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This work is released under a Creative Commons License with the following terms:
Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

» Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor's permission.
» Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.
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» Full Text of the License
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Logistics

Credits: 6
Lectures: Monday 9:00-12:00
Exercise hours: Friday 16:00-19:00

Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with
optimization is useful.

> Grading: Homework exercises & exam (cf., syllabus).
> Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-556

lions@epfl

syllabus & course outline & HW exercises.

TA’s: Yongtao Wu (Head TA), Pedro Abranches (Head TA), Arshia Afzal, Elias Abad Rocamora, Andrej
Janchevski, Wanyun Xie, Leyla Naz Candogan, loannis Mavrothalassitis.

QOLIONS: Kimon Antonakopoulos, Angeliki Kamoutsi, Francesco Tonin.
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Logistics for online teaching

> Zoom link for video lectures and exercise hours:

https://go.epfl.ch/mod-zoom
Passcode: 994779

»> Zoom link for exercise hours:

https://go.epfl.ch/mod-zoom-1lab
Passcode: 468298

> Mediaspace@EPFL channel for recorded videos:
https://go.epfl.ch/mediaspaceMoD
> Moodle:

https://go.epfl.ch/mad-moodle
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Outline

> Overview of Mathematics of Data
> Empirical Risk Minimization

> Statistical Learning with Maximum Likelihood Estimators
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Recommended preliminary material for this lecture

o Supplementary lectures

1. Basic Probability
2. Complexity
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Overview of Mathematics of Data

Towards Learning Machines

The course presents data models, optimization formulations, numerical algorithms, and the associated analysis
techniques with the goal of extracting information &knowledge from data while understanding the trade-offs.

Computation Algorithm Ethics

Storage

y y y

Slide 7/ 37 EPFL
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A taxonomy of machine learning

o Machine learning in three paradigms:

1. Supervised learning: Learn to predict the label of an unseen sample from a set a labelled examples.

> (CS-433 (Machine Learning), CS-431/EE-608 (Natural Language Processing)

2. Unsupervised learning: Identify structure within a dataset without having access to solved examples.

> (CS-503 (Visual Intelligence: Machines and Minds)

3. Reinforcement learning: Learn how to optimally control an agent interacting with an environment.

> EE-568 (Reinforcement Learning), CS-430 (Intelligent Agents)

o More information on ML courses can be found here:

https://wuw.epfl.ch/research/domains/ml/courses/
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An overview of statistical learning by Vapnik

A basic statistical learning framework [7]
A statistical learning problem usually consists of three elements.

a; b;
1. A generator that produces samples a; € RP of a random G ‘% S . >
variable a with an unknown probability distribution Pa.
2. A supervisor that for each a; € RP, generates a sample b; of a
random variable B with an unknown conditional probability r h(a,-)
distribution P g, . L RN

3. A learning machine that can respond as any function
h(a;) € H° of a; in some fixed function space #°.

o Via this framework, we will study classification, regression, and density estimation problems
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A classification example: Cancer prediction

17012 [] [] 751§
16 b} a; bl
a =
! A derened 2 L G S 3
e )
a ELL]] 32,330, 000/ br=1 h(az)
-l le LlJ . (isease) L —»
vk (116 } 1
" o Generator Py
S T > Genome data a;: http://genome.ucsc.edu
icare  by=-1 S isor P
a, i 1773, 5001 770,600l 770,700l 70 eel 7 " o Supervisor P g|,
ooet |4t S
» Health b; = 1 or —1: Cancer or not

o Learning Machine h(a;)

o Goal: Assist doctors in diagnosis L .
> Data scientist: Mathematics of Data
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A classification example: Google Photos

ovun

Google Photos &) G a; NI b >
h(a;)
L

o Generator Py

> You taking photos a;.
o Supervisor P g|a

> Labels for the i-th photo b; € {person, action,. ..}
o Learning Machine h(a;)

> Data scientist: Mathematics of Data

Q 2 ih
Photos ~ Search  Sharing  Library

o Goal: Search a photo album
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A classification example: Next word prediction

Google

mathematics of | X

-
0]

mathematics of data from theory to computation
mathematics of computation

mathematics of data science

mathematics of operations research
mathematics of machine learning eth

2. mathematics of information

m Mathematics for Machine Learning
Book by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth

mathematics of data science eth

. Mathematical Aspects of Deep Learning
Book

Mathematics of Deep Learning: An Introduction
Textbook by Leonid Berlyand and Pierre-Emmanuel Jabin

Google Search I'm Feeling Lucky
Roport inappropriato procictions

am more

o Goal: Train a ChatGPT to assist human
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a; b;

o Generator P,
> An incomplete sentence a;.

o Supervisor P g|a

> Labels for the next word b; € Vocabulary set.

o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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A regression example: Travel time prediction

a; bl
G » S b
h(a;)
L —

oy e @)

Plage de

o Generator Py

> Pairs of waypoints a;.
o Goal: Estimate travel time o Supervisor P 5|,

> Trip duration b;.
o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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A regression example:

-
Type

Rooms

Living space

Year buile

Type
Rooms
Liing space
Lotsize

Year buitt

House pricing

Apartment
55
200m?

