentence, we usually need to tokenize it.
▶ In English, each token ≈ each word, except for some cases, e.g., “New york” is a token.
▶ In some languages, e.g., Chinese or Japanese, there is no space between words.
▶ Hence, some sentence segmentation may be required to tokenize.

◦ We use a vector called embedding to represent each token in the token set, denoted by V.
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Language model as ML Estimator

The ML Estimator
Language model can be considered as an unsupervised ML estimator:

x⋆
LM ∈ arg min

x∈X
− log px(S) = − log px(b1:T ),

where px(S) is the probability mass function with sentence S where the embedding is b1:T = (b1, . . . , bT ).

The derivation: ◦ A neural network hx can be used to model such probability as follows:

− log px(b1:T ) = − log

(
T∏

t=1

px(bt|b1:t−1)

)
=

T∑
t=1

(− log px(bt|b1:t−1))

=
T∑

t=1

(
− log hx(b1:t−1)[“bt”]

)
= cross-entropy loss.

Remark: ◦ Given a sample in class k ∈ [K], define the probability for each K classes as hx ∈ RK .

◦ Then, the cross-entropy loss is defined as: L = − log h[k]
x .
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M-estimator example I: Graphical model learning

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥ 0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

a2

a3

a4a 5

a1

a1

a2

a3

a4

a5

X =

Thursday, June 12, 14

a1 a2 a3 a4 a5

Graphical model selection
Let X♮ ∈ Sp×p

++ , be a p × p positive-definite matrix. The sample is given by a1, . . . , an ∈ Rp, which are i.i.d.

random vectors with zero mean and covariance matrix
(

X♮
)−1.

An M -estimator for graphical model learning [12]
The following M -estimator has good statistical properties

X⋆
M ∈ arg min

X

{
Tr
(

Σ̂X
)

− log det (X) : X ∈ Sp
++
}

,

where Σ̂ is the empirical covariance matrix, i.e., Σ̂ := (1/n)
∑n

i=1 aiaT
i [12].
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Graphical model learning contd.

Graphical model selection
Let X♮ ∈ Sp×p

++ be a symmetric positive-definite matrix. The sample is given by a1, . . . , an ∈ Rp, which are

i.i.d. random vectors with zero mean and covariance matrix
(

X♮
)−1.

The derivation: The probability density function pX(·) is given by

pX(a1, . . . , an) = Πn
i=1

[
(2π)−p/2 det

(
X−1

)−1/2
exp
(

−
1
2

aT
i Xai

)]
= (2π)−np/2 det(X)n/2 exp

[
−

1
2

n∑
i=1

(
aT

i Xai

)]
.

Therefore, the ML estimator is defined as

X⋆
M ∈ arg min

X

{
+

np

2
log(2π) −

n

2
log det (X) +

n

2
Tr
(

Σ̂X
)

: X ∈ Sp
++

}
,

which is equivalent to the M -estimator X⋆
M .

Observation: ◦ The M -estimator becomes the ML estimator when ai’s are Gaussian random vectors.
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M-estimator example II: Gaussian process regression

Above image is taken from [13].◦ A Gaussian process (GP) is a stochastic process, which we will denote by

f(a) ∼ GP(µ(a), K(a, a′)),

where µ(a) : Rp → R is the mean of the GP and K(a, a′) : Rp × Rp → R a covariance function or kernel.

An M -estimator for kernel hyperparameters tuning [11]
Let b1, ..., bn ∈ R be the noisy targets, and a1, ..., an ∈ Rp be the training data points. The maximum-likelihood
estimator, given the Gaussian process GP(µ(a), KX(a, a′)) parameterized by X ∈ Rm, satisfies the following:

X⋆
M ∈ arg min

X

{
log det(KX(A, A)) +

1
n

n∑
i=1

(
(bi − µ(ai))T K−1

X (ai, ai)(bi − µ(ai))
)}

.

where [KX(A, A)]ij = KX(ai, aj) and KX ∈ Sn×n
+ .
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Kernel hyperparameters learning contd.

Kernel hyperparameter tuning
Let b1, ..., bn ∈ R be the noisy targets, a1, ..., an ∈ Rp be the training data points and KX be a chosen kernel
(cf., see commonly used kernels in Supplementary Lecture Kernel Methods), as parameterized by X ∈ Rm.

The derivation: The probability density function pθ(·) is given by

pX(b1, . . . , bn) = Πn
i=1

[
(2π)−p/2 det(KX(A, A))−1/2 exp

(
−

1
2

(bi − µi)T K−1
i,X(bi − µi)

)]
= (2π)−np/2 det(KX(A, A))−n/2 exp

[
−

1
2

n∑
i=1

(bi − µi)T K−1
i,X(bi − µi)

]
,

where µi = µ(ai) and K−1
i,X = K−1

X (ai, ai) for brevity. Taking the logarithm, we have

log p(y|A, X) = −
np

2
log(2π)︸             ︷︷             ︸

constant

−
n

2
log det(KX(A, A))︸                           ︷︷                           ︸

model complexity

−
1
2

n∑
i=1

(bi − µi)K−1
i,X(bi − µi)︸                                       ︷︷                                       ︸

mismatch between prior and data

,

which is equivalent to our estimator X⋆
M .
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M-estimator example III: (Stylized) Density estimation

Definition (Density estimation–informal)
Density estimation is concerned about estimating an underlying
probability density function from observed data points (e.g., graphs).

Distance metrics
The distance, d(·, ·), could be any distance measure between two
distributions, such as the 1-Wasserstein distance seen in lecture 1.

An M -estimator for learning density estimation
Let a1, . . . , an ∈ Rp be our training samples, drawn from a known distribution a ∼ pa and let px be a
distribution to be learned, and d(·, ·) the distance we are using, our M-estimator satisfies:

x⋆
M ∈ arg min

x
d(pa, px)

where px is the true data distribution.

Challenge: ◦ pa is not known: Plugging in an empirical estimate can drastically change the above problem.
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⋆M-estimator example IV: Google PageRank
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The general formulation: Least-squares

Optimization formulation (Least-squares estimator)

min
x∈Rd

1
2

∥ b − Ax ∥2
2︸               ︷︷               ︸

f(x)

,

where x = r, b =
[

r
γ
n
1

]
, A =

[
M

γ
2n
11⊤

]
, d = n in Google PageRank problem.

Linear regression problem
Let x♮ ∈ Rd and A ∈ Rn×d (full column rank). Goal: estimate x♮, given A and

b = Ax♮ + w,

where w denotes unknown noise.
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A unifying perspective for generalized linear models

ML estimator for generalized linear models
The ML estimators for the class of models seen so far are closely related to the
so-called generalized linear models. The ML estimator for the generalized linear
models can be written as

x⋆
ML ∈ arg min

x∈Rp

{
1
n

n∑
i=1

[ϕ(⟨ai, x⟩) − bi ⟨ai, x⟩]

}
.

Examples:
1. ϕ(u) = u2/2 results in the ML estimator for linear regression
2. ϕ(u) = log(1 + exp(u)) results in the ML estimator for logistic regression
3. ϕ(u) = exp(u) results in the ML estimator for Poisson regression 0.2 0.1 0.0 0.1 0.2

xLS

4

2

0

2

4

x
\

A surprise [2]
Estimators for generalized linear models are equivalent up to a scaling constant. In the figure, the data is
generated data with respect to the logistic model, parameterized by x♮. Observe the scatter plot between the
coefficients of the true parameters x♮ and of the least squares (LS) M -estimator x⋆

LS.

Remark: ◦ Model-mismatch may be not too severe!
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Role of computation

Observations: ◦ The estimator x⋆’s performance, e.g., ∥ x⋆ − x♮ ∥2
2, depends on the data size n.

◦ Evaluating ∥ x⋆ − x♮ ∥2
2 is not enough for evaluating the performance of a Learning Machine

▶ We can only numerically approximate the solution of
x⋆ ∈ arg min

x∈Rp
{F (x)} .

◦ We use algorithms to numerically approximate x⋆.