1991

villa

250m?
seam?

1965

(source: 2022 https://www.homegate.ch)

a; = [ location, size, orientation, view, distance to public transport, ...

b; = [ price ]

o Goal: Assist pricing decisions
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Ecublens

1024 Ecublens VD

1024 Ecublens VD

a; bi
G » S b
h(a;)
L —

o Generator Py

> Owners, architects, municipality, constructors
o Supervisor P g|a

> House data (homegate, comparis, immobilier...)
o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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A regression example: House pricing

CHF 2,900,000.- v

7.5 r00ms  220m? ving space
Q 1024 Ecublens VD

Bénéficant dun emplacement surles hauteurs de a charmante
)
CHF 4,900,000.- v

6 rooms 290m? ving space
Q 1024 Ecublens VD

Vil avec vue ac e potentiel constructibie®

Située  seulement quelquescentaines de mecre de EPFL, dans un auarter came,

de 2000,
exotiques ainsi quune grande piscine Construitesur deux nveat,ele est.

(source: 2024 https://www.homegate.ch)

a; = [ location, size, orientation, view, distance to public transport, ... ]

b; = [ price ]

o Goal: Assist pricing decisions
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a; b;

o Generator Py

> Owners, architects, municipality, constructors
o Supervisor P g|a

> House data (homegate, comparis, immobilier...)
o Learning Machine h(a;)

> Data scientist: Mathematics of Data

Slide 14/ 37 EPFL



A density estimation example: Image generation from text prompts

a; bl
G » S b
h(a;)
L —

o Generator Py

> Nature

a; = [ ...images...] o Supervisor P g|a

b; = [ ...probability... ] > Frequency data

o Learning Machine h(a;)

o Goal: Generate images via text prompts
& P P > Data scientist: Mathematics of Data
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A density estimation example: Image generation from text prompts

a; bl
G » S >
h(al)
L ——

o Generator Py

> Nature
a; = [ ...images...] o Supervisor F g|q
b; = [ ...probability.... ] > Frequency data

o Learning Machine h(a;
o Goal: Generate images via text prompts & (2:)

> Data scientist: Mathematics of Data
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A density estimation example: Uncertainty estimation for MRI

Training Data Mean Estimate  Uncertainty Estimate
Data Posterior sampling
acquisition with a GAN
L Optimize sampling
mask

a; = [ ... noise & mask ...]
b; =[ ... images ... |

o Goal: Optimize sampling mask
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a; b;

o Generator Py

> Magpnetic resonance imaging (MRI) machines
o Supervisor P g|a

> Frequency data
o Learning Machine h(a;)

> Data scientist: Mathematics of Data

Slide 16/ 37

EPFL



Loss function

Definition (Loss function)

A loss function L : B x B — R on a set is a function that satisfies some or all properties of a metric. We use

loss functions in statistical learning to measure the data fidelity L(h(a),b).
Definition (Metric)

(a) d(b1,b2) > 0 for all by and b2
(b) d(b1,b2) =0 if and only if by = bs
(c) d(bl,bg) d(b2,b1)

(d) d(b1,b2) < d(b1,b3) + d(bs, ba)

Remarks: o A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b).

o Norms induce metrics while pseudo-norms induce pseudo-metrics.

o A divergence satisfies (a) and (b) but not necessarily (c) or (d)
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Let B be a set. A function d(-,-) : Bx B — R is a metric if Vb1,2,3 € B :

(nonnegativity)
(definiteness)
(symmetry)
(triangle inequality)



Loss function examples

Loss
=N

—— Logistic loss
0-1 loss
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Definition (Logistic loss)

For a binary classification problem, the logistic loss for a score value
b1 € R and class label b2 € £1 is given by

L(bl, bz) = 10g2(1 + exp(—b1 X bz)).