Practical performance
Denote the numerical approximation by an algorithm at time t by xt.
The practical performance at time t using n data samples is determined by

∥ xt − x♮ ∥2︸           ︷︷           ︸
ε̄(t,n)

≤
∣∣∣∣xt − x⋆

∣∣∣∣
2︸           ︷︷           ︸

ϵ(t)

+ ∥ x⋆ − x♮ ∥2︸            ︷︷            ︸
ε(n)

,

where ε(n) denotes the statistical error, ϵ(t) is the numerical error, and ε̄(t, n)
denotes the total error of the Learning Machine.

x♮

x⋆

xtxt−1xt−2

ε(t, n)

ε(
n)

ϵ(t)
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Role of computation

Observations: ◦ The estimator x⋆’s performance, e.g., ∥ x⋆ − x♮ ∥2
2, depends on the data size n.

◦ Evaluating ∥ x⋆ − x♮ ∥2
2 is not enough for evaluating the performance of a Learning Machine

▶ We can only numerically approximate the solution of
x⋆ ∈ arg min

x∈Rp
{F (x)} .

◦ We use algorithms to numerically approximate x⋆.

Practical performance
Denote the numerical approximation by an algorithm at time t by xt.
The practical performance at time t using n data samples is determined by

∥ xt − x♮ ∥2︸           ︷︷           ︸
ε̄(t,n)

≤
∣∣∣∣xt − x⋆

∣∣∣∣
2︸           ︷︷           ︸

ϵ(t)

+ ∥ x⋆ − x♮ ∥2︸            ︷︷            ︸
ε(n)

,

where ε(n) denotes the statistical error, ϵ(t) is the numerical error, and ε̄(t, n)
denotes the total error of the Learning Machine.

x♮

x⋆

xtxt−1xt−2

ε(t, n)

ε(
n)

ϵ(t)
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Peeling the onion

Models
Let d(·, ·) : H◦ × H◦ → R+ be a metric in an extended function space
H◦ that includes H; i.e., H ⊆ H◦. Let

1. h◦ ∈ H◦ be the true, expected risk minimizing model
2. h♮ ∈ H be the solution under the assumed function class H ⊆ H◦

3. h⋆ ∈ H be the estimator solution
4. ht ∈ H be the numerical approximation of the algorithm at time t

Practical performance

d(ht, h◦)︸       ︷︷       ︸
ε̄(t,n)

≤ d(ht, h⋆)︸       ︷︷       ︸
optimization error

+ d(h⋆, h♮)︸       ︷︷       ︸
statistical error

+ d(h♮, h◦)︸       ︷︷       ︸
model error

,

where ε̄(t, n) denotes the total error of the Learning Machine. We can try to
1. reduce the optimization error with computation
2. reduce the statistical error with more data samples, with better estimators, and with prior information
3. reduce the model error with flexible or universal representations
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Estimation of parameters vs estimation of risk

Nomenclature
Rn(·) training error

R(·) test error
R(x♮) − R(x◦) modeling error
R(x⋆) − R(x♮) excess risk

supx∈X |R(x) − Rn(x)| generalization error
Rn(xt) − Rn(x⋆) optimization error

Recall the general setting
Let R(hx) = EL(hx(a), b) be the risk function and
Rn(hx) = 1

n

∑n

i=1 L(hx(ai), bi) be the empirical estimate.
Let X ⊆ X ◦ be parameter domains, where X is known. Define

1. x◦ ∈ arg minx∈X ◦ R(hx): true minimum risk model
2. x♮ ∈ arg minx∈X R(hx): assumed minimum risk model
3. x⋆ ∈ arg minx∈X Rn(hx): ERM solution
4. xt: numerical approximation of x⋆ at time t

X → X ◦ n ↑ p ↑
Training error ↘ ↗ ↘
Excess risk ↗ ↘ ↗
Generalization error ↗ ↘ ↗
Modeling error ↘ = ↭
Time ↗ ↗ ↗
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Peeling the onion (risk minimization setting)

Models
Let X ⊆ X ◦ be parameter domains, where X is known. Define

1. x◦ ∈ arg minx∈X ◦ R(hx): true minimum risk model
2. x♮ ∈ arg minx∈X R(hx): assumed minimum risk model
3. x⋆ ∈ arg minx∈X Rn(hx): ERM solution
4. xt: numerical approximation of x⋆ at time t

Practical performance

R(xt) − R(x◦)︸                 ︷︷                 ︸
ε̄(t,n)

≤ Rn(xt) − Rn(x⋆)︸                     ︷︷                     ︸
optimization error

+2 sup
x∈X

|R(x) − Rn(x)|︸                         ︷︷                         ︸
generalization error

+ R(x♮) − R(x◦)︸                 ︷︷                 ︸
model error

where ε̄(t, n) denotes the total error of the Learning Machine. We can try to
1. reduce the optimization error with computation
2. reduce the generalization error with regularization or more data
3. reduce the model error with flexible or universal representations
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How does the generalization error depend on the data size and dimension?

R(xt) − R(x◦)︸                 ︷︷                 ︸
ε̄(t,n)

≤ Rn(xt) − Rn(x⋆)︸                     ︷︷                     ︸
optimization error

+2 sup
x∈X

|R(x) − Rn(x)|︸                         ︷︷                         ︸
generalization error

+ R(x♮) − R(x◦)︸                 ︷︷                 ︸
model error

Theorem ([8])
Let hx : Rp → R, hx(a) = xT a and let L(hx(a), b) = max(0, 1 − b · xT a) be the hinge loss. Let
X := {x ∈ Rp : ∥x∥ ≤ λ}. Suppose that ∥a∥ ≤ √

p almost surely (boundedness).

Roughly speaking, with some probability that we can control, the following holds:

sup
x∈X

|R(x) − Rn(x)| = O
(

λ

√
p

n

)
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A Time-Data conundrum — I

A computational dogma
Running time of a learning algorithm increases with the size of the data.

◦ Misaligned goals in the statistical and optimization disciplines

Discipline Goal Metric
Optimization reaching numerical ϵ-accuracy ∥xk − x⋆∥ ≤ ϵ

Statistics learning ε-accurate model ∥x⋆ − x♮∥ ≤ ε

◦ Main issue: ϵ and ε are NOT the same but should be treated jointly!
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Data as a computational resource

A stylized formalization of the time-data tradeoff
The goals of optimization and statistical modeling are tightly connected:

∥xk(t) − x♮∥ ≤ ∥xk(t) − x⋆∥︸             ︷︷             ︸
ϵ: needs “time” t

+ ∥x⋆ − x♮∥︸         ︷︷         ︸
ε: needs “data”n

≤ ε̄(t, n),

x♮: true model in Rp

ε̄(t, n): actual model precision at time t with n samples

"̄(t, n)

n

t

statistical lowerbound

co
m

p
u
ta

ti
o
n
a
l
lo

w
er

b
o
u
n
d

Remark: ◦ The Time-Data Trade-off supplementary lecture provides details for sparse recovery.
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Wrap up!

▶ Lecture 3 on Friday at CM 1 1

▶ Handout 1 (self-study)
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⋆Modeling Google PageRank
◦ Transition matrix for world wide web:

E =


c11 c12 . . . c1n

c21 c22 . . . c2n

.

..
.
..

. . .
.
..

cn1 cn2 . . . cnn


◦
∑n

i=1 cij = 1, ∀j ∈ {1, 2, . . . , n} (n ≈ 1.1billion)

◦ Estimated memory to store E : 1010 GB!

credit: https://siteefy.com/how-many-websites-are-there/

circa September 05, 2023

◦ A bit of mathematical modeling:

▶ rk
i : Probability of being at node i at kth state. Let us define a state vector rk =

[
rk

1 , rk
2 , . . . , rk

n

]⊤.

▶ Multiplying rk by E takes one random step along the edges of the graph:

r1
i =

n∑
j=1

cijr0
j = (Er0)i,

since cij = P (i|j) (by the law of total probability).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 22

https://siteefy.com/how-many-websites-are-there/


⋆Modeling Google PageRank
◦ Transition matrix for world wide web:

E =


c11 c12 . . . c1n

c21 c22 . . . c2n

.

..
.
..