Definition (¢,-losses)
For all by,by € R™ x R™, we can use Lg(b1,b2) = ||b1 — ba|

q
q» Where

Lg-norm: ||b||3 := Z?Zl |b;|2 for b € R™ and ¢ € [1,0)

Definition (1-Wasserstein distance)

Let 1 and v be two probability measures on R% an define their couplings
as T'(u,v) := {m probability measure on R% x R? with marginals u, v}.

Wi(p,v) == inf

E ~rll T —
reT (1) (z,y) 7r|| y”
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A risky, non-parametric reformulation of basic statistical learning

Statistical Learning Model [7]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (a;,b;) € AXx B, i=1,...,n,
following an unknown probability distribution P.

2. A class (set) H° of functions h : A — B.
3. A loss function L : B x B — R, measuring data fidelity.

Definition (Risk)

Let (a,b) follow the probability distribution P and be independent of (a1,b1), ..., (an,bn). Then, the
(population) risk corresponding to any h € H° is its expected loss for a chosen loss function L:

R(h) :=E(a,p) [L(h(a),b)] .
Statistical learning seeks to find a h® € H° that minimizes the population risk, i.e., it solves
h° e argm}fn{R(h) theH}.

Observations: o Since P is unknown, the optimization problem above is intractable.

o Since H° is often unknown, we might have a mismatched function class in constraints.
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Empirical risk minimization (ERM)
Empirical risk minimization (ERM) [7]
We approximate h° by minimizing the empirical average of the loss instead of the risk. That is, we consider

h*Eargmm ZL (a;),bi) :heH p,

where H is our best estimate of the function class H°. Ideally, H = H°.

Rationale: By the law of large numbers, we can expect that for each h € H,
R(h) :=E(a p) [L(h(a),b Z L(h(a;)

when n is large enough, with high probability.

Theorem (Strong Law of Large Numbers)

Let X be a real-valued random variable with the finite first moment E[X], and let X1, X3, ..., Xn be an infinite
sequence of independent and identically distributed copies of X. Then, the empirical average of this sequence

_ 1 _
Xn := —(X1 4 ... + X»n) converges almost surely to E[X]: i.e., P(IimnHan = E[X]) =
n
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An ERM example

Statistical learning with empirical risk minimization (ERM) [7]

We approximate h° by minimizing the empirical average of the loss instead of the risk. That is, we consider

1 n
h* € argmin { Rn(h) = — ZL(h(ai),b,-)
o " i=1

Observations: o The search space H is possibly infinite dimensional. It is still not solvable!
o Sometimes, H is a non-empty set with a corresponding reproducing kernel Hilbert space.
> Then, we can find solutions as if the problem was finitely parameterized.

> See supplementary lecture on Kernel Methods.

Statistical learning with empirical risk minimization (ERM) [7]
In contrast, when the function h has a parametric form hx(-), we can instead solve

1 n

*E i Rnhxzf th i7bi

x* € argmin § Rulf) = > Llfx(a:), i)
i=1
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Basic statistics: Model

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of RP
2. A parameter x!, which is an element of the parameter space
3. A class of probability distributions Py := {Px : x € X}
4. A sample (a;,b;), which follows the distribution b; ~ quyai € Px

Example: Gaussian linear model

Let x% € RP. Let b; = <ai,xh> +w; fori=1,...,n, where w; € R is a
Gaussian random variable with zero mean and variance o2 (i.e.,

w; ~ N(0,02)).

o Linear model is super general (see Lecture 2).

o Models are often wrong! Robustness vs Performance.

o Statistical estimation seeks to approximate x“, given X, Py, and b.
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Basic statistics: Estimator

Definition (Estimator)

An estimator is a mapping that takes X, Px, (aj, b;)i=1,...,n as inputs, and outputs a value (— x*) in X.

Observations: o The output of an estimator depends on the sample, and hence, is random.

o The output of an estimator is not necessarily equal to x.

° Example: The least-squares estimator (LS)

The least-squares estimator is given by

n
1
X' € argmin -~ Z(bI —(a;,x))? : x €RP
i=1
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Basic statistics: Loss function

Example: The least-squares estimator (LS)

The least-squares estimator is given by

1 1
X[ € arg min {7||b—AxH§:xERP}:argmin —
xerp | n n £

n
Z (bi — (@i, x))* : x €RP 3,
=1
where we define b := (b1,...,bn) and a; to be the i-th row of A.