. . .
.
..

cn1 cn2 . . . cnn


◦
∑n

i=1 cij = 1, ∀j ∈ {1, 2, . . . , n} (n ≈ 1.1billion)

◦ Estimated memory to store E : 1010 GB!
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◦ A bit of mathematical modeling:

▶ rk
i : Probability of being at node i at kth state. Let us define a state vector rk =

[
rk

1 , rk
2 , . . . , rk

n
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⋆Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r⋆ after an infinite number of random steps.
◦ Disconnected web: Initial state vector affects the ranking vector.

A solution: Model the event that the surfer quits the current webpage to open another.

B =

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 =
1
n
11⊤

1

2

3

4

1 1 1
2

1
2

1

◦ Sink nodes: Column of zeros in E, moves r to 0!

A solution: Create artifical links from sink nodes to all the nodes.

λi =
{

1 if ith node is a sink node,

0 otherwise.

1

2 3

1

1
2

1
2
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⋆Optimization formulation of Google PageRank
◦ Define the pagerank matrix M as

M = (1 − p)(E +
1
n
1λT ) + pB.

M is a column stochastic matrix.

Problem Formulation
◦ We characterize the solution as

◦ Mr⋆ = r⋆.
◦ r⋆ is a probability state vector:

ri ≥ 0,

n∑
i=1

ri = 1.

◦ Find r ≥ 0 such that Mr = r and 1⊤r = 1.

Optimization formulation

min
x∈Rn

{
f(x) =

1
2

∥Mx − x∥2 +
γ

2
(
1T x − 1

)2
}

.
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⋆Checking the fidelity

◦ Given an estimator x⋆ ∈ arg minx∈X {F (x)}, we need to address two key questions:

1. Is the formulation reasonable?
2. What is the role of the data size?
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⋆Standard approach to checking the fidelity

Standard approach
1. Specify a performance criterion or a (pseudo)metric d(x⋆, x♮) that should be small if x⋆ = x♮.
2. Show that d is actually small in some sense when some condition is satisfied.

Example
Take the ℓ2-error d(x⋆, x♮) := ∥ x⋆ − x♮ ∥2

2 as an example. Then we may verify the fidelity via one of the
following ways, where ε denotes a small enough number:

1. E
[
d(x⋆, x♮))

]
≤ ε (expected error),

2. P
(

d(x⋆, x♮) > t
)

≤ ε for any t > 0 (consistency),

3.
√

n(x⋆ − x♮) converges in distribution to N (0, I) (asymptotic normality),
4.

√
n(x⋆ − x♮) converges in distribution to N (0, I) in a local neighborhood (local asymptotic normality).

if some condition is satisfied. Such conditions typically revolve around the data size.
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⋆Approach 1: Expected error

Gaussian linear model
Let x♮ ∈ Rp and let A ∈ Rn×p. The samples are given by b = Ax♮ + w, where w is a sample of a Gaussian
random vector w ∼ N (0, σ2I).

What is the performance of the ML estimator

x⋆
ML ∈ arg min

x∈Rp

{
∥ b − Ax ∥2

2
}

?

Theorem (Performance of the LS estimator [9])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if
n > p + 1, then

E
[
∥ x⋆

ML − x♮ ∥2
2
]

=
p

n − p − 1
σ2 → 0 as

n

p
→ ∞.
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⋆Approach 2: Consistency

Covariance estimation
Let x1, . . . , xn be samples of a Gaussian random vector with zero mean and some unknown positive-definite
covariance matrix Σ♮ ∈ Rp×p.

What is the performance of the M -estimator Σ⋆ := (Θ⋆)−1, where

Θ⋆
ML ∈ arg min

Θ∈Sp++

{
1
n

n∑
i=1

[
− log det (Θ) + xT

i Θxi

]}
?

▶ If y = g(x), for some g, then ŷML = g(x̂ML). This is called the functional invariance property of ML
estimators.

Theorem (Performance of the ML estimator [12])
Suppose that the diagonal elements of Σ♮ are bounded above by κ > 0, and each Xi/

√(
Σ♮
)

i,i
is Gaussian

with a scale parameter c. Then

P

({∣∣∣(Σ⋆
ML

)
i,j

−
(

Σ♮
)

i,j

∣∣∣ > t

})
≤ 4 exp

[
−

nt2

128 (1 + 4c2) κ2

]
→ 0 as n → ∞

for all t ∈
(

0, 8κ
(

1 + 4c2
))

.
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⋆Approach 3: Asymptotic normality

Logistic regression
Let x♮ ∈ Rp, and let a1, . . . , an ∈ Rp. Let b1, . . . , bn be samples of independent random variables B1, . . . , Bn.
Each random variable Bi takes values in {−1, 1} and follows
P ({Bi = 1}) := ℓi(x♮) =

[
1 + exp

(
−
〈

ai, x♮
〉)]−1 (i.e., the logistics loss).

◦ What is the performance of the ML estimator

x⋆
ML ∈ arg min

x∈Rp

{
−

1
n

n∑
i=1

log
[
I{Bi=1}ℓi(x) + I{Bi=0} (1 − ℓi(x))

]
:= −

1
n

fn(x)

}
?
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⋆Approach 3: Asymptotic normality

Theorem (Performance of the ML estimator [3] (⋆also valid for generalized linear models))
The random variable J(x♮)−1/2

(
x⋆

ML − x♮
)

converges in distribution to N (0, I) if λmin(J(x♮)) → ∞ and

max
x∈Rp

{
∥ J(x♮)−1/2J(x)J(x♮)−1/2 − I ∥2→2 : ∥ J(x♮)1/2

(
x − x♮

)
∥2 ≤ δ

}
→ 0 (1)

for all δ > 0 as n → ∞, where J(x) := −E
[
∇2 fn(x)

]
is the Fisher information matrix.

Observations: ◦ Roughly speaking, assuming that p is fixed, we have the following

1. The condition (1) means that J(x) ∼ J(x♮) for all x in a neighborhood Nx♮ (δ) of x♮.
2. Nx♮ (δ) becomes larger with increasing n.

3. ∥ J(x♮)−1/2
(

x⋆
ML − x♮

)
∥2

2 ∼ Tr (I) = p.

4. ∥ x⋆
ML − x♮ ∥2

2 decreases at the rate λmin(J(x♮))−1 → 0 asymptotically.
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⋆Approach 4: Local asymptotic normality

Remarks: ◦ In general, the asymptotic normality does not hold even i.i.d. case

◦ We may have the local asymptotic normality (LAN).

ML estimation with i.i.d. samples
Let b1, . . . , bn be independent identically distributed samples of a random variable B, whose probability density
function is known to be in the set {px(b) : x ∈ X } with some X ⊆ Rp.

◦ What is the performance of the ML estimator

x⋆
ML ∈ arg min

x∈X

{
−

1
n

n∑
i=1

log [px(bi)]

}
?
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⋆Approach 4: Local asymptotic normality

Theorem (Performance of the ML estimator (cf. [7, 14] for details))
Under some technical conditions, the random variable

√
n J−1/2

(
x⋆

ML − x♮
)

converges in distribution to
N (0, I), where J is the Fisher information matrix associated with one sample, i.e.,

J := −E
[
∇2

x log [px(B)]
]∣∣

x=x♮
.

Observations: ◦ Roughly speaking, assuming that p is fixed, we can observe that
▶ ∥

√
n J−1/2

(
x̂ML − x♮

)
∥2

2 ∼ Tr (I) = p,
▶ ∥ x⋆

ML − x♮ ∥2
2 = O(1/n).
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⋆Minimax performance

Remarks: ◦ So far, we have focused on how good an estimator is as a function of data size.

◦ Now, we derive a fundamental limitation on the performance, posed by the model.

Definition (Minimax risk)
For a given loss function d(x̂, x♮) and the associated risk function R(x̂, x) := E [d(x̂, x)], the minimax risk is
defined as

Rminmax := min
x̂

max
x∈X

{R(x̂, x)} ,

where X denotes the parameter space.