A statistical learning view of least squares
The LS estimator corresponds to a statistical learning model, for which
> the sample is given by (a;,b;) ERP X R, i=1,...,n,

> the function class H is given by H := {hx(:) := (-, x) : x € RP},
and

> the loss function is given by L(hx(a),b) := (b — hx(a))?.

Observation: o Given the estimator X[, the learning machine outputs thS (a) := (a,x{s)-
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One way to choose the loss function

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of RP
2. A parameter x%, which is an element of the parameter space
3. A class of probability distributions Py := {Px : x € X'}
4. A sample (a;,b;), which follows the distribution b; ~ P

€ Px

xf,a;

Definition (Maximum-likelihood estimator)

The maximum-likelihood (ML) estimator is given by
xy € arg min {L(hx(a), b) := —logp.(b)},
xeX

where p, (-) denotes the probability density function or probability mass function of Px, for x € X.
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The least squares estimator: An intuitive derivation
Gaussian linear model
Let x! € RP. Let b := Ax! +w € R” for some matrix A € R"*P, where w is a Gaussian vector with zero
mean and covariance matrix o21.
The derivation: The probability density function p,(+) is given by
1 n 1
b)=(——=] exp(—==Ib—-Ax|3).
px(b) = (== )" exp (~ 5510 - AxI})
Therefore, the maximum likelihood (ML) estimator is defined as
* : n 2 L 2 P
Xy € arg min —log py(b) = ) log(2mo”) + ﬁ” b—Ax|5:x€RP,,
which is equivalent to
* : 1 A 2. P
xMLGargm;n 5||b7 x||3:x €RP 3.

Observations: o The LS estimator is the ML estimator for the Gaussian linear model.

o The loss function is the quadratic loss.
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Statistical learning with ML estimators

o A visual summary: From parametric models to learning machines

deli d d
(80, b))~ Pbyfag, X) —ot s p (b) 1= | |P(b lai,x)
parameter x identical dist.

J maximizing w.r.t x

. . *
a —Learning Machine <— xy;

prediction |
hxlT/IL (a)

Observations: o Recall x},, € argminkex {L(hx(a),b) := —logpy(b)}.
o Maximizing py (b) gives the ML estimator.

o Maximizing py(b) and minimizing — log py (b) result in the same solution set.

o See Lecture 2 for more examples in classification, imaging, and quantum tomography
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Learning machines result in optimization problems

Definition (A/-Estimator)

The learning machine typically has to solve an optimization problem of
the following form:
X3y € arg min {F(x
i € arg min {F ()}

for some function F' depending on the sample space X, class of
probability distributions Py, and sample b. The term " M-estimator”
denotes “maximum-likelihood-type estimator” [2].

Example: The least-absolute deviation estimator (LAD)

The least-absolute deviation estimator is given by

n
1
X[ap € argmin ¢ — E |b; — (a;,x)| : x €RP
n
i=1

Remark: o The LAD estimator is more robust to outliers than the LS estimator.
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Practical Issues

Given an estimator x* € arg minye x {F(x)} of x!, we have two questions:

1. Is the formulation reasonable?

2. What is the role of the data size?
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Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion or a (pseudo-) metric d(x*,x!) that should be small if x* = x.

2. Show that d is actually small in some sense when some condition is satisfied.

Example
Take the £a-error d(x*,x%) := || x* — x* |2 as an example. Then we may verify the fidelity via one of the
following ways, where £ denotes a small enough number:
1. E [d(x*,xh)] < e (expected error),
2. P (d(x*,xt‘) > t) < ¢ for any ¢ > 0 (consistency),
3.
4. /n(x* —x%) converges in distribution to A'(0,I) in a local neighborhood (local asymptotic normality).

V/n(x* — x1) converges in distribution to A/(0,I) (asymptotic normality),
if some condition is satisfied. Such conditions typically revolve around the data size.

Remark: o Lecture 2 explains these concepts in detail.
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Expected error

Gaussian linear model

Let x! € RP and let A € R"*P. The samples are given by b = Ax! + w, where w is a sample of a Gaussian
random vector w ~ N (0, o2I).

Question: o What is the performance of the ML estimator?
xp € arg min {le—AxHQ}
ML xERP n 2

Theorem (Performance of the LS estimator [5])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if

n > p+1, then
P
n—p—1

E[Hx;\‘AL—th%]: 02 0 as = — oco.
p
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Performance of the ML estimator

Problem
Let x! € RP be unknown and by, ..., by be i.i.d. samples of a random variable B with p.d.f.
Py () € P := {py(b) : x € RP}. Estimate x% from by,...,by.