A game theoretic interpretation:
▶ Consider a statistician playing a game with Nature.
▶ Nature is malicious, i.e., Nature prefers high risk, while the statistician prefers low risk.
▶ Nature chooses an x♮ ∈ X , and the statistician designs an estimator x̂.
▶ The best the statistician can choose is the minimax strategy, i.e., the estimator x̂minmax such that it

minimizes the worst-case risk.
▶ The resulting worst-case risk is the minimax risk.
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⋆An information theoretic approach

We choose R(x̂, x♮) := ∥ x̂ − x♮ ∥2 to illustrate the idea. Generalizations can be found in [16, 17].

There are two key concepts.

⋆First step: transformation to a multiple hypothesis testing problem
Let Xfinite be a finite subset of the original parameter space X . Then we have

Rminmax := min
x̂

max
x∈X

{R(x̂, x)} ≥ min
x̂∈Xfinite

max
x∈Xfinite

{R(x̂, x)} ,

⋆Second step: randomizing the problem
Let P be a probability distribution on Xfinite, and suppose that x♮ is selected randomly following P. Then we have

min
x̂∈Xfinite

max
x∈Xfinite

{R(x̂, x)} ≥ min
x̂∈Xfinite

{
EP
[
R(x̂, x♮)

]}
.
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⋆An information theoretic approach contd.

Suppose we choose the subset Xfinite such that for any x, y ∈ Xfinite, x , y,

∥ x − y ∥2 ≥ dmin

with some dmin > 0. Then we have

Rminmax ≥ min
x̂∈Xfinite

{
EP
[
R(x̂, x♮)

]}
≥

1
2

dminP
(

x̂ , x♮
)

.

What remains is to bound the probability of error, P
(

x̂ , x♮
)

.
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⋆An information theoretic approach contd.
A very useful tool from information theory is Fano’s inequality.

Theorem (Fano’s inequality)
Let X and Y be two random variables taking values in the same finite set X . Then

H(X|Y ) ≤ h(P (X , Y )) + P (X , Y ) log (|X | − 1) ,

where H(X|Y ) denotes the conditional entropy of X given Y , defined as

H(X|Y ) := EX,Y [− log (P (X|Y ))] ,

and
h(x) := −x log x − (1 − x) log(1 − x) ≤ log 2

for any x ∈ [0, 1].

Applying Fano’s inequality to our problem with some simplifications, we obtain the following fundamental limit.

Corollary

P
(

x̂ , x♮
)

≥
1

|Xfinite|
(

H(x♮|x̂) − log 2
)

.
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⋆An information theoretic approach contd.

Theorem ([17])
If there exists a finite subset Xfinite of the parameter space X such that for any x1, x2 ∈ X finite , x1 , x2,

∥ x1 − x2 ∥2 ≥ dmin

with some dmin > 0 and1

D(Px1 ∥Px2 ) :=
∫

log
(

dPx1

dPx2

)
dPx1 ≤ r

with some r > 0, where Px denotes the probability distribution of the observations when x♮ = x for any
x ∈ Xfinite. Then

Rminmax ≥
dmin

2

(
1 −

r + log 2
ln |Xfinite|

)
.

Proof.
Combine the results in previous slides, and take Pfinite to be the uniform distribution on Xfinite. □

1The function D(P∥Q) is called the Kullback-Leibler divergence or the relative entropy between probability distributions P and Q.
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⋆Example

Problem (Gaussian linear regression on the ℓ1-ball)
Let A ∈ Rn×p and let x♮ ∈ Rp. Define y := Ax♮ + w, where w ∼ N (0, σ2I) with some σ > 0. It is known that
x♮ ∈ X := {x : ∥ x ∥1 ≤ R}. What is the minimax risk Rminmax with respect to R(x̂, x♮) := E

[
∥ x̂ − x♮ ∥2

]
?

Theorem ([10])
Suppose the ℓ2-norm of each column of A is less than or equal to

√
n and some technical conditions are

satisfied. Then with high probability,

Rminmax ≥ cσR

√
ln p

n

with some c > 0.

Bound the minimax risk from above
▶ The worst-case risk of any explicitly given estimator is an upper bound of Rminmax.
▶ If the upper bound equals Θ(lower bound), then Θ( lower bound ) is the optimal minimax rate. For

example, the result of the theorem above is optimal [10].
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