Optimization formulation (ML estimator)

n

1

L = i —— 1 b; = i

X = arg min n§ 0g [Py (bi)] argfég;f(x)
i=1
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Performance of the ML estimator

Problem

Let x! € RP be unknown and by, ..., by be i.i.d. samples of a random variable B with p.d.f.
Py () € P := {py(b) : x € RP}. Estimate x% from by,...,by.

Optimization formulation (ML estimator)

n
1
X{ = arg min { —— lo; b; = arg min f(x
ML B == E g [Ps (b3)] 5 il (x)
=il

Theorem (Performance of the ML estimator [4, 6])
Under some technical conditions, the random variable x;\‘/,L satisfies

lim nJ~1/2 (x’,t/,L - xb) Ly ~ N(0,I), where J := —E [V,Q( log [px(B)ﬂ |

n— oo x=x

is the Fisher information matrix associated with one sample.
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Performance of the ML estimator

Problem

Let x! € RP be unknown and by, ..., by be i.i.d. samples of a random variable B with p.d.f.
Py () € P := {py(b) : x € RP}. Estimate x% from by,...,by.

Optimization formulation (ML estimator)

n

1

L = i —— 1 b; = i

X = arg min n§ 0g [Py (bi)] argfélfg,f(x)
i=1

Theorem (Performance of the ML estimator [4, 6])
Under some technical conditions, the random variable x;\‘/,L satisfies

lim nJ~1/2 (x’,t/,L - xb) Ly ~ N(0,I), where J := —E [V,Q( log [px(B)ﬂ |

n— oo x=x

is the Fisher information matrix associated with one sample. Roughly speaking,

I VRI7V2 (3 =) [~ T (D) =p = \ I xh — %7 (13 = O@/n). \
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Example: ML estimation for quantum tomography

Problem (Quantum tomography)

A quantum system of q qubits can be characterized by a density operator, i.e., a Hermitian positive semidefinite
Xb € CPXP with p = 249.
Let by, ...,by, be samples of independent random variables B, ..., By, with probability distribution

P ({b; = k}) :Tr(AkX“), k=1,...,m,

where {Aq,..., Ay} C CPXP js a positive operator-valued measure, i.e., a set of Hermitian positive
semidefinite matrices summing to 1.

How do we estimate X! given {A1,...,Am} and by, ..., b,?

The ML estimator

n

m
1
Xy €arg_min -~ Z I, —ky In[Tr (AxX)] : X = X7 X = 0
i=1 k=1
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Example: ML estimation for quantum tomography

Performance of ML estimator for quantum tomography with 3 qubits

”XM L™ XJ”F

10" 10° 10°

n (number of samples)
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Caveat Emptor: The ML estimator does not always yield the optimal performance!

Problem
Let x" € RP. Let b; = <ai,xh> +w; fori=1,...,n, where w; ~ N(0,1).

1 i—1 i i+l p
at the ith coordinate. How do we estimate x given b?

The ML solution
Since b ~ N (x%,1), the ML estimator is given by x3, :=b.

James-Stein estimator [3] Theorem (Performance comparison: ML vs. James-Stein [3])

For all p > 3, the James-Stein For all x € RP with p > 3, we have

estimator is given by 5 )
E [llx%s — %3] <E [l =y —x"113] -

* b— 2
Wiy 8= - —
5 ( b3 N ’ In expectation, the performance of the ML estimator is uniformly

dominated by the performance of the James-Stein estimator!
where (a)4+ = max(a,0).
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Elephant in the room: What happens when n < p?

X, Ab

* —
candidate —

The linear model and the LS estimator when n < p

Let x! € R? and A € R™*P. The samples are given by
b = Ax" + w, where w denotes the unknown noise.

The LS estimator for x% given A and b is defined as

* . 2
x(s € arg min {||b— Ax|3}.

The estimation error || xs — x ||2 can be arbitrarily large!

Proposition (The amount of overfitting [1])
Suppose that A € R™"*P s a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

n _ n
(1= (1= 2) 1 1 < Dxamanee == B < 1= 97 (1= 2) 1

with probability at least 1 — 2 exp [—(1/4)(27 = n)62] — 2exp [—(1/4);062], for all e > 0 and x% € RP.
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Wrap up!

> Next lecture on Friday 16:15 - 18:00 @ CM 11

> Questions/Self study on Mondays 11:00 - 12:00

> Lectures on Friday 16:00 - 18:00 for the first 3 weeks, then exercise sessions.
> Unsupervised work on Friday 18:00 - 19:00
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